2012-01-18 17:24:54 -07:00
<!-- {
"Title": "The Go Programming Language Specification",
2013-02-11 05:46:39 -07:00
"Subtitle": "Version of February 11, 2013",
2012-03-04 21:30:27 -07:00
"Path": "/ref/spec"
2012-01-18 17:24:54 -07:00
}-->
2009-09-17 09:05:12 -06:00
2008-09-09 11:48:14 -06:00
<!--
2010-06-03 17:55:50 -06:00
TODO
2009-08-07 18:05:41 -06:00
[ ] need language about function/method calls and parameter passing rules
2010-03-04 13:35:16 -07:00
[ ] last paragraph of #Assignments (constant promotion) should be elsewhere
and mention assignment to empty interface.
2009-08-19 17:44:04 -06:00
[ ] need to say something about "scope" of selectors?
2009-08-07 18:05:41 -06:00
[ ] clarify what a field name is in struct declarations
(struct{T} vs struct {T T} vs struct {t T})
2009-07-31 19:05:07 -06:00
[ ] need explicit language about the result type of operations
2009-04-20 16:32:20 -06:00
[ ] should probably write something about evaluation order of statements even
though obvious
2008-09-09 11:48:14 -06:00
-->
2009-04-20 16:32:20 -06:00
2009-08-20 12:11:03 -06:00
< h2 id = "Introduction" > Introduction< / h2 >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-19 18:31:36 -07:00
This is a reference manual for the Go programming language. For
2009-11-02 16:28:41 -07:00
more information and other documents, see < a href = "http://golang.org/" > http://golang.org< / a > .
2009-02-19 18:31:36 -07:00
< / p >
2008-12-16 15:45:09 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-19 18:31:36 -07:00
Go is a general-purpose language designed with systems programming
2009-09-15 10:54:22 -06:00
in mind. It is strongly typed and garbage-collected and has explicit
2009-02-19 18:31:36 -07:00
support for concurrent programming. Programs are constructed from
< i > packages< / i > , whose properties allow efficient management of
dependencies. The existing implementations use a traditional
compile/link model to generate executable binaries.
< / p >
2008-12-16 15:45:09 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-19 18:31:36 -07:00
The grammar is compact and regular, allowing for easy analysis by
automatic tools such as integrated development environments.
< / p >
2009-09-17 09:05:12 -06:00
2009-08-20 12:11:03 -06:00
< h2 id = "Notation" > Notation< / h2 >
2009-02-19 18:31:36 -07:00
< p >
2008-12-17 16:39:15 -07:00
The syntax is specified using Extended Backus-Naur Form (EBNF):
2009-02-19 18:31:36 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-20 14:36:14 -07:00
< pre class = "grammar" >
2011-05-13 13:54:51 -06:00
Production = production_name "=" [ Expression ] "." .
2009-02-19 18:31:36 -07:00
Expression = Alternative { "|" Alternative } .
2009-02-19 17:49:10 -07:00
Alternative = Term { Term } .
2011-05-24 15:18:44 -06:00
Term = production_name | token [ "…" token ] | Group | Option | Repetition .
2009-02-19 18:31:36 -07:00
Group = "(" Expression ")" .
2009-04-14 21:10:49 -06:00
Option = "[" Expression "]" .
2009-02-19 18:31:36 -07:00
Repetition = "{" Expression "}" .
2009-02-19 17:49:10 -07:00
< / pre >
2008-10-09 18:12:09 -06:00
2009-02-19 18:31:36 -07:00
< p >
Productions are expressions constructed from terms and the following
operators, in increasing precedence:
< / p >
2009-02-20 14:36:14 -07:00
< pre class = "grammar" >
2009-02-19 18:31:36 -07:00
| alternation
() grouping
[] option (0 or 1 times)
{} repetition (0 to n times)
2009-02-19 17:49:10 -07:00
< / pre >
2008-12-17 16:39:15 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-19 18:31:36 -07:00
Lower-case production names are used to identify lexical tokens.
2012-02-29 11:39:20 -07:00
Non-terminals are in CamelCase. Lexical tokens are enclosed in
2009-09-15 10:54:22 -06:00
double quotes < code > ""< / code > or back quotes < code > ``< / code > .
2009-02-19 18:31:36 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2011-05-24 15:18:44 -06:00
The form < code > a … b< / code > represents the set of characters from
< code > a< / code > through < code > b< / code > as alternatives. The horizontal
2012-03-18 15:26:36 -06:00
ellipsis < code > …< / code > is also used elsewhere in the spec to informally denote various
2012-02-12 20:38:31 -07:00
enumerations or code snippets that are not further specified. The character < code > …< / code >
2011-05-24 15:18:44 -06:00
(as opposed to the three characters < code > ...< / code > ) is not a token of the Go
language.
2009-02-19 18:31:36 -07:00
< / p >
2009-08-20 12:11:03 -06:00
< h2 id = "Source_code_representation" > Source code representation< / h2 >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-12-01 17:15:53 -07:00
Source code is Unicode text encoded in
< a href = "http://en.wikipedia.org/wiki/UTF-8" > UTF-8< / a > . The text is not
2009-02-20 14:36:14 -07:00
canonicalized, so a single accented code point is distinct from the
same character constructed from combining an accent and a letter;
those are treated as two code points. For simplicity, this document
2012-08-29 15:46:57 -06:00
will use the unqualified term < i > character< / i > to refer to a Unicode code point
in the source text.
2009-02-20 14:36:14 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2009-02-20 14:36:14 -07:00
Each code point is distinct; for instance, upper and lower case letters
are different characters.
< / p >
2010-02-16 17:47:18 -07:00
< p >
2010-02-17 16:50:34 -07:00
Implementation restriction: For compatibility with other tools, a
compiler may disallow the NUL character (U+0000) in the source text.
2010-02-16 17:47:18 -07:00
< / p >
2012-09-06 11:37:13 -06:00
< p >
Implementation restriction: For compatibility with other tools, a
2012-09-07 11:28:24 -06:00
compiler may ignore a UTF-8-encoded byte order mark
(U+FEFF) if it is the first Unicode code point in the source text.
2012-09-06 11:37:13 -06:00
< / p >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Characters" > Characters< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-19 18:31:36 -07:00
The following terms are used to denote specific Unicode character classes:
< / p >
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2011-05-05 10:03:00 -06:00
newline = /* the Unicode code point U+000A */ .
unicode_char = /* an arbitrary Unicode code point except newline */ .
2009-07-10 17:06:40 -06:00
unicode_letter = /* a Unicode code point classified as "Letter" */ .
2011-02-03 13:27:41 -07:00
unicode_digit = /* a Unicode code point classified as "Decimal Digit" */ .
2009-07-10 17:06:40 -06:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-09-15 10:54:22 -06:00
< p >
2012-10-31 11:32:15 -06:00
In < a href = "http://www.unicode.org/versions/Unicode6.2.0/" > The Unicode Standard 6.2< / a > ,
2011-02-03 13:27:41 -07:00
Section 4.5 "General Category"
2009-09-15 10:54:22 -06:00
defines a set of character categories. Go treats
those characters in category Lu, Ll, Lt, Lm, or Lo as Unicode letters,
and those in category Nd as Unicode digits.
< / p >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Letters_and_digits" > Letters and digits< / h3 >
2009-02-20 14:36:14 -07:00
< p >
2009-02-23 20:22:05 -07:00
The underscore character < code > _< / code > (U+005F) is considered a letter.
2009-07-10 17:06:40 -06:00
< / p >
< pre class = "ebnf" >
2009-02-19 17:49:10 -07:00
letter = unicode_letter | "_" .
2011-05-24 15:18:44 -06:00
decimal_digit = "0" … "9" .
octal_digit = "0" … "7" .
hex_digit = "0" … "9" | "A" … "F" | "a" … "f" .
2009-02-19 17:49:10 -07:00
< / pre >
2009-02-20 14:36:14 -07:00
2009-08-20 12:11:03 -06:00
< h2 id = "Lexical_elements" > Lexical elements< / h2 >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Comments" > Comments< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-20 14:36:14 -07:00
< p >
2009-12-10 17:43:01 -07:00
There are two forms of comments:
2009-02-20 14:36:14 -07:00
< / p >
2009-12-10 17:43:01 -07:00
< ol >
< li >
< i > Line comments< / i > start with the character sequence < code > //< / code >
2010-11-04 14:48:32 -06:00
and stop at the end of the line. A line comment acts like a newline.
2009-12-10 17:43:01 -07:00
< / li >
< li >
< i > General comments< / i > start with the character sequence < code > /*< / code >
and continue through the character sequence < code > */< / code > . A general
2011-12-15 11:51:51 -07:00
comment containing one or more newlines acts like a newline, otherwise it acts
2009-12-10 17:43:01 -07:00
like a space.
< / li >
< / ol >
< p >
Comments do not nest.
< / p >
2009-08-20 12:11:03 -06:00
< h3 id = "Tokens" > Tokens< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-20 14:36:14 -07:00
< p >
Tokens form the vocabulary of the Go language.
2009-12-28 15:40:42 -07:00
There are four classes: < i > identifiers< / i > , < i > keywords< / i > , < i > operators
and delimiters< / i > , and < i > literals< / i > . < i > White space< / i > , formed from
2009-11-07 23:00:59 -07:00
spaces (U+0020), horizontal tabs (U+0009),
carriage returns (U+000D), and newlines (U+000A),
is ignored except as it separates tokens
2010-09-27 19:59:11 -06:00
that would otherwise combine into a single token. Also, a newline or end of file
2009-12-28 15:40:42 -07:00
may trigger the insertion of a < a href = "#Semicolons" > semicolon< / a > .
2009-12-10 17:43:01 -07:00
While breaking the input into tokens,
2009-02-20 14:36:14 -07:00
the next token is the longest sequence of characters that form a
valid token.
< / p >
2008-08-28 18:47:53 -06:00
2009-12-10 17:43:01 -07:00
< h3 id = "Semicolons" > Semicolons< / h3 >
< p >
The formal grammar uses semicolons < code > ";"< / code > as terminators in
a number of productions. Go programs may omit most of these semicolons
using the following two rules:
< / p >
< ol >
< li >
< p >
When the input is broken into tokens, a semicolon is automatically inserted
into the token stream at the end of a non-blank line if the line's final
token is
< / p >
< ul >
2010-05-14 14:11:48 -06:00
< li > an
< a href = "#Identifiers" > identifier< / a >
2009-12-10 17:43:01 -07:00
< / li >
2011-11-01 00:13:33 -06:00
2010-05-14 14:11:48 -06:00
< li > an
< a href = "#Integer_literals" > integer< / a > ,
< a href = "#Floating-point_literals" > floating-point< / a > ,
< a href = "#Imaginary_literals" > imaginary< / a > ,
2012-08-29 15:46:57 -06:00
< a href = "#Rune_literals" > rune< / a > , or
2010-05-14 14:11:48 -06:00
< a href = "#String_literals" > string< / a > literal
< / li >
2011-11-01 00:13:33 -06:00
2010-05-14 14:11:48 -06:00
< li > one of the < a href = "#Keywords" > keywords< / a >
< code > break< / code > ,
< code > continue< / code > ,
< code > fallthrough< / code > , or
< code > return< / code >
< / li >
2011-11-01 00:13:33 -06:00
2010-05-14 14:11:48 -06:00
< li > one of the < a href = "#Operators_and_Delimiters" > operators and delimiters< / a >
< code > ++< / code > ,
< code > --< / code > ,
< code > )< / code > ,
< code > ]< / code > , or
< code > }< / code >
2009-12-10 17:43:01 -07:00
< / li >
< / ul >
< / li >
< li >
To allow complex statements to occupy a single line, a semicolon
may be omitted before a closing < code > ")"< / code > or < code > "}"< / code > .
< / li >
< / ol >
< p >
To reflect idiomatic use, code examples in this document elide semicolons
using these rules.
< / p >
2009-08-20 12:11:03 -06:00
< h3 id = "Identifiers" > Identifiers< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-20 14:36:14 -07:00
< p >
Identifiers name program entities such as variables and types.
An identifier is a sequence of one or more letters and digits.
The first character in an identifier must be a letter.
< / p >
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-09-18 12:58:35 -06:00
identifier = letter { letter | unicode_digit } .
2009-02-19 17:49:10 -07:00
< / pre >
< pre >
a
_x9
ThisVariableIsExported
αβ
< / pre >
2009-12-10 17:43:01 -07:00
< p >
2009-09-10 11:14:00 -06:00
Some identifiers are < a href = "#Predeclared_identifiers" > predeclared< / a > .
2009-12-10 17:43:01 -07:00
< / p >
2008-09-03 16:15:51 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Keywords" > Keywords< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-20 14:36:14 -07:00
< p >
The following keywords are reserved and may not be used as identifiers.
< / p >
< pre class = "grammar" >
break default func interface select
case defer go map struct
chan else goto package switch
const fallthrough if range type
continue for import return var
< / pre >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Operators_and_Delimiters" > Operators and Delimiters< / h3 >
2009-02-20 14:36:14 -07:00
< p >
2009-09-18 12:58:35 -06:00
The following character sequences represent < a href = "#Operators" > operators< / a > , delimiters, and other special tokens:
2009-02-20 14:36:14 -07:00
< / p >
< pre class = "grammar" >
+ & += & = & & == != ( )
- | -= |= || < < = [ ]
* ^ *= ^= < - > > = { }
2009-08-27 17:45:42 -06:00
/ < < /= < < = ++ = := , ;
% > > %= > > = -- ! ... . :
2009-03-11 22:59:05 -06:00
& ^ & ^=
2009-02-20 14:36:14 -07:00
< / pre >
2009-08-20 12:11:03 -06:00
< h3 id = "Integer_literals" > Integer literals< / h3 >
2009-02-20 14:36:14 -07:00
< p >
2009-09-24 20:36:48 -06:00
An integer literal is a sequence of digits representing an
< a href = "#Constants" > integer constant< / a > .
An optional prefix sets a non-decimal base: < code > 0< / code > for octal, < code > 0x< / code > or
2009-02-23 20:22:05 -07:00
< code > 0X< / code > for hexadecimal. In hexadecimal literals, letters
< code > a-f< / code > and < code > A-F< / code > represent values 10 through 15.
2009-02-20 14:36:14 -07:00
< / p >
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-09-18 12:58:35 -06:00
int_lit = decimal_lit | octal_lit | hex_lit .
2011-05-24 15:18:44 -06:00
decimal_lit = ( "1" … "9" ) { decimal_digit } .
2009-09-18 12:58:35 -06:00
octal_lit = "0" { octal_digit } .
hex_lit = "0" ( "x" | "X" ) hex_digit { hex_digit } .
2009-02-19 17:49:10 -07:00
< / pre >
< pre >
42
0600
0xBadFace
170141183460469231731687303715884105727
< / pre >
2008-09-11 18:48:20 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Floating-point_literals" > Floating-point literals< / h3 >
2009-02-20 14:36:14 -07:00
< p >
2009-09-24 20:36:48 -06:00
A floating-point literal is a decimal representation of a
< a href = "#Constants" > floating-point constant< / a > .
It has an integer part, a decimal point, a fractional part,
2009-02-20 14:36:14 -07:00
and an exponent part. The integer and fractional part comprise
2009-02-23 20:22:05 -07:00
decimal digits; the exponent part is an < code > e< / code > or < code > E< / code >
2009-02-20 14:36:14 -07:00
followed by an optionally signed decimal exponent. One of the
integer part or the fractional part may be elided; one of the decimal
point or the exponent may be elided.
< / p >
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-09-18 12:58:35 -06:00
float_lit = decimals "." [ decimals ] [ exponent ] |
decimals exponent |
"." decimals [ exponent ] .
decimals = decimal_digit { decimal_digit } .
exponent = ( "e" | "E" ) [ "+" | "-" ] decimals .
2009-02-19 17:49:10 -07:00
< / pre >
< pre >
0.
2010-03-04 13:35:16 -07:00
72.40
072.40 // == 72.40
2009-02-19 17:49:10 -07:00
2.71828
1.e+0
6.67428e-11
1E6
.25
.12345E+5
< / pre >
2008-09-11 18:48:20 -06:00
2010-03-04 13:35:16 -07:00
< h3 id = "Imaginary_literals" > Imaginary literals< / h3 >
< p >
An imaginary literal is a decimal representation of the imaginary part of a
< a href = "#Constants" > complex constant< / a > .
It consists of a
< a href = "#Floating-point_literals" > floating-point literal< / a >
or decimal integer followed
by the lower-case letter < code > i< / code > .
< / p >
< pre class = "ebnf" >
imaginary_lit = (decimals | float_lit) "i" .
< / pre >
< pre >
0i
011i // == 11i
0.i
2.71828i
1.e+0i
6.67428e-11i
1E6i
.25i
.12345E+5i
< / pre >
2008-08-28 18:47:53 -06:00
2012-08-29 15:46:57 -06:00
< h3 id = "Rune_literals" > Rune literals< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-19 18:31:36 -07:00
< p >
2012-08-29 15:46:57 -06:00
A rune literal represents a < a href = "#Constants" > rune constant< / a > ,
an integer value identifying a Unicode code point.
A rune literal is expressed as one or more characters enclosed in single quotes.
Within the quotes, any character may appear except single
quote and newline. A single quoted character represents the Unicode value
of the character itself,
2009-02-20 14:36:14 -07:00
while multi-character sequences beginning with a backslash encode
values in various formats.
2009-02-19 18:31:36 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2009-02-20 14:36:14 -07:00
The simplest form represents the single character within the quotes;
since Go source text is Unicode characters encoded in UTF-8, multiple
UTF-8-encoded bytes may represent a single integer value. For
2009-02-23 20:22:05 -07:00
instance, the literal < code > 'a'< / code > holds a single byte representing
a literal < code > a< / code > , Unicode U+0061, value < code > 0x61< / code > , while
< code > 'ä'< / code > holds two bytes (< code > 0xc3< / code > < code > 0xa4< / code > ) representing
a literal < code > a< / code > -dieresis, U+00E4, value < code > 0xe4< / code > .
2009-02-19 18:31:36 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2012-08-29 15:46:57 -06:00
Several backslash escapes allow arbitrary values to be encoded as
2012-09-04 22:53:13 -06:00
ASCII text. There are four ways to represent the integer value
2009-02-23 20:22:05 -07:00
as a numeric constant: < code > \x< / code > followed by exactly two hexadecimal
digits; < code > \u< / code > followed by exactly four hexadecimal digits;
< code > \U< / code > followed by exactly eight hexadecimal digits, and a
plain backslash < code > \< / code > followed by exactly three octal digits.
2009-02-20 14:36:14 -07:00
In each case the value of the literal is the value represented by
the digits in the corresponding base.
< / p >
2009-02-19 17:49:10 -07:00
< p >
2009-02-20 14:36:14 -07:00
Although these representations all result in an integer, they have
different valid ranges. Octal escapes must represent a value between
2009-09-15 10:54:22 -06:00
0 and 255 inclusive. Hexadecimal escapes satisfy this condition
by construction. The escapes < code > \u< / code > and < code > \U< / code >
2009-02-20 14:36:14 -07:00
represent Unicode code points so within them some values are illegal,
2009-02-23 20:22:05 -07:00
in particular those above < code > 0x10FFFF< / code > and surrogate halves.
2009-02-20 14:36:14 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2009-02-20 14:36:14 -07:00
After a backslash, certain single-character escapes represent special values:
< / p >
< pre class = "grammar" >
\a U+0007 alert or bell
\b U+0008 backspace
\f U+000C form feed
\n U+000A line feed or newline
\r U+000D carriage return
\t U+0009 horizontal tab
\v U+000b vertical tab
\\ U+005c backslash
2012-08-29 15:46:57 -06:00
\' U+0027 single quote (valid escape only within rune literals)
2009-02-20 14:36:14 -07:00
\" U+0022 double quote (valid escape only within string literals)
< / pre >
< p >
2012-08-29 15:46:57 -06:00
All other sequences starting with a backslash are illegal inside rune literals.
2009-02-20 14:36:14 -07:00
< / p >
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2013-01-07 19:02:58 -07:00
rune_lit = "'" ( unicode_value | byte_value ) "'" .
2009-02-20 14:36:14 -07:00
unicode_value = unicode_char | little_u_value | big_u_value | escaped_char .
byte_value = octal_byte_value | hex_byte_value .
2009-07-10 17:06:40 -06:00
octal_byte_value = `\` octal_digit octal_digit octal_digit .
hex_byte_value = `\` "x" hex_digit hex_digit .
little_u_value = `\` "u" hex_digit hex_digit hex_digit hex_digit .
big_u_value = `\` "U" hex_digit hex_digit hex_digit hex_digit
2009-02-20 14:36:14 -07:00
hex_digit hex_digit hex_digit hex_digit .
2009-07-10 17:06:40 -06:00
escaped_char = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
2009-02-20 14:36:14 -07:00
< / pre >
2009-09-24 20:36:48 -06:00
2009-02-19 17:49:10 -07:00
< pre >
'a'
'ä'
'本'
'\t'
'\000'
'\007'
'\377'
'\x07'
'\xff'
'\u12e4'
'\U00101234'
2012-08-29 15:46:57 -06:00
'aa' // illegal: too many characters
'\xa' // illegal: too few hexadecimal digits
'\0' // illegal: too few octal digits
'\uDFFF' // illegal: surrogate half
'\U00110000' // illegal: invalid Unicode code point
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "String_literals" > String literals< / h3 >
2009-02-20 14:36:14 -07:00
< p >
2009-09-24 20:36:48 -06:00
A string literal represents a < a href = "#Constants" > string constant< / a >
obtained from concatenating a sequence of characters. There are two forms:
raw string literals and interpreted string literals.
2009-02-20 14:36:14 -07:00
< / p >
< p >
Raw string literals are character sequences between back quotes
2009-02-23 20:22:05 -07:00
< code > ``< / code > . Within the quotes, any character is legal except
2009-06-18 14:51:14 -06:00
back quote. The value of a raw string literal is the
2012-08-29 15:46:57 -06:00
string composed of the uninterpreted (implicitly UTF-8-encoded) characters
between the quotes;
2009-06-18 14:51:14 -06:00
in particular, backslashes have no special meaning and the string may
2011-12-15 11:51:51 -07:00
contain newlines.
2011-12-14 22:52:41 -07:00
Carriage returns inside raw string literals
are discarded from the raw string value.
2009-02-20 14:36:14 -07:00
< / p >
< p >
Interpreted string literals are character sequences between double
2009-11-07 23:00:59 -07:00
quotes < code > " " < / code > . The text between the quotes,
2011-12-15 11:51:51 -07:00
which may not contain newlines, forms the
2009-02-20 14:36:14 -07:00
value of the literal, with backslash escapes interpreted as they
2012-08-29 15:46:57 -06:00
are in rune literals (except that < code > \'< / code > is illegal and
< code > \"< / code > is legal), with the same restrictions.
The three-digit octal (< code > \< / code > < i > nnn< / i > )
2009-12-01 17:15:53 -07:00
and two-digit hexadecimal (< code > \x< / code > < i > nn< / i > ) escapes represent individual
2009-02-20 14:36:14 -07:00
< i > bytes< / i > of the resulting string; all other escapes represent
the (possibly multi-byte) UTF-8 encoding of individual < i > characters< / i > .
2009-02-23 20:22:05 -07:00
Thus inside a string literal < code > \377< / code > and < code > \xFF< / code > represent
a single byte of value < code > 0xFF< / code > =255, while < code > ÿ< / code > ,
< code > \u00FF< / code > , < code > \U000000FF< / code > and < code > \xc3\xbf< / code > represent
2009-09-25 15:11:03 -06:00
the two bytes < code > 0xc3< / code > < code > 0xbf< / code > of the UTF-8 encoding of character
2009-02-20 14:36:14 -07:00
U+00FF.
< / p >
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-02-20 14:36:14 -07:00
string_lit = raw_string_lit | interpreted_string_lit .
2011-05-05 10:03:00 -06:00
raw_string_lit = "`" { unicode_char | newline } "`" .
2009-10-19 14:13:59 -06:00
interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-06-18 14:51:14 -06:00
`abc` // same as "abc"
`\n
\n` // same as "\\n\n\\n"
2009-02-19 17:49:10 -07:00
"\n"
""
"Hello, world!\n"
"日本語"
"\u65e5本\U00008a9e"
"\xff\u00FF"
2012-08-29 15:46:57 -06:00
"\uD800" // illegal: surrogate half
"\U00110000" // illegal: invalid Unicode code point
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-20 14:36:14 -07:00
< p >
2008-08-28 18:47:53 -06:00
These examples all represent the same string:
2009-02-20 14:36:14 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-02-20 14:36:14 -07:00
"日本語" // UTF-8 input text
`日本語` // UTF-8 input text as a raw literal
2012-08-29 15:46:57 -06:00
"\u65e5\u672c\u8a9e" // the explicit Unicode code points
"\U000065e5\U0000672c\U00008a9e" // the explicit Unicode code points
"\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" // the explicit UTF-8 bytes
2009-02-19 17:49:10 -07:00
< / pre >
2008-09-29 13:09:00 -06:00
2009-02-19 17:49:10 -07:00
< p >
2008-08-28 18:47:53 -06:00
If the source code represents a character as two code points, such as
a combining form involving an accent and a letter, the result will be
2012-08-29 15:46:57 -06:00
an error if placed in a rune literal (it is not a single code
2008-08-28 18:47:53 -06:00
point), and will appear as two code points if placed in a string
literal.
2009-02-20 14:36:14 -07:00
< / p >
2008-12-16 15:45:09 -07:00
2009-09-24 20:36:48 -06:00
< h2 id = "Constants" > Constants< / h2 >
2011-12-08 19:48:19 -07:00
< p > There are < i > boolean constants< / i > ,
2012-08-29 15:46:57 -06:00
< i > rune constants< / i > ,
2011-12-08 19:48:19 -07:00
< i > integer constants< / i > ,
2010-03-04 13:35:16 -07:00
< i > floating-point constants< / i > , < i > complex constants< / i > ,
2011-12-08 19:48:19 -07:00
and < i > string constants< / i > . Character, integer, floating-point,
2010-03-04 13:35:16 -07:00
and complex constants are
2009-09-24 20:36:48 -06:00
collectively called < i > numeric constants< / i > .
< / p >
< p >
2011-12-08 19:48:19 -07:00
A constant value is represented by a
2012-08-29 15:46:57 -06:00
< a href = "#Rune_literals" > rune< / a > ,
2009-09-24 20:36:48 -06:00
< a href = "#Integer_literals" > integer< / a > ,
< a href = "#Floating-point_literals" > floating-point< / a > ,
2010-03-04 13:35:16 -07:00
< a href = "#Imaginary_literals" > imaginary< / a > ,
2011-12-08 19:48:19 -07:00
or
2009-09-24 20:36:48 -06:00
< a href = "#String_literals" > string< / a > literal,
an identifier denoting a constant,
2011-06-13 17:47:33 -06:00
a < a href = "#Constant_expressions" > constant expression< / a > ,
a < a href = "#Conversions" > conversion< / a > with a result that is a constant, or
2010-07-01 18:49:47 -06:00
the result value of some built-in functions such as
< code > unsafe.Sizeof< / code > applied to any value,
< code > cap< / code > or < code > len< / code > applied to
< a href = "#Length_and_capacity" > some expressions< / a > ,
2010-03-04 13:35:16 -07:00
< code > real< / code > and < code > imag< / code > applied to a complex constant
2011-01-19 21:07:21 -07:00
and < code > complex< / code > applied to numeric constants.
2009-09-24 20:36:48 -06:00
The boolean truth values are represented by the predeclared constants
< code > true< / code > and < code > false< / code > . The predeclared identifier
< a href = "#Iota" > iota< / a > denotes an integer constant.
< / p >
2009-09-15 10:54:22 -06:00
2010-03-04 13:35:16 -07:00
< p >
In general, complex constants are a form of
< a href = "#Constant_expressions" > constant expression< / a >
and are discussed in that section.
< / p >
2009-09-15 10:54:22 -06:00
< p >
2009-12-01 17:15:53 -07:00
Numeric constants represent values of arbitrary precision and do not overflow.
2009-09-15 10:54:22 -06:00
< / p >
2009-09-24 20:36:48 -06:00
< p >
Constants may be < a href = "#Types" > typed< / a > or untyped.
Literal constants, < code > true< / code > , < code > false< / code > , < code > iota< / code > ,
and certain < a href = "#Constant_expressions" > constant expressions< / a >
containing only untyped constant operands are untyped.
< / p >
< p >
A constant may be given a type explicitly by a < a href = "#Constant_declarations" > constant declaration< / a >
or < a href = "#Conversions" > conversion< / a > , or implicitly when used in a
< a href = "#Variable_declarations" > variable declaration< / a > or an
< a href = "#Assignments" > assignment< / a > or as an
operand in an < a href = "#Expressions" > expression< / a > .
It is an error if the constant value
2011-01-19 11:33:41 -07:00
cannot be represented as a value of the respective type.
2009-12-01 17:15:53 -07:00
For instance, < code > 3.0< / code > can be given any integer or any
2009-11-07 23:00:59 -07:00
floating-point type, while < code > 2147483648.0< / code > (equal to < code > 1< < 31< / code > )
can be given the types < code > float32< / code > , < code > float64< / code > , or < code > uint32< / code > but
not < code > int32< / code > or < code > string< / code > .
2009-09-24 20:36:48 -06:00
< / p >
2010-01-18 16:59:14 -07:00
< p >
There are no constants denoting the IEEE-754 infinity and not-a-number values,
but the < a href = "/pkg/math/" > < code > math< / code > package< / a > 's
< a href = "/pkg/math/#Inf" > Inf< / a > ,
< a href = "/pkg/math/#NaN" > NaN< / a > ,
< a href = "/pkg/math/#IsInf" > IsInf< / a > , and
< a href = "/pkg/math/#IsNaN" > IsNaN< / a >
functions return and test for those values at run time.
< / p >
2009-09-24 20:36:48 -06:00
< p >
2012-02-13 12:25:56 -07:00
Implementation restriction: Although numeric constants have arbitrary
precision in the language, a compiler may implement them using an
internal representation with limited precision. That said, every
implementation must:
2009-09-24 20:36:48 -06:00
< / p >
2012-02-13 12:25:56 -07:00
< ul >
< li > Represent integer constants with at least 256 bits.< / li >
< li > Represent floating-point constants, including the parts of
a complex constant, with a mantissa of at least 256 bits
and a signed exponent of at least 32 bits.< / li >
< li > Give an error if unable to represent an integer constant
precisely.< / li >
2009-09-24 20:36:48 -06:00
2012-02-13 12:25:56 -07:00
< li > Give an error if unable to represent a floating-point or
complex constant due to overflow.< / li >
< li > Round to the nearest representable constant if unable to
represent a floating-point or complex constant due to limits
on precision.< / li >
< / ul >
< p >
These requirements apply both to literal constants and to the result
of evaluating < a href = "#Constant_expressions" > constant
expressions< / a > .
< / p >
2009-09-24 20:36:48 -06:00
2009-08-20 12:11:03 -06:00
< h2 id = "Types" > Types< / h2 >
2008-08-28 18:47:53 -06:00
2009-02-23 20:22:05 -07:00
< p >
2009-05-20 12:02:48 -06:00
A type determines the set of values and operations specific to values of that
2012-06-26 12:49:19 -06:00
type. A type may be specified by a
(possibly < a href = "#Qualified_identifiers" > qualified< / a > ) < i > type name< / i >
(§< a href = "#Type_declarations" > Type declarations< / a > ) or a < i > type literal< / i > ,
2009-05-20 12:02:48 -06:00
which composes a new type from previously declared types.
2009-02-24 16:17:59 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-02-25 17:20:44 -07:00
Type = TypeName | TypeLit | "(" Type ")" .
2012-06-26 12:49:19 -06:00
TypeName = identifier | QualifiedIdent .
2009-02-25 17:20:44 -07:00
TypeLit = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
SliceType | MapType | ChannelType .
2009-02-19 17:49:10 -07:00
< / pre >
2009-02-23 20:26:07 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-09-28 15:10:20 -06:00
Named instances of the boolean, numeric, and string types are
< a href = "#Predeclared_identifiers" > predeclared< / a > .
< i > Composite types< / i > — array, struct, pointer, function,
interface, slice, map, and channel types— may be constructed using
type literals.
2009-02-24 16:17:59 -07:00
< / p >
2009-02-23 20:22:05 -07:00
2011-02-08 14:31:01 -07:00
< p >
The < i > static type< / i > (or just < i > type< / i > ) of a variable is the
type defined by its declaration. Variables of interface type
also have a distinct < i > dynamic type< / i > , which
2012-10-17 12:08:42 -06:00
is the actual type of the value stored in the variable at run time.
2011-02-08 14:31:01 -07:00
The dynamic type may vary during execution but is always
< a href = "#Assignability" > assignable< / a >
to the static type of the interface variable. For non-interface
types, the dynamic type is always the static type.
< / p >
2010-06-07 16:49:39 -06:00
< p >
Each type < code > T< / code > has an < i > underlying type< / i > : If < code > T< / code >
is a predeclared type or a type literal, the corresponding underlying
type is < code > T< / code > itself. Otherwise, < code > T< / code > 's underlying type
is the underlying type of the type to which < code > T< / code > refers in its
< a href = "#Type_declarations" > type declaration< / a > .
< / p >
< pre >
type T1 string
type T2 T1
type T3 []T1
type T4 T3
< / pre >
< p >
The underlying type of < code > string< / code > , < code > T1< / code > , and < code > T2< / code >
is < code > string< / code > . The underlying type of < code > []T1< / code > , < code > T3< / code > ,
and < code > T4< / code > is < code > []T1< / code > .
< / p >
2011-02-08 14:31:01 -07:00
< h3 id = "Method_sets" > Method sets< / h3 >
2009-02-24 16:17:59 -07:00
< p >
2009-06-17 15:31:33 -06:00
A type may have a < i > method set< / i > associated with it
2009-08-20 12:11:03 -06:00
(§< a href = "#Interface_types" > Interface types< / a > , §< a href = "#Method_declarations" > Method declarations< / a > ).
2009-09-24 20:36:48 -06:00
The method set of an < a href = "#Interface_types" > interface type< / a > is its interface.
spec: apply method sets, embedding to all types, not just named types
When we first wrote the method set definition, we had long
discussions about whether method sets applied to all types
or just named types, and we (or at least I) concluded that it
didn't matter: the two were equivalent points of view, because
the only way to introduce a new method was to write a method
function, which requires a named receiver type.
However, the addition of embedded types changed this.
Embedding can introduce a method without writing an explicit
method function, as in:
var x struct {
sync.Mutex
}
var px *struct {
sync.Mutex
}
var _, _ sync.Locker = &x, px
The edits in this CL make clear that both &x and px satisfy
sync.Locker. Today, gccgo already works this way; 6g does not.
R=golang-dev, gri, iant, r
CC=golang-dev
https://golang.org/cl/5702062
2012-02-29 13:54:06 -07:00
The method set of any other type < code > T< / code >
2009-09-28 15:10:20 -06:00
consists of all methods with receiver type < code > T< / code > .
2009-05-20 12:02:48 -06:00
The method set of the corresponding pointer type < code > *T< / code >
is the set of all methods with receiver < code > *T< / code > or < code > T< / code >
(that is, it also contains the method set of < code > T< / code > ).
2012-06-04 15:24:10 -06:00
Further rules apply to structs containing anonymous fields, as described
in the section on < a href = "#Struct_types" > struct types< / a > .
2009-05-20 12:02:48 -06:00
Any other type has an empty method set.
2012-03-01 14:57:49 -07:00
In a method set, each method must have a
< a href = "#Uniqueness_of_identifiers" > unique< / a > < a href = "#MethodName" > method name< / a > .
2009-02-24 16:17:59 -07:00
< / p >
2008-10-03 15:04:28 -06:00
2012-02-08 12:28:51 -07:00
< p >
The method set of a type determines the interfaces that the
type < a href = "#Interface_types" > implements< / a >
and the methods that can be < a href = "#Calls" > called< / a >
using a receiver of that type.
< / p >
2009-02-23 20:22:05 -07:00
2009-09-24 20:36:48 -06:00
< h3 id = "Boolean_types" > Boolean types< / h3 >
2012-02-29 16:07:52 -07:00
< p >
2009-09-24 20:36:48 -06:00
A < i > boolean type< / i > represents the set of Boolean truth values
denoted by the predeclared constants < code > true< / code >
and < code > false< / code > . The predeclared boolean type is < code > bool< / code > .
2012-02-29 16:07:52 -07:00
< / p >
2009-02-23 20:22:05 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Numeric_types" > Numeric types< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-24 16:17:59 -07:00
< p >
2009-09-24 20:36:48 -06:00
A < i > numeric type< / i > represents sets of integer or floating-point values.
The predeclared architecture-independent numeric types are:
2009-02-24 16:17:59 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-20 14:36:14 -07:00
< pre class = "grammar" >
2010-03-04 13:35:16 -07:00
uint8 the set of all unsigned 8-bit integers (0 to 255)
uint16 the set of all unsigned 16-bit integers (0 to 65535)
uint32 the set of all unsigned 32-bit integers (0 to 4294967295)
uint64 the set of all unsigned 64-bit integers (0 to 18446744073709551615)
int8 the set of all signed 8-bit integers (-128 to 127)
int16 the set of all signed 16-bit integers (-32768 to 32767)
int32 the set of all signed 32-bit integers (-2147483648 to 2147483647)
int64 the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
2008-08-28 18:47:53 -06:00
2010-03-04 13:35:16 -07:00
float32 the set of all IEEE-754 32-bit floating-point numbers
float64 the set of all IEEE-754 64-bit floating-point numbers
2009-02-23 20:22:05 -07:00
2010-03-04 13:35:16 -07:00
complex64 the set of all complex numbers with float32 real and imaginary parts
complex128 the set of all complex numbers with float64 real and imaginary parts
2009-02-24 16:17:59 -07:00
2011-10-31 23:09:22 -06:00
byte alias for uint8
2011-12-08 22:11:43 -07:00
rune alias for int32
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-24 16:17:59 -07:00
< p >
2009-12-01 17:15:53 -07:00
The value of an < i > n< / i > -bit integer is < i > n< / i > bits wide and represented using
< a href = "http://en.wikipedia.org/wiki/Two's_complement" > two's complement arithmetic< / a > .
2009-02-24 16:17:59 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-24 16:17:59 -07:00
< p >
2009-09-24 20:36:48 -06:00
There is also a set of predeclared numeric types with implementation-specific sizes:
2009-02-24 16:17:59 -07:00
< / p >
2008-11-17 19:11:36 -07:00
2009-02-23 20:26:07 -07:00
< pre class = "grammar" >
2009-06-18 14:29:40 -06:00
uint either 32 or 64 bits
2011-01-13 11:24:04 -07:00
int same size as uint
2009-06-18 14:29:40 -06:00
uintptr an unsigned integer large enough to store the uninterpreted bits of a pointer value
2009-02-23 20:26:07 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-23 20:22:05 -07:00
< p >
2009-03-02 20:13:40 -07:00
To avoid portability issues all numeric types are distinct except
2011-10-31 23:09:22 -06:00
< code > byte< / code > , which is an alias for < code > uint8< / code > , and
2011-12-08 22:11:43 -07:00
< code > rune< / code > , which is an alias for < code > int32< / code > .
2009-03-02 20:13:40 -07:00
Conversions
2010-06-07 16:49:39 -06:00
are required when different numeric types are mixed in an expression
2009-02-24 16:17:59 -07:00
or assignment. For instance, < code > int32< / code > and < code > int< / code >
2009-03-04 18:19:21 -07:00
are not the same type even though they may have the same size on a
2009-02-24 16:17:59 -07:00
particular architecture.
2008-08-28 18:47:53 -06:00
2008-12-04 18:33:37 -07:00
2009-09-24 20:36:48 -06:00
< h3 id = "String_types" > String types< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-09-24 20:36:48 -06:00
A < i > string type< / i > represents the set of string values.
spec: clarify section on string types
Strings happen to be represented similarly to
byte slices internally, but they don't quite
behave like them: While strings can be indexed,
sliced, and have their len() taken like byte
slices, string elements are not addressable,
make() and cap() is not supported, range loops
operate differently, and they are immutable (and
thus behave like values rather then references).
Fixes #4018.
R=r, rsc, iant, ken
CC=golang-dev
https://golang.org/cl/6503116
2012-09-14 12:31:56 -06:00
A string value is a (possibly empty) sequence of bytes.
Strings are immutable: once created,
2009-02-24 16:17:59 -07:00
it is impossible to change the contents of a string.
2009-09-24 20:36:48 -06:00
The predeclared string type is < code > string< / code > .
spec: clarify section on string types
Strings happen to be represented similarly to
byte slices internally, but they don't quite
behave like them: While strings can be indexed,
sliced, and have their len() taken like byte
slices, string elements are not addressable,
make() and cap() is not supported, range loops
operate differently, and they are immutable (and
thus behave like values rather then references).
Fixes #4018.
R=r, rsc, iant, ken
CC=golang-dev
https://golang.org/cl/6503116
2012-09-14 12:31:56 -06:00
< / p >
2009-02-24 16:17:59 -07:00
< p >
spec: clarify section on string types
Strings happen to be represented similarly to
byte slices internally, but they don't quite
behave like them: While strings can be indexed,
sliced, and have their len() taken like byte
slices, string elements are not addressable,
make() and cap() is not supported, range loops
operate differently, and they are immutable (and
thus behave like values rather then references).
Fixes #4018.
R=r, rsc, iant, ken
CC=golang-dev
https://golang.org/cl/6503116
2012-09-14 12:31:56 -06:00
The length of a string < code > s< / code > (its size in bytes) can be discovered using
the built-in function < a href = "#Length_and_capacity" > < code > len< / code > < / a > .
The length is a compile-time constant if the string is a constant.
spec: consistently use "indices" (rather than "indexes")
We have been using all three terms "indices", "indexes",
and "index expressions" indiscriminatly for index values.
With this change, "index" refers to an index value,
"indices" is the plural of "index", and "index expression"
refers to an array, slice, or map indexed by an index: a[x].
R=r, rsc, iant, ken, mtj
CC=golang-dev
https://golang.org/cl/6912056
2012-12-10 12:55:57 -07:00
A string's bytes can be accessed by integer < a href = "#Index_expressions" > indices< / a >
0 through < code > len(s)-1< / code > .
spec: clarify section on string types
Strings happen to be represented similarly to
byte slices internally, but they don't quite
behave like them: While strings can be indexed,
sliced, and have their len() taken like byte
slices, string elements are not addressable,
make() and cap() is not supported, range loops
operate differently, and they are immutable (and
thus behave like values rather then references).
Fixes #4018.
R=r, rsc, iant, ken
CC=golang-dev
https://golang.org/cl/6503116
2012-09-14 12:31:56 -06:00
It is illegal to take the address of such an element; if
< code > s[i]< / code > is the < code > i< / code > 'th byte of a
string, < code > & s[i]< / code > is invalid.
2009-02-24 16:17:59 -07:00
< / p >
2008-12-04 18:33:37 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Array_types" > Array types< / h3 >
2009-03-04 15:44:51 -07:00
< p >
An array is a numbered sequence of elements of a single
2009-08-14 18:41:52 -06:00
type, called the element type.
The number of elements is called the length and is never
2009-03-04 15:44:51 -07:00
negative.
< / p >
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-04 15:44:51 -07:00
ArrayType = "[" ArrayLength "]" ElementType .
ArrayLength = Expression .
2009-08-14 18:41:52 -06:00
ElementType = Type .
2009-03-04 15:44:51 -07:00
< / pre >
< p >
2012-12-12 12:06:26 -07:00
The length is part of the array's type; it must evaluate to a non-
negative < a href = "#Constants" > constant< / a > representable by a value
of type < code > int< / code > .
The length of array < code > a< / code > can be discovered
spec: clarify section on string types
Strings happen to be represented similarly to
byte slices internally, but they don't quite
behave like them: While strings can be indexed,
sliced, and have their len() taken like byte
slices, string elements are not addressable,
make() and cap() is not supported, range loops
operate differently, and they are immutable (and
thus behave like values rather then references).
Fixes #4018.
R=r, rsc, iant, ken
CC=golang-dev
https://golang.org/cl/6503116
2012-09-14 12:31:56 -06:00
using the built-in function < a href = "#Length_and_capacity" > < code > len< / code > < / a > .
spec: consistently use "indices" (rather than "indexes")
We have been using all three terms "indices", "indexes",
and "index expressions" indiscriminatly for index values.
With this change, "index" refers to an index value,
"indices" is the plural of "index", and "index expression"
refers to an array, slice, or map indexed by an index: a[x].
R=r, rsc, iant, ken, mtj
CC=golang-dev
https://golang.org/cl/6912056
2012-12-10 12:55:57 -07:00
The elements can be addressed by integer < a href = "#Index_expressions" > indices< / a >
2012-12-12 12:06:26 -07:00
0 through < code > len(a)-1< / code > .
2009-11-20 16:47:15 -07:00
Array types are always one-dimensional but may be composed to form
multi-dimensional types.
2009-03-04 15:44:51 -07:00
< / p >
< pre >
[32]byte
[2*N] struct { x, y int32 }
[1000]*float64
2009-11-20 16:47:15 -07:00
[3][5]int
[2][2][2]float64 // same as [2]([2]([2]float64))
2009-03-04 15:44:51 -07:00
< / pre >
2009-08-20 12:11:03 -06:00
< h3 id = "Slice_types" > Slice types< / h3 >
2009-03-04 15:44:51 -07:00
< p >
A slice is a reference to a contiguous segment of an array and
contains a numbered sequence of elements from that array. A slice
type denotes the set of all slices of arrays of its element type.
2010-06-07 16:49:39 -06:00
The value of an uninitialized slice is < code > nil< / code > .
2009-03-04 15:44:51 -07:00
< / p >
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-04 15:44:51 -07:00
SliceType = "[" "]" ElementType .
< / pre >
< p >
Like arrays, slices are indexable and have a length. The length of a
slice < code > s< / code > can be discovered by the built-in function
spec: clarify section on string types
Strings happen to be represented similarly to
byte slices internally, but they don't quite
behave like them: While strings can be indexed,
sliced, and have their len() taken like byte
slices, string elements are not addressable,
make() and cap() is not supported, range loops
operate differently, and they are immutable (and
thus behave like values rather then references).
Fixes #4018.
R=r, rsc, iant, ken
CC=golang-dev
https://golang.org/cl/6503116
2012-09-14 12:31:56 -06:00
< a href = "#Length_and_capacity" > < code > len< / code > < / a > ; unlike with arrays it may change during
spec: consistently use "indices" (rather than "indexes")
We have been using all three terms "indices", "indexes",
and "index expressions" indiscriminatly for index values.
With this change, "index" refers to an index value,
"indices" is the plural of "index", and "index expression"
refers to an array, slice, or map indexed by an index: a[x].
R=r, rsc, iant, ken, mtj
CC=golang-dev
https://golang.org/cl/6912056
2012-12-10 12:55:57 -07:00
execution. The elements can be addressed by integer < a href = "#Index_expressions" > indices< / a >
0 through < code > len(s)-1< / code > . The slice index of a
2009-03-04 15:44:51 -07:00
given element may be less than the index of the same element in the
underlying array.
< / p >
< p >
A slice, once initialized, is always associated with an underlying
2010-01-08 13:32:26 -07:00
array that holds its elements. A slice therefore shares storage
2009-03-04 15:44:51 -07:00
with its array and with other slices of the same array; by contrast,
distinct arrays always represent distinct storage.
< / p >
< p >
The array underlying a slice may extend past the end of the slice.
2009-03-04 18:19:21 -07:00
The < i > capacity< / i > is a measure of that extent: it is the sum of
2009-03-04 15:44:51 -07:00
the length of the slice and the length of the array beyond the slice;
a slice of length up to that capacity can be created by `slicing' a new
2009-08-20 12:11:03 -06:00
one from the original slice (§< a href = "#Slices" > Slices< / a > ).
2009-03-04 15:44:51 -07:00
The capacity of a slice < code > a< / code > can be discovered using the
2010-07-13 12:54:57 -06:00
built-in function < a href = "#Length_and_capacity" > < code > cap(a)< / code > < / a > .
2009-03-04 15:44:51 -07:00
< / p >
< p >
2010-07-13 12:54:57 -06:00
A new, initialized slice value for a given element type < code > T< / code > is
made using the built-in function
< a href = "#Making_slices_maps_and_channels" > < code > make< / code > < / a > ,
which takes a slice type
2009-03-04 15:44:51 -07:00
and parameters specifying the length and optionally the capacity:
< / p >
< pre >
make([]T, length)
make([]T, length, capacity)
< / pre >
2009-03-04 18:19:21 -07:00
2009-03-04 15:44:51 -07:00
< p >
2011-05-24 14:44:09 -06:00
A call to < code > make< / code > allocates a new, hidden array to which the returned
2009-09-15 10:54:22 -06:00
slice value refers. That is, executing
2009-03-04 15:44:51 -07:00
< / p >
< pre >
make([]T, length, capacity)
< / pre >
< p >
produces the same slice as allocating an array and slicing it, so these two examples
result in the same slice:
< / p >
< pre >
make([]int, 50, 100)
new([100]int)[0:50]
< / pre >
2009-11-20 16:47:15 -07:00
< p >
Like arrays, slices are always one-dimensional but may be composed to construct
higher-dimensional objects.
With arrays of arrays, the inner arrays are, by construction, always the same length;
however with slices of slices (or arrays of slices), the lengths may vary dynamically.
Moreover, the inner slices must be allocated individually (with < code > make< / code > ).
< / p >
2009-03-04 15:44:51 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Struct_types" > Struct types< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-24 16:17:59 -07:00
< p >
2009-11-16 09:58:55 -07:00
A struct is a sequence of named elements, called fields, each of which has a
name and a type. Field names may be specified explicitly (IdentifierList) or
implicitly (AnonymousField).
Within a struct, non-< a href = "#Blank_identifier" > blank< / a > field names must
2012-03-01 14:57:49 -07:00
be < a href = "#Uniqueness_of_identifiers" > unique< / a > .
2009-02-24 16:17:59 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-12-10 17:43:01 -07:00
StructType = "struct" "{" { FieldDecl ";" } "}" .
2009-11-16 09:58:55 -07:00
FieldDecl = (IdentifierList Type | AnonymousField) [ Tag ] .
AnonymousField = [ "*" ] TypeName .
2009-12-10 17:43:01 -07:00
Tag = string_lit .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-02-23 20:26:07 -07:00
// An empty struct.
struct {}
2009-02-19 17:49:10 -07:00
2009-09-10 11:14:00 -06:00
// A struct with 6 fields.
2009-02-23 20:26:07 -07:00
struct {
2009-12-10 17:43:01 -07:00
x, y int
2011-01-19 21:07:21 -07:00
u float32
_ float32 // padding
2009-12-10 17:43:01 -07:00
A *[]int
F func()
2009-02-19 17:49:10 -07:00
}
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-24 16:17:59 -07:00
< p >
2012-02-08 13:37:58 -07:00
A field declared with a type but no explicit field name is an < i > anonymous field< / i > ,
also called an < i > embedded< / i > field or an embedding of the type in the struct.
An embedded type must be specified as
2010-09-30 12:59:41 -06:00
a type name < code > T< / code > or as a pointer to a non-interface type name < code > *T< / code > ,
2009-08-17 12:40:57 -06:00
and < code > T< / code > itself may not be
2009-11-16 09:58:55 -07:00
a pointer type. The unqualified type name acts as the field name.
2009-02-24 16:17:59 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-23 20:26:07 -07:00
< pre >
// A struct with four anonymous fields of type T1, *T2, P.T3 and *P.T4
struct {
2009-12-10 17:43:01 -07:00
T1 // field name is T1
*T2 // field name is T2
P.T3 // field name is T3
*P.T4 // field name is T4
x, y int // field names are x and y
2009-02-23 20:26:07 -07:00
}
2009-02-19 17:49:10 -07:00
< / pre >
2009-02-24 16:17:59 -07:00
< p >
2009-11-16 09:58:55 -07:00
The following declaration is illegal because field names must be unique
in a struct type:
2009-02-24 16:17:59 -07:00
< / p >
2009-02-23 20:26:07 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2009-02-23 20:26:07 -07:00
struct {
2011-11-29 16:47:36 -07:00
T // conflicts with anonymous field *T and *P.T
*T // conflicts with anonymous field T and *P.T
*P.T // conflicts with anonymous field T and *T
2009-02-23 20:26:07 -07:00
}
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2012-06-04 15:24:10 -06:00
A field or < a href = "#Method_declarations" > method< / a > < code > f< / code > of an
anonymous field in a struct < code > x< / code > is called < i > promoted< / i > if
< code > x.f< / code > is a legal < a href = "#Selectors" > selector< / a > that denotes
that field or method < code > f< / code > .
2009-02-24 16:17:59 -07:00
< / p >
2009-05-20 12:02:48 -06:00
2012-06-04 15:24:10 -06:00
< p >
Promoted fields act like ordinary fields
of a struct except that they cannot be used as field names in
< a href = "#Composite_literals" > composite literals< / a > of the struct.
< / p >
2009-05-20 12:02:48 -06:00
2012-06-04 15:24:10 -06:00
< p >
Given a struct type < code > S< / code > and a type named < code > T< / code > ,
promoted methods are included in the method set of the struct as follows:
< / p >
< ul >
< li >
If < code > S< / code > contains an anonymous field < code > T< / code > ,
the < a href = "#Method_sets" > method sets< / a > of < code > S< / code >
and < code > *S< / code > both include promoted methods with receiver
< code > T< / code > . The method set of < code > *S< / code > also
includes promoted methods with receiver < code > *T< / code > .
< / li >
2012-12-11 10:17:53 -07:00
2012-06-04 15:24:10 -06:00
< li >
If < code > S< / code > contains an anonymous field < code > *T< / code > ,
the method sets of < code > S< / code > and < code > *S< / code > both
include promoted methods with receiver < code > T< / code > or
< code > *T< / code > .
2009-05-20 12:02:48 -06:00
< / li >
< / ul >
2012-06-04 15:24:10 -06:00
2009-02-24 16:17:59 -07:00
< p >
2009-05-20 12:02:48 -06:00
A field declaration may be followed by an optional string literal < i > tag< / i > ,
2009-11-16 09:58:55 -07:00
which becomes an attribute for all the fields in the corresponding
2009-02-24 16:17:59 -07:00
field declaration. The tags are made
2012-12-04 14:09:02 -07:00
visible through a < a href = "/pkg/reflect/#StructTag" > reflection interface< / a >
2009-02-24 16:17:59 -07:00
but are otherwise ignored.
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-09-15 10:54:22 -06:00
// A struct corresponding to the TimeStamp protocol buffer.
2009-02-24 18:47:45 -07:00
// The tag strings define the protocol buffer field numbers.
2009-02-23 20:26:07 -07:00
struct {
2009-12-10 17:43:01 -07:00
microsec uint64 "field 1"
serverIP6 uint64 "field 2"
process string "field 3"
2009-02-23 20:26:07 -07:00
}
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Pointer_types" > Pointer types< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-24 16:17:59 -07:00
< p >
2009-02-23 20:26:07 -07:00
A pointer type denotes the set of all pointers to variables of a given
2009-03-02 20:13:40 -07:00
type, called the < i > base type< / i > of the pointer.
2010-11-09 11:10:57 -07:00
The value of an uninitialized pointer is < code > nil< / code > .
2009-02-24 16:17:59 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-02-23 20:26:07 -07:00
PointerType = "*" BaseType .
BaseType = Type .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2012-03-01 11:35:15 -07:00
*Point
*[4]int
2009-02-19 17:49:10 -07:00
< / pre >
2009-02-23 20:22:05 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Function_types" > Function types< / h3 >
2009-02-23 20:22:05 -07:00
2009-02-25 17:20:44 -07:00
< p >
2009-02-23 20:26:07 -07:00
A function type denotes the set of all functions with the same parameter
2010-11-09 11:10:57 -07:00
and result types. The value of an uninitialized variable of function type
2010-06-07 16:49:39 -06:00
is < code > nil< / code > .
2009-02-25 17:20:44 -07:00
< / p >
2009-02-23 20:22:05 -07:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-02-25 17:20:44 -07:00
FunctionType = "func" Signature .
Signature = Parameters [ Result ] .
2009-08-14 18:41:52 -06:00
Result = Parameters | Type .
2009-12-10 17:43:01 -07:00
Parameters = "(" [ ParameterList [ "," ] ] ")" .
2009-02-25 17:20:44 -07:00
ParameterList = ParameterDecl { "," ParameterDecl } .
2010-06-12 12:37:13 -06:00
ParameterDecl = [ IdentifierList ] [ "..." ] Type .
2009-02-23 20:22:05 -07:00
< / pre >
< p >
2009-02-25 17:20:44 -07:00
Within a list of parameters or results, the names (IdentifierList)
must either all be present or all be absent. If present, each name
2012-11-29 15:47:47 -07:00
stands for one item (parameter or result) of the specified type and
all non-< a href = "#Blank_identifier" > blank< / a > names in the signature
must be < a href = "#Uniqueness_of_identifiers" > unique< / a > .
If absent, each type stands for one item of that type.
Parameter and result
2009-02-25 17:20:44 -07:00
lists are always parenthesized except that if there is exactly
2010-07-09 14:02:54 -06:00
one unnamed result it may be written as an unparenthesized type.
2009-02-25 17:20:44 -07:00
< / p >
2010-06-12 12:37:13 -06:00
2010-09-24 15:08:28 -06:00
< p >
The final parameter in a function signature may have
a type prefixed with < code > ...< / code > .
A function with such a parameter is called < i > variadic< / i > and
may be invoked with zero or more arguments for that parameter.
2009-02-25 17:20:44 -07:00
< / p >
2009-02-23 20:22:05 -07:00
< pre >
2010-01-26 11:25:56 -07:00
func()
2012-03-01 11:35:15 -07:00
func(x int) int
func(a, _ int, z float32) bool
2011-01-19 21:07:21 -07:00
func(a, b int, z float32) (bool)
2012-03-01 11:35:15 -07:00
func(prefix string, values ...int)
2011-01-19 21:07:21 -07:00
func(a, b int, z float64, opt ...interface{}) (success bool)
func(int, int, float64) (float64, *[]int)
2010-01-26 11:25:56 -07:00
func(n int) func(p *T)
2009-02-23 20:22:05 -07:00
< / pre >
2009-08-20 12:11:03 -06:00
< h3 id = "Interface_types" > Interface types< / h3 >
2009-02-23 20:22:05 -07:00
2009-02-25 17:20:44 -07:00
< p >
2011-02-08 14:31:01 -07:00
An interface type specifies a < a href = "#Method_sets" > method set< / a > called its < i > interface< / i > .
2009-05-20 12:02:48 -06:00
A variable of interface type can store a value of any type with a method set
that is any superset of the interface. Such a type is said to
2010-06-07 16:49:39 -06:00
< i > implement the interface< / i > .
2010-11-09 11:10:57 -07:00
The value of an uninitialized variable of interface type is < code > nil< / code > .
2009-02-25 17:20:44 -07:00
< / p >
2009-02-23 20:26:07 -07:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-12-10 17:43:01 -07:00
InterfaceType = "interface" "{" { MethodSpec ";" } "}" .
2009-10-19 14:13:59 -06:00
MethodSpec = MethodName Signature | InterfaceTypeName .
MethodName = identifier .
2009-02-25 17:20:44 -07:00
InterfaceTypeName = TypeName .
2009-02-23 20:26:07 -07:00
< / pre >
2009-02-23 20:22:05 -07:00
2009-10-19 14:13:59 -06:00
< p >
2012-03-01 14:57:49 -07:00
As with all method sets, in an interface type, each method must have a
< a href = "#Uniqueness_of_identifiers" > unique< / a > name.
2009-10-19 14:13:59 -06:00
< / p >
2009-02-23 20:22:05 -07:00
< pre >
2009-02-25 17:20:44 -07:00
// A simple File interface
2009-02-23 20:26:07 -07:00
interface {
2009-12-10 17:43:01 -07:00
Read(b Buffer) bool
Write(b Buffer) bool
Close()
2009-02-23 20:22:05 -07:00
}
< / pre >
2009-02-23 20:26:07 -07:00
2009-02-25 17:20:44 -07:00
< p >
2009-05-20 12:02:48 -06:00
More than one type may implement an interface.
2009-02-25 17:20:44 -07:00
For instance, if two types < code > S1< / code > and < code > S2< / code >
2009-05-20 12:02:48 -06:00
have the method set
2009-02-25 17:20:44 -07:00
< / p >
2009-02-23 20:26:07 -07:00
2009-02-23 20:22:05 -07:00
< pre >
2011-05-24 15:18:44 -06:00
func (p T) Read(b Buffer) bool { return … }
func (p T) Write(b Buffer) bool { return … }
func (p T) Close() { … }
2009-02-23 20:22:05 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-25 17:20:44 -07:00
< p >
(where < code > T< / code > stands for either < code > S1< / code > or < code > S2< / code > )
then the < code > File< / code > interface is implemented by both < code > S1< / code > and
< code > S2< / code > , regardless of what other methods
< code > S1< / code > and < code > S2< / code > may have or share.
< / p >
2008-08-28 18:47:53 -06:00
2009-02-25 17:20:44 -07:00
< p >
A type implements any interface comprising any subset of its methods
and may therefore implement several distinct interfaces. For
instance, all types implement the < i > empty interface< / i > :
< / p >
2008-08-28 18:47:53 -06:00
2009-02-23 20:26:07 -07:00
< pre >
2009-09-24 20:36:48 -06:00
interface{}
2009-02-23 20:26:07 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-25 17:20:44 -07:00
< p >
Similarly, consider this interface specification,
2009-08-27 17:45:42 -06:00
which appears within a < a href = "#Type_declarations" > type declaration< / a >
2009-02-25 17:20:44 -07:00
to define an interface called < code > Lock< / code > :
< / p >
2009-02-23 20:26:07 -07:00
< pre >
type Lock interface {
2009-12-10 17:43:01 -07:00
Lock()
Unlock()
2009-02-23 20:26:07 -07:00
}
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-05 12:17:26 -07:00
2009-02-25 17:20:44 -07:00
< p >
If < code > S1< / code > and < code > S2< / code > also implement
< / p >
2008-10-07 18:14:30 -06:00
2009-02-23 20:26:07 -07:00
< pre >
2011-05-24 15:18:44 -06:00
func (p T) Lock() { … }
func (p T) Unlock() { … }
2009-02-23 20:26:07 -07:00
< / pre >
2009-02-19 17:49:10 -07:00
< p >
2009-02-25 17:20:44 -07:00
they implement the < code > Lock< / code > interface as well
as the < code > File< / code > interface.
< / p >
< p >
2012-02-08 12:35:00 -07:00
An interface may use an interface type name < code > T< / code >
2009-02-25 17:20:44 -07:00
in place of a method specification.
2012-02-08 12:35:00 -07:00
The effect, called embedding an interface,
is equivalent to enumerating the methods of < code > T< / code > explicitly
2009-02-25 17:20:44 -07:00
in the interface.
< / p >
2008-09-29 19:41:30 -06:00
2009-02-23 20:26:07 -07:00
< pre >
type ReadWrite interface {
2009-12-10 17:43:01 -07:00
Read(b Buffer) bool
Write(b Buffer) bool
2009-02-23 20:26:07 -07:00
}
2008-08-28 18:47:53 -06:00
2009-02-23 20:26:07 -07:00
type File interface {
2009-12-10 17:43:01 -07:00
ReadWrite // same as enumerating the methods in ReadWrite
Lock // same as enumerating the methods in Lock
Close()
2009-02-23 20:26:07 -07:00
}
< / pre >
2008-08-28 18:47:53 -06:00
2012-02-08 12:35:00 -07:00
< p >
2012-02-08 13:37:58 -07:00
An interface type < code > T< / code > may not embed itself
or any interface type that embeds < code > T< / code > , recursively.
2012-02-08 12:35:00 -07:00
< / p >
< pre >
// illegal: Bad cannot embed itself
type Bad interface {
Bad
}
// illegal: Bad1 cannot embed itself using Bad2
type Bad1 interface {
Bad2
}
type Bad2 interface {
Bad1
}
< / pre >
2009-08-20 12:11:03 -06:00
< h3 id = "Map_types" > Map types< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-25 17:20:44 -07:00
< p >
A map is an unordered group of elements of one type, called the
2009-11-15 18:42:27 -07:00
element type, indexed by a set of unique < i > keys< / i > of another type,
2009-08-14 18:41:52 -06:00
called the key type.
2010-06-07 16:49:39 -06:00
The value of an uninitialized map is < code > nil< / code > .
2009-02-25 17:20:44 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-09-24 20:36:48 -06:00
MapType = "map" "[" KeyType "]" ElementType .
2009-08-14 18:41:52 -06:00
KeyType = Type .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-25 17:20:44 -07:00
The comparison operators < code > ==< / code > and < code > !=< / code >
2010-06-03 17:55:50 -06:00
(§< a href = "#Comparison_operators" > Comparison operators< / a > ) must be fully defined
2012-01-30 16:31:33 -07:00
for operands of the key type; thus the key type must not be a function, map, or
slice.
2010-06-03 17:55:50 -06:00
If the key type is an interface type, these
2009-02-25 17:20:44 -07:00
comparison operators must be defined for the dynamic key values;
2010-03-25 18:59:59 -06:00
failure will cause a < a href = "#Run_time_panics" > run-time panic< / a > .
2009-02-25 17:20:44 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-11-29 16:47:36 -07:00
map[string]int
map[*T]struct{ x, y float64 }
map[string]interface{}
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-25 17:20:44 -07:00
< p >
2010-07-13 12:54:57 -06:00
The number of map elements is called its length.
For a map < code > m< / code > , it can be discovered using the
spec: clarify section on string types
Strings happen to be represented similarly to
byte slices internally, but they don't quite
behave like them: While strings can be indexed,
sliced, and have their len() taken like byte
slices, string elements are not addressable,
make() and cap() is not supported, range loops
operate differently, and they are immutable (and
thus behave like values rather then references).
Fixes #4018.
R=r, rsc, iant, ken
CC=golang-dev
https://golang.org/cl/6503116
2012-09-14 12:31:56 -06:00
built-in function < a href = "#Length_and_capacity" > < code > len< / code > < / a >
2011-10-17 13:53:10 -06:00
and may change during execution. Elements may be added during execution
using < a href = "#Assignments" > assignments< / a > and retrieved with
spec: consistently use "indices" (rather than "indexes")
We have been using all three terms "indices", "indexes",
and "index expressions" indiscriminatly for index values.
With this change, "index" refers to an index value,
"indices" is the plural of "index", and "index expression"
refers to an array, slice, or map indexed by an index: a[x].
R=r, rsc, iant, ken, mtj
CC=golang-dev
https://golang.org/cl/6912056
2012-12-10 12:55:57 -07:00
< a href = "#Index_expressions" > index expressions< / a > ; they may be removed with the
2011-10-17 13:53:10 -06:00
< a href = "#Deletion_of_map_elements" > < code > delete< / code > < / a > built-in function.
2009-02-25 17:20:44 -07:00
< / p >
< p >
A new, empty map value is made using the built-in
2010-07-13 12:54:57 -06:00
function < a href = "#Making_slices_maps_and_channels" > < code > make< / code > < / a > ,
which takes the map type and an optional capacity hint as arguments:
2009-02-25 17:20:44 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-23 20:26:07 -07:00
< pre >
2011-11-29 16:47:36 -07:00
make(map[string]int)
make(map[string]int, 100)
2009-02-23 20:26:07 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-03-02 20:13:40 -07:00
< p >
The initial capacity does not bound its size:
maps grow to accommodate the number of items
2011-05-12 10:15:59 -06:00
stored in them, with the exception of < code > nil< / code > maps.
A < code > nil< / code > map is equivalent to an empty map except that no elements
may be added.
2009-03-02 20:13:40 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Channel_types" > Channel types< / h3 >
2009-02-19 17:49:10 -07:00
2009-02-25 17:20:44 -07:00
< p >
2009-02-23 20:26:07 -07:00
A channel provides a mechanism for two concurrently executing functions
2009-02-25 17:20:44 -07:00
to synchronize execution and communicate by passing a value of a
2009-08-14 18:41:52 -06:00
specified element type.
2010-06-07 16:49:39 -06:00
The value of an uninitialized channel is < code > nil< / code > .
2009-02-25 17:20:44 -07:00
< / p >
2009-02-19 17:49:10 -07:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2010-05-07 19:22:40 -06:00
ChannelType = ( "chan" [ "< -" ] | "< -" "chan" ) ElementType .
2009-02-19 17:49:10 -07:00
< / pre >
2008-09-29 19:41:30 -06:00
2010-01-27 10:35:39 -07:00
< p >
2010-05-07 19:22:40 -06:00
The < code > < -< / code > operator specifies the channel < i > direction< / i > ,
< i > send< / i > or < i > receive< / i > . If no direction is given, the channel is
< i > bi-directional< / i > .
A channel may be constrained only to send or only to receive by
< a href = "#Conversions" > conversion< / a > or < a href = "#Assignments" > assignment< / a > .
2010-01-27 10:35:39 -07:00
< / p >
< pre >
2011-11-29 16:47:36 -07:00
chan T // can be used to send and receive values of type T
chan< - float64 // can only be used to send float64s
< -chan int // can only be used to receive ints
2010-01-27 10:35:39 -07:00
< / pre >
2009-02-25 17:20:44 -07:00
< p >
2010-05-07 19:22:40 -06:00
The < code > < -< / code > operator associates with the leftmost < code > chan< / code >
possible:
2009-02-25 17:20:44 -07:00
< / p >
2008-09-29 19:41:30 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-11-29 16:47:36 -07:00
chan< - chan int // same as chan< - (chan int)
chan< - < -chan int // same as chan< - (< -chan int)
< -chan < -chan int // same as < -chan (< -chan int)
2010-05-07 19:22:40 -06:00
chan (< -chan int)
2009-02-19 17:49:10 -07:00
< / pre >
2008-09-29 19:41:30 -06:00
2009-02-25 17:20:44 -07:00
< p >
2010-06-07 16:49:39 -06:00
A new, initialized channel
2010-05-07 19:22:40 -06:00
value can be made using the built-in function
< a href = "#Making_slices_maps_and_channels" > < code > make< / code > < / a > ,
2009-02-23 20:26:07 -07:00
which takes the channel type and an optional capacity as arguments:
2009-02-25 17:20:44 -07:00
< / p >
2008-10-23 13:04:45 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-03-02 20:13:40 -07:00
make(chan int, 100)
2009-02-19 17:49:10 -07:00
< / pre >
2008-09-29 19:41:30 -06:00
2009-02-25 17:20:44 -07:00
< p >
The capacity, in number of elements, sets the size of the buffer in the channel. If the
2011-11-01 00:13:33 -06:00
capacity is greater than zero, the channel is asynchronous: communication operations
2011-02-15 12:33:12 -07:00
succeed without blocking if the buffer is not full (sends) or not empty (receives),
and elements are received in the order they are sent.
If the capacity is zero or absent, the communication succeeds only when both a sender and
receiver are ready.
2011-05-12 10:15:59 -06:00
A < code > nil< / code > channel is never ready for communication.
2009-02-25 17:20:44 -07:00
< / p >
2008-10-30 16:52:37 -06:00
2009-03-24 18:40:47 -06:00
< p >
2011-03-11 12:47:02 -07:00
A channel may be closed with the built-in function
< a href = "#Close" > < code > close< / code > < / a > ; the
multi-valued assignment form of the
< a href = "#Receive_operator" > receive operator< / a >
tests whether a channel has been closed.
2009-03-24 18:40:47 -06:00
< / p >
2009-08-21 15:18:08 -06:00
< h2 id = "Properties_of_types_and_values" > Properties of types and values< / h2 >
2009-02-23 20:26:07 -07:00
2010-06-07 16:49:39 -06:00
< h3 id = "Type_identity" > Type identity< / h3 >
2009-02-23 20:26:07 -07:00
< p >
2010-06-07 16:49:39 -06:00
Two types are either < i > identical< / i > or < i > different< / i > .
2009-09-24 20:36:48 -06:00
< / p >
2009-05-13 17:56:00 -06:00
2009-02-23 20:26:07 -07:00
< p >
2009-05-13 17:56:00 -06:00
Two named types are identical if their type names originate in the same
2012-03-12 21:27:27 -06:00
< a href = "#Type_declarations" > TypeSpec< / a > .
2010-05-28 15:17:30 -06:00
A named and an unnamed type are always different. Two unnamed types are identical
2010-06-07 16:49:39 -06:00
if the corresponding type literals are identical, that is, if they have the same
2010-05-28 15:17:30 -06:00
literal structure and corresponding components have identical types. In detail:
2009-02-23 20:26:07 -07:00
< / p >
2009-02-25 17:20:44 -07:00
2009-02-23 20:26:07 -07:00
< ul >
2009-05-13 17:56:00 -06:00
< li > Two array types are identical if they have identical element types and
the same array length.< / li >
2008-08-28 18:47:53 -06:00
2009-05-13 17:56:00 -06:00
< li > Two slice types are identical if they have identical element types.< / li >
2008-08-28 18:47:53 -06:00
2009-05-13 17:56:00 -06:00
< li > Two struct types are identical if they have the same sequence of fields,
2010-06-21 13:42:33 -06:00
and if corresponding fields have the same names, and identical types,
and identical tags.
2010-05-28 15:17:30 -06:00
Two anonymous fields are considered to have the same name. Lower-case field
names from different packages are always different.< / li >
2008-08-28 18:47:53 -06:00
2009-05-13 17:56:00 -06:00
< li > Two pointer types are identical if they have identical base types.< / li >
2008-08-28 18:47:53 -06:00
2009-05-13 17:56:00 -06:00
< li > Two function types are identical if they have the same number of parameters
2010-06-12 12:37:13 -06:00
and result values, corresponding parameter and result types are
identical, and either both functions are variadic or neither is.
2009-05-13 17:56:00 -06:00
Parameter and result names are not required to match.< / li >
2008-08-28 18:47:53 -06:00
2009-05-13 17:56:00 -06:00
< li > Two interface types are identical if they have the same set of methods
2010-05-28 15:17:30 -06:00
with the same names and identical function types. Lower-case method names from
different packages are always different. The order of the methods is irrelevant.< / li >
2008-08-28 18:47:53 -06:00
2009-05-13 17:56:00 -06:00
< li > Two map types are identical if they have identical key and value types.< / li >
2008-08-28 18:47:53 -06:00
2009-05-13 17:56:00 -06:00
< li > Two channel types are identical if they have identical value types and
the same direction.< / li >
2009-02-23 20:26:07 -07:00
< / ul >
< p >
2009-02-25 17:20:44 -07:00
Given the declarations
< / p >
2009-02-23 20:26:07 -07:00
< pre >
type (
2009-12-10 17:43:01 -07:00
T0 []string
T1 []string
2011-11-29 16:47:36 -07:00
T2 struct{ a, b int }
T3 struct{ a, c int }
2011-01-19 21:07:21 -07:00
T4 func(int, float64) *T0
T5 func(x int, y float64) *[]string
2009-02-23 20:26:07 -07:00
)
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-25 17:20:44 -07:00
< p >
2009-05-13 17:56:00 -06:00
these types are identical:
2009-02-25 17:20:44 -07:00
< / p >
2008-10-24 14:13:12 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-02-23 20:26:07 -07:00
T0 and T0
2009-05-13 17:56:00 -06:00
[]int and []int
2011-11-29 16:47:36 -07:00
struct{ a, b *T5 } and struct{ a, b *T5 }
2011-01-19 21:07:21 -07:00
func(x int, y float64) *[]string and func(int, float64) (result *[]string)
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-25 17:20:44 -07:00
< p >
2010-06-07 16:49:39 -06:00
< code > T0< / code > and < code > T1< / code > are different because they are named types
2011-01-19 21:07:21 -07:00
with distinct declarations; < code > func(int, float64) *T0< / code > and
< code > func(x int, y float64) *[]string< / code > are different because < code > T0< / code >
2010-06-07 16:49:39 -06:00
is different from < code > []string< / code > .
2009-02-25 17:20:44 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2010-06-07 18:40:21 -06:00
< h3 id = "Assignability" > Assignability< / h3 >
2009-02-24 16:17:59 -07:00
< p >
2010-06-07 18:40:21 -06:00
A value < code > x< / code > is < i > assignable< / i > to a variable of type < code > T< / code >
("< code > x< / code > is assignable to < code > T< / code > ") in any of these cases:
2009-02-24 16:17:59 -07:00
< / p >
2009-09-24 20:36:48 -06:00
2009-02-24 16:17:59 -07:00
< ul >
< li >
2010-06-07 16:49:39 -06:00
< code > x< / code > 's type is identical to < code > T< / code > .
< / li >
< li >
2010-08-31 18:40:50 -06:00
< code > x< / code > 's type < code > V< / code > and < code > T< / code > have identical
< a href = "#Types" > underlying types< / a > and at least one of < code > V< / code >
or < code > T< / code > is not a named type.
2009-06-19 14:03:01 -06:00
< / li >
< li >
2009-09-24 20:36:48 -06:00
< code > T< / code > is an interface type and
2010-06-07 16:49:39 -06:00
< code > x< / code > < a href = "#Interface_types" > implements< / a > < code > T< / code > .
< / li >
< li >
< code > x< / code > is a bidirectional channel value, < code > T< / code > is a channel type,
< code > x< / code > 's type < code > V< / code > and < code > T< / code > have identical element types,
2010-08-31 18:40:50 -06:00
and at least one of < code > V< / code > or < code > T< / code > is not a named type.
2009-02-24 16:17:59 -07:00
< / li >
< li >
2010-06-07 16:49:39 -06:00
< code > x< / code > is the predeclared identifier < code > nil< / code > and < code > T< / code >
is a pointer, function, slice, map, channel, or interface type.
< / li >
< li >
< code > x< / code > is an untyped < a href = "#Constants" > constant< / a > representable
by a value of type < code > T< / code > .
2009-09-10 11:14:00 -06:00
< / li >
2009-02-24 16:17:59 -07:00
< / ul >
2009-09-24 20:36:48 -06:00
< p >
Any value may be assigned to the < a href = "#Blank_identifier" > blank identifier< / a > .
< / p >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h2 id = "Blocks" > Blocks< / h2 >
2009-08-19 17:44:04 -06:00
< p >
A < i > block< / i > is a sequence of declarations and statements within matching
brace brackets.
< / p >
< pre class = "ebnf" >
2009-12-10 17:43:01 -07:00
Block = "{" { Statement ";" } "}" .
2009-08-19 17:44:04 -06:00
< / pre >
< p >
In addition to explicit blocks in the source code, there are implicit blocks:
< / p >
< ol >
< li > The < i > universe block< / i > encompasses all Go source text.< / li >
2009-09-10 11:14:00 -06:00
< li > Each < a href = "#Packages" > package< / a > has a < i > package block< / i > containing all
2009-08-19 17:44:04 -06:00
Go source text for that package.< / li >
< li > Each file has a < i > file block< / i > containing all Go source text
in that file.< / li >
< li > Each < code > if< / code > , < code > for< / code > , and < code > switch< / code >
statement is considered to be in its own implicit block.< / li >
2009-08-20 11:22:52 -06:00
< li > Each clause in a < code > switch< / code > or < code > select< / code > statement
2009-08-19 17:44:04 -06:00
acts as an implicit block.< / li >
< / ol >
< p >
2009-09-10 11:14:00 -06:00
Blocks nest and influence < a href = "#Declarations_and_scope" > scoping< / a > .
2009-08-19 17:44:04 -06:00
< / p >
2009-08-31 18:30:55 -06:00
< h2 id = "Declarations_and_scope" > Declarations and scope< / h2 >
2009-02-23 20:26:07 -07:00
< p >
2009-09-10 11:14:00 -06:00
A declaration binds a non-< a href = "#Blank_identifier" > blank< / a >
identifier to a constant, type, variable, function, or package.
2009-02-23 20:26:07 -07:00
Every identifier in a program must be declared.
2009-08-19 17:44:04 -06:00
No identifier may be declared twice in the same block, and
no identifier may be declared in both the file and package block.
2009-02-23 20:26:07 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-08-19 17:44:04 -06:00
Declaration = ConstDecl | TypeDecl | VarDecl .
TopLevelDecl = Declaration | FunctionDecl | MethodDecl .
2009-02-19 17:49:10 -07:00
< / pre >
2009-03-04 18:19:21 -07:00
2009-02-23 20:26:07 -07:00
< p >
2009-08-19 17:44:04 -06:00
The < i > scope< / i > of a declared identifier is the extent of source text in which
the identifier denotes the specified constant, type, variable, function, or package.
2009-02-23 20:26:07 -07:00
< / p >
2009-08-19 17:44:04 -06:00
2009-02-23 20:26:07 -07:00
< p >
2009-08-19 17:44:04 -06:00
Go is lexically scoped using blocks:
2009-02-23 20:26:07 -07:00
< / p >
2009-08-19 17:44:04 -06:00
2009-02-23 20:26:07 -07:00
< ol >
2009-08-19 17:44:04 -06:00
< li > The scope of a predeclared identifier is the universe block.< / li >
< li > The scope of an identifier denoting a constant, type, variable,
2011-03-03 16:24:28 -07:00
or function (but not method) declared at top level (outside any
function) is the package block.< / li >
2009-08-19 17:44:04 -06:00
2012-11-21 15:40:50 -07:00
< li > The scope of the package name of an imported package is the file block
2009-08-19 17:44:04 -06:00
of the file containing the import declaration.< / li >
2012-11-29 15:47:47 -07:00
< li > The scope of an identifier denoting a method receiver, function parameter,
or result variable is the function body.< / li >
2009-08-19 17:44:04 -06:00
< li > The scope of a constant or variable identifier declared
inside a function begins at the end of the ConstSpec or VarSpec
2011-06-12 13:09:50 -06:00
(ShortVarDecl for short variable declarations)
2009-08-19 17:44:04 -06:00
and ends at the end of the innermost containing block.< / li >
< li > The scope of a type identifier declared inside a function
2009-08-20 11:22:52 -06:00
begins at the identifier in the TypeSpec
2009-08-19 17:44:04 -06:00
and ends at the end of the innermost containing block.< / li >
2009-02-23 20:26:07 -07:00
< / ol >
2008-08-28 18:47:53 -06:00
2009-02-23 20:26:07 -07:00
< p >
2009-08-19 17:44:04 -06:00
An identifier declared in a block may be redeclared in an inner block.
While the identifier of the inner declaration is in scope, it denotes
the entity declared by the inner declaration.
2009-02-23 20:26:07 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-08-19 17:44:04 -06:00
< p >
2009-09-08 16:41:14 -06:00
The < a href = "#Package_clause" > package clause< / a > is not a declaration; the package name
2009-08-19 17:44:04 -06:00
does not appear in any scope. Its purpose is to identify the files belonging
2009-09-25 16:36:25 -06:00
to the same < a href = "#Packages" > package< / a > and to specify the default package name for import
2009-08-19 17:44:04 -06:00
declarations.
< / p >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Label_scopes" > Label scopes< / h3 >
2008-08-28 18:47:53 -06:00
2009-08-19 17:44:04 -06:00
< p >
2009-09-08 16:41:14 -06:00
Labels are declared by < a href = "#Labeled_statements" > labeled statements< / a > and are
2009-08-19 17:44:04 -06:00
used in the < code > break< / code > , < code > continue< / code > , and < code > goto< / code >
2009-08-20 12:11:03 -06:00
statements (§< a href = "#Break_statements" > Break statements< / a > , §< a href = "#Continue_statements" > Continue statements< / a > , §< a href = "#Goto_statements" > Goto statements< / a > ).
2011-03-15 11:51:24 -06:00
It is illegal to define a label that is never used.
2009-08-19 17:44:04 -06:00
In contrast to other identifiers, labels are not block scoped and do
not conflict with identifiers that are not labels. The scope of a label
is the body of the function in which it is declared and excludes
the body of any nested function.
< / p >
2008-08-28 18:47:53 -06:00
2012-03-01 14:57:49 -07:00
< h3 id = "Blank_identifier" > Blank identifier< / h3 >
< p >
The < i > blank identifier< / i > , represented by the underscore character < code > _< / code > , may be used in a declaration like
any other identifier but the declaration does not introduce a new binding.
< / p >
2009-08-20 12:11:03 -06:00
< h3 id = "Predeclared_identifiers" > Predeclared identifiers< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-23 20:26:07 -07:00
< p >
2012-03-01 14:57:49 -07:00
The following identifiers are implicitly declared in the
< a href = "#Blocks" > universe block< / a > :
2009-02-23 20:26:07 -07:00
< / p >
< pre class = "grammar" >
2011-11-01 19:45:02 -06:00
Types:
bool byte complex64 complex128 error float32 float64
int int8 int16 int32 int64 rune string
uint uint8 uint16 uint32 uint64 uintptr
2008-08-28 18:47:53 -06:00
2009-02-23 20:26:07 -07:00
Constants:
2009-09-24 20:36:48 -06:00
true false iota
Zero value:
nil
2009-02-11 16:09:15 -07:00
2009-02-23 20:26:07 -07:00
Functions:
2011-10-31 23:09:22 -06:00
append cap close complex copy delete imag len
2010-10-25 17:50:31 -06:00
make new panic print println real recover
2009-02-19 17:49:10 -07:00
< / pre >
2009-02-11 16:09:15 -07:00
2009-08-31 18:30:55 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Exported_identifiers" > Exported identifiers< / h3 >
2008-10-07 18:14:30 -06:00
2009-02-19 17:49:10 -07:00
< p >
2012-03-01 14:57:49 -07:00
An identifier may be < i > exported< / i > to permit access to it from another package.
An identifier is exported if both:
2009-02-23 20:26:07 -07:00
< / p >
< ol >
2012-03-01 14:57:49 -07:00
< li > the first character of the identifier's name is a Unicode upper case
letter (Unicode class "Lu"); and< / li >
< li > the identifier is declared in the < a href = "#Blocks" > package block< / a >
or it is a < a href = "#Struct_types" > field name< / a > or
< a href = "#MethodName" > method name< / a > .< / li >
2009-02-23 20:26:07 -07:00
< / ol >
2009-02-19 17:49:10 -07:00
< p >
2009-08-31 18:30:55 -06:00
All other identifiers are not exported.
2009-02-23 20:26:07 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-08-31 18:30:55 -06:00
2012-03-01 14:57:49 -07:00
< h3 id = "Uniqueness_of_identifiers" > Uniqueness of identifiers< / h3 >
2009-09-10 11:14:00 -06:00
< p >
2012-03-01 14:57:49 -07:00
Given a set of identifiers, an identifier is called < i > unique< / i > if it is
< i > different< / i > from every other in the set.
Two identifiers are different if they are spelled differently, or if they
appear in different < a href = "#Packages" > packages< / a > and are not
2012-03-30 00:04:03 -06:00
< a href = "#Exported_identifiers" > exported< / a > . Otherwise, they are the same.
2009-09-10 11:14:00 -06:00
< / p >
2009-09-24 20:36:48 -06:00
< h3 id = "Constant_declarations" > Constant declarations< / h3 >
2009-01-05 12:17:26 -07:00
2009-02-23 20:26:07 -07:00
< p >
A constant declaration binds a list of identifiers (the names of
2009-09-08 16:41:14 -06:00
the constants) to the values of a list of < a href = "#Constant_expressions" > constant expressions< / a > .
The number of identifiers must be equal
to the number of expressions, and the < i > n< / i > th identifier on
the left is bound to the value of the < i > n< / i > th expression on the
2009-02-23 20:26:07 -07:00
right.
< / p >
2009-01-05 12:17:26 -07:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-12-10 17:43:01 -07:00
ConstDecl = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
2009-08-14 18:41:52 -06:00
ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] .
2009-01-05 12:17:26 -07:00
2009-02-23 20:26:07 -07:00
IdentifierList = identifier { "," identifier } .
ExpressionList = Expression { "," Expression } .
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-05 12:17:26 -07:00
2009-02-23 20:26:07 -07:00
< p >
2009-09-24 20:36:48 -06:00
If the type is present, all constants take the type specified, and
2010-06-07 18:40:21 -06:00
the expressions must be < a href = "#Assignability" > assignable< / a > to that type.
2009-08-14 18:41:52 -06:00
If the type is omitted, the constants take the
2009-09-24 20:36:48 -06:00
individual types of the corresponding expressions.
If the expression values are untyped < a href = "#Constants" > constants< / a > ,
the declared constants remain untyped and the constant identifiers
denote the constant values. For instance, if the expression is a
floating-point literal, the constant identifier denotes a floating-point
constant, even if the literal's fractional part is zero.
2009-02-23 20:26:07 -07:00
< / p >
2009-01-05 12:17:26 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2009-02-23 20:26:07 -07:00
const Pi float64 = 3.14159265358979323846
2011-11-29 16:47:36 -07:00
const zero = 0.0 // untyped floating-point constant
2009-02-23 20:26:07 -07:00
const (
2009-12-10 17:43:01 -07:00
size int64 = 1024
2011-11-29 16:47:36 -07:00
eof = -1 // untyped integer constant
2009-02-23 20:26:07 -07:00
)
2009-09-24 20:36:48 -06:00
const a, b, c = 3, 4, "foo" // a = 3, b = 4, c = "foo", untyped integer and string constants
2011-01-19 21:07:21 -07:00
const u, v float32 = 0, 3 // u = 0.0, v = 3.0
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-05 12:17:26 -07:00
2009-02-23 20:26:07 -07:00
< p >
Within a parenthesized < code > const< / code > declaration list the
expression list may be omitted from any but the first declaration.
Such an empty list is equivalent to the textual substitution of the
2009-09-15 10:54:22 -06:00
first preceding non-empty expression list and its type if any.
2009-03-04 18:19:21 -07:00
Omitting the list of expressions is therefore equivalent to
repeating the previous list. The number of identifiers must be equal
to the number of expressions in the previous list.
2009-09-08 16:41:14 -06:00
Together with the < a href = "#Iota" > < code > iota< / code > constant generator< / a >
this mechanism permits light-weight declaration of sequential values:
2009-02-23 20:26:07 -07:00
< / p >
2009-01-06 14:23:20 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2009-02-23 20:26:07 -07:00
const (
2009-12-10 17:43:01 -07:00
Sunday = iota
Monday
Tuesday
Wednesday
Thursday
Friday
Partyday
numberOfDays // this constant is not exported
2009-02-23 20:26:07 -07:00
)
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-06 14:23:20 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Iota" > Iota< / h3 >
2009-01-05 12:17:26 -07:00
2009-02-19 17:49:10 -07:00
< p >
2010-04-29 11:57:27 -06:00
Within a < a href = "#Constant_declarations" > constant declaration< / a > , the predeclared identifier
2009-09-24 20:36:48 -06:00
< code > iota< / code > represents successive untyped integer < a href = "#Constants" >
constants< / a > . It is reset to 0 whenever the reserved word < code > const< / code >
2010-04-29 11:57:27 -06:00
appears in the source and increments after each < a href = "#ConstSpec" > ConstSpec< / a > .
It can be used to construct a set of related constants:
2009-02-23 20:26:07 -07:00
< / p >
2009-01-05 12:17:26 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2009-09-10 11:14:00 -06:00
const ( // iota is reset to 0
2009-12-10 17:43:01 -07:00
c0 = iota // c0 == 0
c1 = iota // c1 == 1
c2 = iota // c2 == 2
2009-02-23 20:26:07 -07:00
)
const (
2009-12-10 17:43:01 -07:00
a = 1 < < iota // a == 1 (iota has been reset)
b = 1 < < iota // b == 2
c = 1 < < iota // c == 4
2009-02-23 20:26:07 -07:00
)
const (
2011-01-19 21:07:21 -07:00
u = iota * 42 // u == 0 (untyped integer constant)
v float64 = iota * 42 // v == 42.0 (float64 constant)
w = iota * 42 // w == 84 (untyped integer constant)
2009-02-23 20:26:07 -07:00
)
2009-12-10 17:43:01 -07:00
const x = iota // x == 0 (iota has been reset)
const y = iota // y == 0 (iota has been reset)
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-05 12:17:26 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-23 20:26:07 -07:00
Within an ExpressionList, the value of each < code > iota< / code > is the same because
2010-04-29 11:57:27 -06:00
it is only incremented after each ConstSpec:
2009-02-23 20:26:07 -07:00
< / p >
2009-01-05 12:17:26 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2009-02-23 20:26:07 -07:00
const (
2011-11-29 16:47:36 -07:00
bit0, mask0 = 1 < < iota, 1< < iota - 1 // bit0 == 1, mask0 == 0
bit1, mask1 // bit1 == 2, mask1 == 1
_, _ // skips iota == 2
bit3, mask3 // bit3 == 8, mask3 == 7
2009-02-23 20:26:07 -07:00
)
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-05 12:17:26 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-23 20:26:07 -07:00
This last example exploits the implicit repetition of the
last non-empty expression list.
< / p >
2009-01-05 12:17:26 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Type_declarations" > Type declarations< / h3 >
2009-01-05 12:17:26 -07:00
2009-02-23 20:26:07 -07:00
< p >
2009-09-28 15:10:20 -06:00
A type declaration binds an identifier, the < i > type name< / i > , to a new type
2010-06-07 16:49:39 -06:00
that has the same < a href = "#Types" > underlying type< / a > as
an existing type. The new type is < a href = "#Type_identity" > different< / a > from
the existing type.
2009-02-23 20:26:07 -07:00
< / p >
2009-01-05 12:17:26 -07:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-12-10 17:43:01 -07:00
TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
2009-08-31 18:57:14 -06:00
TypeSpec = identifier Type .
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-05 12:17:26 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2009-08-31 18:57:14 -06:00
type IntArray [16]int
2009-01-05 12:17:26 -07:00
2009-02-23 20:26:07 -07:00
type (
2011-11-29 16:47:36 -07:00
Point struct{ x, y float64 }
2009-02-23 20:26:07 -07:00
Polar Point
)
2009-01-05 12:17:26 -07:00
2009-02-23 20:26:07 -07:00
type TreeNode struct {
2009-12-10 17:43:01 -07:00
left, right *TreeNode
value *Comparable
2009-02-23 20:26:07 -07:00
}
2011-11-09 15:22:44 -07:00
type Block interface {
2009-12-10 17:43:01 -07:00
BlockSize() int
Encrypt(src, dst []byte)
Decrypt(src, dst []byte)
2009-02-23 20:26:07 -07:00
}
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-05 12:17:26 -07:00
2009-09-28 15:10:20 -06:00
< p >
The declared type does not inherit any < a href = "#Method_declarations" > methods< / a >
2011-02-08 14:31:01 -07:00
bound to the existing type, but the < a href = "#Method_sets" > method set< / a >
2010-04-01 13:48:34 -06:00
of an interface type or of elements of a composite type remains unchanged:
2009-09-28 15:10:20 -06:00
< / p >
< pre >
2011-05-24 14:00:07 -06:00
// A Mutex is a data type with two methods, Lock and Unlock.
2009-09-28 15:10:20 -06:00
type Mutex struct { /* Mutex fields */ }
func (m *Mutex) Lock() { /* Lock implementation */ }
func (m *Mutex) Unlock() { /* Unlock implementation */ }
// NewMutex has the same composition as Mutex but its method set is empty.
type NewMutex Mutex
2011-02-08 14:31:01 -07:00
// The method set of the < a href = "#Pointer_types" > base type< / a > of PtrMutex remains unchanged,
// but the method set of PtrMutex is empty.
type PtrMutex *Mutex
2010-04-27 18:52:44 -06:00
// The method set of *PrintableMutex contains the methods
2009-11-07 23:00:59 -07:00
// Lock and Unlock bound to its anonymous field Mutex.
2009-09-28 15:10:20 -06:00
type PrintableMutex struct {
2009-12-10 17:43:01 -07:00
Mutex
2009-09-28 15:10:20 -06:00
}
2010-03-31 17:37:22 -06:00
2011-11-09 15:22:44 -07:00
// MyBlock is an interface type that has the same method set as Block.
type MyBlock Block
2009-09-28 15:10:20 -06:00
< / pre >
< p >
A type declaration may be used to define a different boolean, numeric, or string
type and attach methods to it:
< / p >
< pre >
type TimeZone int
const (
2009-12-10 17:43:01 -07:00
EST TimeZone = -(5 + iota)
CST
MST
PST
2009-09-28 15:10:20 -06:00
)
func (tz TimeZone) String() string {
2009-12-10 17:43:01 -07:00
return fmt.Sprintf("GMT+%dh", tz)
2009-09-28 15:10:20 -06:00
}
< / pre >
2009-08-20 12:11:03 -06:00
< h3 id = "Variable_declarations" > Variable declarations< / h3 >
2009-02-23 20:26:07 -07:00
< p >
A variable declaration creates a variable, binds an identifier to it and
gives it a type and optionally an initial value.
< / p >
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-12-10 17:43:01 -07:00
VarDecl = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
2009-08-14 18:41:52 -06:00
VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
2009-02-23 20:26:07 -07:00
< / pre >
2009-01-05 12:17:26 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2009-02-23 20:26:07 -07:00
var i int
2011-01-19 21:07:21 -07:00
var U, V, W float64
2009-02-23 20:26:07 -07:00
var k = 0
2011-01-19 21:07:21 -07:00
var x, y float32 = -1, -2
2009-02-23 20:26:07 -07:00
var (
2011-11-29 16:47:36 -07:00
i int
2009-02-23 20:26:07 -07:00
u, v, s = 2.0, 3.0, "bar"
)
2009-09-10 11:14:00 -06:00
var re, im = complexSqrt(-1)
2009-12-10 17:43:01 -07:00
var _, found = entries[name] // map lookup; only interested in "found"
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-05 12:17:26 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-08-21 12:25:00 -06:00
If a list of expressions is given, the variables are initialized
2009-09-15 10:54:22 -06:00
by assigning the expressions to the variables (§< a href = "#Assignments" > Assignments< / a > )
in order; all expressions must be consumed and all variables initialized from them.
2009-11-07 23:00:59 -07:00
Otherwise, each variable is initialized to its < a href = "#The_zero_value" > zero value< / a > .
2009-02-23 20:26:07 -07:00
< / p >
2009-08-21 12:25:00 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-08-21 12:25:00 -06:00
If the type is present, each variable is given that type.
Otherwise, the types are deduced from the assignment
of the expression list.
2009-02-23 20:26:07 -07:00
< / p >
2009-08-21 12:25:00 -06:00
2009-02-23 20:26:07 -07:00
< p >
2009-09-24 20:36:48 -06:00
If the type is absent and the corresponding expression evaluates to an
untyped < a href = "#Constants" > constant< / a > , the type of the declared variable
2011-12-08 22:12:49 -07:00
is as described in §< a href = "#Assignments" > Assignments< / a > .
2012-02-28 18:44:24 -07:00
< / p >
< p >
Implementation restriction: A compiler may make it illegal to declare a variable
inside a < a href = "#Function_declarations" > function body< / a > if the variable is
never used.
< / p >
2009-01-05 12:17:26 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Short_variable_declarations" > Short variable declarations< / h3 >
2009-01-05 12:17:26 -07:00
2009-09-25 16:36:25 -06:00
< p >
2009-08-21 12:25:00 -06:00
A < i > short variable declaration< / i > uses the syntax:
2009-09-25 16:36:25 -06:00
< / p >
2009-01-05 12:17:26 -07:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-07-16 21:31:41 -06:00
ShortVarDecl = IdentifierList ":=" ExpressionList .
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-05 12:17:26 -07:00
2009-09-25 16:36:25 -06:00
< p >
2012-02-28 18:44:24 -07:00
It is a shorthand for a regular < a href = "#Variable_declarations" > variable declaration< / a >
with initializer expressions but no types:
2009-09-25 16:36:25 -06:00
< / p >
2009-01-05 12:17:26 -07:00
2009-02-23 20:26:07 -07:00
< pre class = "grammar" >
"var" IdentifierList = ExpressionList .
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-05 12:17:26 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2009-12-10 17:43:01 -07:00
i, j := 0, 10
f := func() int { return 7 }
ch := make(chan int)
r, w := os.Pipe(fd) // os.Pipe() returns two values
_, y, _ := coord(p) // coord() returns three values; only interested in y coordinate
2009-02-23 20:26:07 -07:00
< / pre >
2008-11-07 14:34:37 -07:00
2009-04-19 21:04:15 -06:00
< p >
2009-08-21 12:25:00 -06:00
Unlike regular variable declarations, a short variable declaration may redeclare variables provided they
2013-01-09 12:31:32 -07:00
were originally declared earlier in the same block with the same type, and at
2009-09-10 11:14:00 -06:00
least one of the non-< a href = "#Blank_identifier" > blank< / a > variables is new. As a consequence, redeclaration
2009-04-19 21:04:15 -06:00
can only appear in a multi-variable short declaration.
Redeclaration does not introduce a new
variable; it just assigns a new value to the original.
< / p >
< pre >
2009-12-10 17:43:01 -07:00
field1, offset := nextField(str, 0)
field2, offset := nextField(str, offset) // redeclares offset
2013-01-09 12:31:32 -07:00
a, a := 1, 2 // illegal: double declaration of a or no new variable if a was declared elsewhere
2009-04-19 21:04:15 -06:00
< / pre >
2009-02-19 18:31:36 -07:00
< p >
2009-02-23 20:26:07 -07:00
Short variable declarations may appear only inside functions.
In some contexts such as the initializers for < code > if< / code > ,
< code > for< / code > , or < code > switch< / code > statements,
2009-08-20 12:11:03 -06:00
they can be used to declare local temporary variables (§< a href = "#Statements" > Statements< / a > ).
2009-02-19 18:31:36 -07:00
< / p >
2008-11-07 14:34:37 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Function_declarations" > Function declarations< / h3 >
2008-11-07 14:34:37 -07:00
2009-02-23 20:26:07 -07:00
< p >
2012-02-12 21:03:30 -07:00
A function declaration binds an identifier, the < i > function name< / i > ,
to a function.
2009-02-23 20:26:07 -07:00
< / p >
2008-11-07 14:34:37 -07:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2012-02-12 21:03:30 -07:00
FunctionDecl = "func" FunctionName Signature [ Body ] .
FunctionName = identifier .
2010-12-13 23:19:41 -07:00
Body = Block .
2009-02-23 20:26:07 -07:00
< / pre >
2009-01-05 12:17:26 -07:00
2009-08-14 18:41:52 -06:00
< p >
A function declaration may omit the body. Such a declaration provides the
signature for a function implemented outside Go, such as an assembly routine.
< / p >
2009-02-23 20:26:07 -07:00
< pre >
func min(x int, y int) int {
if x < y {
2009-12-10 17:43:01 -07:00
return x
2009-02-23 20:26:07 -07:00
}
2009-12-10 17:43:01 -07:00
return y
2009-02-23 20:26:07 -07:00
}
2009-08-14 18:41:52 -06:00
func flushICache(begin, end uintptr) // implemented externally
2009-02-23 20:26:07 -07:00
< / pre >
2008-11-07 14:34:37 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Method_declarations" > Method declarations< / h3 >
2008-11-07 14:34:37 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-12-01 17:15:53 -07:00
A method is a function with a < i > receiver< / i > .
2012-02-12 21:03:30 -07:00
A method declaration binds an identifier, the < i > method name< / i > , to a method.
It also associates the method with the receiver's < i > base type< / i > .
2009-02-19 18:31:36 -07:00
< / p >
2012-02-12 21:03:30 -07:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-11-07 23:00:59 -07:00
MethodDecl = "func" Receiver MethodName Signature [ Body ] .
Receiver = "(" [ identifier ] [ "*" ] BaseTypeName ")" .
2009-09-28 15:10:20 -06:00
BaseTypeName = identifier .
2009-02-23 20:26:07 -07:00
< / pre >
2009-02-19 17:49:10 -07:00
< p >
2009-05-20 12:02:48 -06:00
The receiver type must be of the form < code > T< / code > or < code > *T< / code > where
2012-02-12 21:03:30 -07:00
< code > T< / code > is a type name. The type denoted by < code > T< / code > is called
the receiver < i > base type< / i > ; it must not be a pointer or interface type and
it must be declared in the same package as the method.
The method is said to be < i > bound< / i > to the base type and the method name
is visible only within selectors for that type.
< / p >
< p >
2012-11-29 15:47:47 -07:00
A non-< a href = "#Blank_identifier" > blank< / a > receiver identifier must be
< a href = "#Uniqueness_of_identifiers" > unique< / a > in the method signature.
If the receiver's value is not referenced inside the body of the method,
its identifier may be omitted in the declaration. The same applies in
general to parameters of functions and methods.
< / p >
< p >
For a base type, the non-blank names of methods bound to it must be unique.
2012-02-12 21:03:30 -07:00
If the base type is a < a href = "#Struct_types" > struct type< / a > ,
the non-blank method and field names must be distinct.
2009-02-19 18:31:36 -07:00
< / p >
2008-11-07 14:34:37 -07:00
2009-02-23 20:26:07 -07:00
< p >
Given type < code > Point< / code > , the declarations
< / p >
2009-01-05 12:17:26 -07:00
2009-02-23 20:26:07 -07:00
< pre >
2010-12-02 13:32:14 -07:00
func (p *Point) Length() float64 {
return math.Sqrt(p.x * p.x + p.y * p.y)
2009-02-23 20:26:07 -07:00
}
2008-11-07 14:34:37 -07:00
2010-12-02 13:32:14 -07:00
func (p *Point) Scale(factor float64) {
p.x *= factor
p.y *= factor
2009-02-23 20:26:07 -07:00
}
< / pre >
2008-11-07 14:34:37 -07:00
2009-02-23 20:26:07 -07:00
< p >
2009-09-15 10:54:22 -06:00
bind the methods < code > Length< / code > and < code > Scale< / code > ,
with receiver type < code > *Point< / code > ,
2009-02-23 20:26:07 -07:00
to the base type < code > Point< / code > .
< / p >
2008-11-07 14:34:37 -07:00
2009-02-26 17:37:23 -07:00
< p >
The type of a method is the type of a function with the receiver as first
argument. For instance, the method < code > Scale< / code > has type
< / p >
< pre >
2010-12-02 13:32:14 -07:00
func(p *Point, factor float64)
2009-02-26 17:37:23 -07:00
< / pre >
< p >
However, a function declared this way is not a method.
< / p >
2008-11-07 14:34:37 -07:00
2009-08-20 12:11:03 -06:00
< h2 id = "Expressions" > Expressions< / h2 >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-26 17:37:23 -07:00
An expression specifies the computation of a value by applying
2009-09-24 20:36:48 -06:00
operators and functions to operands.
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Operands" > Operands< / h3 >
2008-09-11 18:48:20 -06:00
2009-09-25 16:36:25 -06:00
< p >
2012-06-26 12:49:19 -06:00
Operands denote the elementary values in an expression. An operand may be a
literal, a (possibly < a href = "#Qualified_identifiers" > qualified< / a > ) identifier
denoting a
< a href = "#Constant_declarations" > constant< / a > ,
< a href = "#Variable_declarations" > variable< / a > , or
< a href = "#Function_declarations" > function< / a > ,
a < a href = "#Method_expressions" > method expression< / a > yielding a function,
or a parenthesized expression.
2009-09-25 16:36:25 -06:00
< / p >
2008-09-11 18:48:20 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2012-06-26 12:49:19 -06:00
Operand = Literal | OperandName | MethodExpr | "(" Expression ")" .
2009-02-26 17:37:23 -07:00
Literal = BasicLit | CompositeLit | FunctionLit .
2013-01-07 19:02:58 -07:00
BasicLit = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
2012-06-26 12:49:19 -06:00
OperandName = identifier | QualifiedIdent.
2009-02-19 17:49:10 -07:00
< / pre >
2008-09-11 18:48:20 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Qualified_identifiers" > Qualified identifiers< / h3 >
2008-09-11 18:48:20 -06:00
2009-02-19 17:49:10 -07:00
< p >
2012-06-26 12:49:19 -06:00
A qualified identifier is an identifier qualified with a package name prefix.
Both the package name and the identifier must not be
< a href = "#Blank_identifier" > blank< / a > .
2009-02-26 17:37:23 -07:00
< / p >
2008-11-17 19:11:36 -07:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2012-06-26 12:49:19 -06:00
QualifiedIdent = PackageName "." identifier .
2009-02-19 17:49:10 -07:00
< / pre >
2008-09-11 18:48:20 -06:00
2009-02-26 17:37:23 -07:00
< p >
2012-02-29 10:06:05 -07:00
A qualified identifier accesses an identifier in a different package, which
must be < a href = "#Import_declarations" > imported< / a > .
2012-03-01 14:57:49 -07:00
The identifier must be < a href = "#Exported_identifiers" > exported< / a > and
declared in the < a href = "#Blocks" > package block< / a > of that package.
2009-02-26 17:37:23 -07:00
< / p >
< pre >
2012-03-01 14:57:49 -07:00
math.Sin // denotes the Sin function in package math
2009-02-26 17:37:23 -07:00
< / pre >
2008-09-11 18:48:20 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Composite_literals" > Composite literals< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
Composite literals construct values for structs, arrays, slices, and maps
and create a new value each time they are evaluated.
They consist of the type of the value
2009-05-22 11:25:06 -06:00
followed by a brace-bound list of composite elements. An element may be
a single expression or a key-value pair.
2009-02-26 17:37:23 -07:00
< / p >
2008-09-03 14:37:44 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2010-10-22 09:58:52 -06:00
CompositeLit = LiteralType LiteralValue .
2009-02-26 17:37:23 -07:00
LiteralType = StructType | ArrayType | "[" "..." "]" ElementType |
2010-07-29 19:13:41 -06:00
SliceType | MapType | TypeName .
2010-10-22 09:58:52 -06:00
LiteralValue = "{" [ ElementList [ "," ] ] "}" .
2009-12-10 17:43:01 -07:00
ElementList = Element { "," Element } .
2009-05-22 11:25:06 -06:00
Element = [ Key ":" ] Value .
2009-11-09 13:35:56 -07:00
Key = FieldName | ElementIndex .
2009-09-15 10:54:22 -06:00
FieldName = identifier .
2009-11-09 13:35:56 -07:00
ElementIndex = Expression .
2010-10-22 09:58:52 -06:00
Value = Expression | LiteralValue .
2009-02-19 17:49:10 -07:00
< / pre >
2008-09-03 14:37:44 -06:00
2009-02-26 17:37:23 -07:00
< p >
2009-05-22 11:25:06 -06:00
The LiteralType must be a struct, array, slice, or map type
(the grammar enforces this constraint except when the type is given
as a TypeName).
2010-06-07 18:40:21 -06:00
The types of the expressions must be < a href = "#Assignability" > assignable< / a >
to the respective field, element, and key types of the LiteralType;
2009-03-03 16:40:30 -07:00
there is no additional conversion.
2009-05-22 11:25:06 -06:00
The key is interpreted as a field name for struct literals,
spec: consistently use "indices" (rather than "indexes")
We have been using all three terms "indices", "indexes",
and "index expressions" indiscriminatly for index values.
With this change, "index" refers to an index value,
"indices" is the plural of "index", and "index expression"
refers to an array, slice, or map indexed by an index: a[x].
R=r, rsc, iant, ken, mtj
CC=golang-dev
https://golang.org/cl/6912056
2012-12-10 12:55:57 -07:00
an index for array and slice literals, and a key for map literals.
2009-05-22 11:25:06 -06:00
For map literals, all elements must have a key. It is an error
to specify multiple elements with the same field name or
constant key value.
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-05-22 11:25:06 -06:00
< p >
For struct literals the following rules apply:
2009-06-18 14:29:40 -06:00
< / p >
2009-05-22 11:25:06 -06:00
< ul >
2009-11-16 09:58:55 -07:00
< li > A key must be a field name declared in the LiteralType.
< / li >
2012-10-31 16:07:25 -06:00
< li > An element list that does not contain any keys must
2009-05-22 11:25:06 -06:00
list an element for each struct field in the
order in which the fields are declared.
< / li >
< li > If any element has a key, every element must have a key.
< / li >
2012-10-31 16:07:25 -06:00
< li > An element list that contains keys does not need to
2009-05-22 11:25:06 -06:00
have an element for each struct field. Omitted fields
get the zero value for that field.
< / li >
< li > A literal may omit the element list; such a literal evaluates
2012-10-31 16:07:25 -06:00
to the zero value for its type.
2009-05-22 11:25:06 -06:00
< / li >
< li > It is an error to specify an element for a non-exported
field of a struct belonging to a different package.
< / li >
< / ul >
< p >
Given the declarations
< / p >
2009-02-19 17:49:10 -07:00
< pre >
2010-12-02 13:32:14 -07:00
type Point3D struct { x, y, z float64 }
type Line struct { p, q Point3D }
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
one may write
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2010-12-02 13:32:14 -07:00
origin := Point3D{} // zero value for Point3D
line := Line{origin, Point3D{y: -4, z: 12.3}} // zero value for line.q.x
2009-03-18 23:58:36 -06:00
< / pre >
2009-06-18 14:29:40 -06:00
< p >
For array and slice literals the following rules apply:
< / p >
2009-05-22 11:25:06 -06:00
< ul >
< li > Each element has an associated integer index marking
its position in the array.
< / li >
< li > An element with a key uses the key as its index; the
key must be a constant integer expression.
< / li >
< li > An element without a key uses the previous element's index plus one.
If the first element has no key, its index is zero.
< / li >
< / ul >
2009-03-18 23:58:36 -06:00
< p >
2009-08-20 12:11:03 -06:00
Taking the address of a composite literal (§< a href = "#Address_operators" > Address operators< / a > )
2011-01-26 12:21:23 -07:00
generates a pointer to a unique instance of the literal's value.
2009-03-18 23:58:36 -06:00
< / p >
< pre >
2010-12-02 13:32:14 -07:00
var pointer *Point3D = & Point3D{y: 1000}
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2009-01-05 12:17:26 -07:00
The length of an array literal is the length specified in the LiteralType.
If fewer elements than the length are provided in the literal, the missing
2009-02-25 17:20:44 -07:00
elements are set to the zero value for the array element type.
2009-05-22 11:25:06 -06:00
It is an error to provide elements with index values outside the index range
of the array. The notation < code > ...< / code > specifies an array length equal
to the maximum element index plus one.
2009-02-26 17:37:23 -07:00
< / p >
2009-01-07 10:31:35 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2011-11-29 16:47:36 -07:00
buffer := [10]string{} // len(buffer) == 10
intSet := [6]int{1, 2, 3, 5} // len(intSet) == 6
days := [...]string{"Sat", "Sun"} // len(days) == 2
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-07 10:31:35 -07:00
2009-02-26 17:37:23 -07:00
< p >
A slice literal describes the entire underlying array literal.
2009-09-15 10:54:22 -06:00
Thus, the length and capacity of a slice literal are the maximum
2009-05-22 11:25:06 -06:00
element index plus one. A slice literal has the form
2009-02-26 17:37:23 -07:00
< / p >
2009-01-07 10:31:35 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2011-05-24 15:18:44 -06:00
[]T{x1, x2, … xn}
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-07 10:31:35 -07:00
2009-02-26 17:37:23 -07:00
< p >
2011-12-02 10:30:20 -07:00
and is a shortcut for a slice operation applied to an array:
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-12-02 10:30:20 -07:00
tmp := [n]T{x1, x2, … xn}
tmp[0 : n]
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2010-10-22 09:58:52 -06:00
< p >
Within a composite literal of array, slice, or map type < code > T< / code > ,
elements that are themselves composite literals may elide the respective
literal type if it is identical to the element type of < code > T< / code > .
2011-12-02 12:12:53 -07:00
Similarly, elements that are addresses of composite literals may elide
2012-07-07 19:57:04 -06:00
the < code > & T< / code > when the element type is < code > *T< / code > .
2010-10-22 09:58:52 -06:00
< / p >
2011-12-02 12:12:53 -07:00
2010-10-22 09:58:52 -06:00
< pre >
2011-12-02 12:12:53 -07:00
[...]Point{{1.5, -3.5}, {0, 0}} // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
[][]int{{1, 2, 3}, {4, 5}} // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
2012-01-23 09:40:13 -07:00
[...]*Point{{1.5, -3.5}, {0, 0}} // same as [...]*Point{& Point{1.5, -3.5}, & Point{0, 0}}
2010-10-22 09:58:52 -06:00
< / pre >
2009-03-03 16:40:30 -07:00
< p >
A parsing ambiguity arises when a composite literal using the
2010-07-29 19:13:41 -06:00
TypeName form of the LiteralType appears between the
< a href = "#Keywords" > keyword< / a > and the opening brace of the block of an
2009-03-03 16:40:30 -07:00
"if", "for", or "switch" statement, because the braces surrounding
the expressions in the literal are confused with those introducing
2010-07-29 19:13:41 -06:00
the block of statements. To resolve the ambiguity in this rare case,
2009-03-03 16:40:30 -07:00
the composite literal must appear within
parentheses.
< / p >
< pre >
2011-05-24 15:18:44 -06:00
if x == (T{a,b,c}[i]) { … }
if (x == T{a,b,c}[i]) { … }
2009-03-03 16:40:30 -07:00
< / pre >
2009-05-22 11:25:06 -06:00
< p >
Examples of valid array, slice, and map literals:
< / p >
< pre >
// list of prime numbers
2012-02-06 12:59:36 -07:00
primes := []int{2, 3, 5, 7, 9, 2147483647}
2009-05-22 11:25:06 -06:00
// vowels[ch] is true if ch is a vowel
2009-12-10 17:43:01 -07:00
vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
2009-05-22 11:25:06 -06:00
2011-01-19 21:07:21 -07:00
// the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
2009-05-22 11:25:06 -06:00
// frequencies in Hz for equal-tempered scale (A4 = 440Hz)
2011-01-19 21:07:21 -07:00
noteFrequency := map[string]float32{
2009-05-22 11:25:06 -06:00
"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
"G0": 24.50, "A0": 27.50, "B0": 30.87,
}
< / pre >
2009-08-20 12:11:03 -06:00
< h3 id = "Function_literals" > Function literals< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
A function literal represents an anonymous function.
It consists of a specification of the function type and a function body.
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-08-19 17:44:04 -06:00
FunctionLit = FunctionType Body .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-01-19 21:07:21 -07:00
func(a, b int, z float64) bool { return a*b < int(z) }
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
A function literal can be assigned to a variable or invoked directly.
< / p >
2008-09-08 16:01:04 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-02-26 17:37:23 -07:00
f := func(x, y int) int { return x + y }
2012-02-21 20:04:30 -07:00
func(ch chan int) { ch < - ACK }(replyChan)
2009-02-19 17:49:10 -07:00
< / pre >
2008-09-08 16:01:04 -06:00
2009-02-26 17:37:23 -07:00
< p >
Function literals are < i > closures< / i > : they may refer to variables
2009-02-06 18:01:10 -07:00
defined in a surrounding function. Those variables are then shared between
the surrounding function and the function literal, and they survive as long
2009-02-26 17:37:23 -07:00
as they are accessible.
< / p >
2008-09-08 16:01:04 -06:00
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Primary_expressions" > Primary expressions< / h3 >
2009-03-04 18:19:21 -07:00
2009-09-30 13:00:25 -06:00
< p >
Primary expressions are the operands for unary and binary expressions.
< / p >
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-02-19 17:49:10 -07:00
PrimaryExpr =
Operand |
2009-09-16 12:05:14 -06:00
Conversion |
2009-09-30 13:00:25 -06:00
BuiltinCall |
2009-02-19 17:49:10 -07:00
PrimaryExpr Selector |
PrimaryExpr Index |
PrimaryExpr Slice |
2009-03-04 18:19:21 -07:00
PrimaryExpr TypeAssertion |
2009-02-19 17:49:10 -07:00
PrimaryExpr Call .
2009-03-04 18:19:21 -07:00
Selector = "." identifier .
Index = "[" Expression "]" .
2010-09-07 15:30:17 -06:00
Slice = "[" [ Expression ] ":" [ Expression ] "]" .
2009-03-04 18:19:21 -07:00
TypeAssertion = "." "(" Type ")" .
2010-09-24 15:08:28 -06:00
Call = "(" [ ArgumentList [ "," ] ] ")" .
ArgumentList = ExpressionList [ "..." ] .
2009-02-19 17:49:10 -07:00
< / pre >
< pre >
x
2
(s + ".txt")
f(3.1415, true)
2009-03-02 18:52:52 -07:00
Point{1, 2}
2009-02-19 17:49:10 -07:00
m["foo"]
s[i : j + 1]
obj.color
f.p[i].x()
< / pre >
2009-08-20 12:11:03 -06:00
< h3 id = "Selectors" > Selectors< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2012-06-28 13:22:24 -06:00
For a < a href = "#Primary_expressions" > primary expression< / a > < code > x< / code >
that is not a < a href = "#Package_clause" > package name< / a > , the
< i > selector expression< / i >
2009-02-26 17:37:23 -07:00
< / p >
2008-10-09 18:12:09 -06:00
2009-02-19 17:49:10 -07:00
< pre >
x.f
< / pre >
2008-10-09 18:12:09 -06:00
2009-02-19 17:49:10 -07:00
< p >
2012-06-28 13:22:24 -06:00
denotes the field or method < code > f< / code > of the value < code > x< / code >
(or sometimes < code > *x< / code > ; see below).
The identifier < code > f< / code > is called the (field or method) < i > selector< / i > ;
it must not be the < a href = "#Blank_identifier" > blank identifier< / a > .
The type of the selector expression is the type of < code > f< / code > .
If < code > x< / code > is a package name, see the section on
< a href = "#Qualified_identifiers" > qualified identifiers< / a > .
2009-02-26 17:37:23 -07:00
< / p >
2012-06-28 13:22:24 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-26 17:37:23 -07:00
A selector < code > f< / code > may denote a field or method < code > f< / code > of
a type < code > T< / code > , or it may refer
2012-06-28 13:22:24 -06:00
to a field or method < code > f< / code > of a nested
< a href = "#Struct_types" > anonymous field< / a > of < code > T< / code > .
2009-02-26 17:37:23 -07:00
The number of anonymous fields traversed
to reach < code > f< / code > is called its < i > depth< / i > in < code > T< / code > .
The depth of a field or method < code > f< / code >
declared in < code > T< / code > is zero.
The depth of a field or method < code > f< / code > declared in
an anonymous field < code > A< / code > in < code > T< / code > is the
depth of < code > f< / code > in < code > A< / code > plus one.
< / p >
2012-06-28 13:22:24 -06:00
2009-02-19 17:49:10 -07:00
< p >
2008-10-23 13:04:45 -06:00
The following rules apply to selectors:
2009-02-26 17:37:23 -07:00
< / p >
2012-06-28 13:22:24 -06:00
2009-02-26 17:37:23 -07:00
< ol >
< li >
For a value < code > x< / code > of type < code > T< / code > or < code > *T< / code >
where < code > T< / code > is not an interface type,
< code > x.f< / code > denotes the field or method at the shallowest depth
in < code > T< / code > where there
is such an < code > f< / code > .
2012-03-01 14:57:49 -07:00
If there is not exactly < a href = "#Uniqueness_of_identifiers" > one < code > f< / code > < / a >
with shallowest depth, the selector expression is illegal.
2009-02-26 17:37:23 -07:00
< / li >
< li >
2012-06-28 13:22:24 -06:00
For a variable < code > x< / code > of type < code > I< / code > where < code > I< / code >
is an interface type, < code > x.f< / code > denotes the actual method with name
< code > f< / code > of the value assigned to < code > x< / code > .
If there is no method with name < code > f< / code > in the
< a href = "#Method_sets" > method set< / a > of < code > I< / code > , the selector
expression is illegal.
2009-02-26 17:37:23 -07:00
< / li >
< li >
In all other cases, < code > x.f< / code > is illegal.
2010-05-14 14:11:48 -06:00
< / li >
2012-06-28 13:22:24 -06:00
< li >
If < code > x< / code > is of pointer or interface type and has the value
< code > nil< / code > , assigning to, evaluating, or calling < code > x.f< / code >
causes a < a href = "#Run_time_panics" > run-time panic< / a > .
2012-08-29 15:46:57 -06:00
< / li >
2009-02-26 17:37:23 -07:00
< / ol >
2012-06-28 13:22:24 -06:00
2009-02-19 17:49:10 -07:00
< p >
2012-06-28 13:22:24 -06:00
Selectors automatically < a href = "#Address_operators" > dereference< / a >
pointers to structs.
2010-09-30 12:59:41 -06:00
If < code > x< / code > is a pointer to a struct, < code > x.y< / code >
is shorthand for < code > (*x).y< / code > ; if the field < code > y< / code >
is also a pointer to a struct, < code > x.y.z< / code > is shorthand
2009-02-26 17:37:23 -07:00
for < code > (*(*x).y).z< / code > , and so on.
2010-09-30 12:59:41 -06:00
If < code > x< / code > contains an anonymous field of type < code > *A< / code > ,
where < code > A< / code > is also a struct type,
2009-02-26 17:37:23 -07:00
< code > x.f< / code > is a shortcut for < code > (*x.A).f< / code > .
< / p >
2012-06-28 13:22:24 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-26 17:37:23 -07:00
For example, given the declarations:
< / p >
2008-10-23 13:04:45 -06:00
2009-02-19 17:49:10 -07:00
< pre >
type T0 struct {
2009-12-10 17:43:01 -07:00
x int
2009-02-19 17:49:10 -07:00
}
2008-10-23 13:04:45 -06:00
2009-02-19 17:49:10 -07:00
func (recv *T0) M0()
2008-10-23 13:04:45 -06:00
2009-02-19 17:49:10 -07:00
type T1 struct {
2009-12-10 17:43:01 -07:00
y int
2009-02-19 17:49:10 -07:00
}
2008-10-23 13:04:45 -06:00
2009-02-19 17:49:10 -07:00
func (recv T1) M1()
2008-10-23 13:04:45 -06:00
2009-02-19 17:49:10 -07:00
type T2 struct {
2009-12-10 17:43:01 -07:00
z int
T1
*T0
2009-02-19 17:49:10 -07:00
}
2008-10-09 18:12:09 -06:00
2009-02-19 17:49:10 -07:00
func (recv *T2) M2()
2008-10-09 18:12:09 -06:00
2012-04-09 11:50:46 -06:00
var p *T2 // with p != nil and p.T0 != nil
2009-02-19 17:49:10 -07:00
< / pre >
2008-10-09 18:12:09 -06:00
2009-02-26 17:37:23 -07:00
< p >
one may write:
< / p >
2008-10-09 18:12:09 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-11-29 16:47:36 -07:00
p.z // (*p).z
p.y // ((*p).T1).y
p.x // (*(*p).T0).x
2008-10-09 18:12:09 -06:00
2012-11-26 13:43:32 -07:00
p.M2() // (*p).M2()
p.M1() // ((*p).T1).M1()
p.M0() // ((*p).T0).M0()
2009-02-19 17:49:10 -07:00
< / pre >
2008-10-09 18:12:09 -06:00
2011-05-12 10:15:59 -06:00
<!--
2009-10-22 10:41:38 -06:00
< span class = "alert" >
2008-10-23 13:04:45 -06:00
TODO: Specify what happens to receivers.
2009-10-22 10:41:38 -06:00
< / span >
2011-05-08 15:05:18 -06:00
-->
2008-10-07 18:14:30 -06:00
2008-08-28 18:47:53 -06:00
spec: consistently use "indices" (rather than "indexes")
We have been using all three terms "indices", "indexes",
and "index expressions" indiscriminatly for index values.
With this change, "index" refers to an index value,
"indices" is the plural of "index", and "index expression"
refers to an array, slice, or map indexed by an index: a[x].
R=r, rsc, iant, ken, mtj
CC=golang-dev
https://golang.org/cl/6912056
2012-12-10 12:55:57 -07:00
< h3 id = "Index_expressions" > Index expressions< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2008-10-09 18:12:09 -06:00
A primary expression of the form
2009-02-26 17:37:23 -07:00
< / p >
2008-10-09 18:12:09 -06:00
2009-02-19 17:49:10 -07:00
< pre >
a[x]
< / pre >
2008-10-09 18:12:09 -06:00
2009-02-19 18:31:36 -07:00
< p >
2009-09-15 10:54:22 -06:00
denotes the element of the array, slice, string or map < code > a< / code > indexed by < code > x< / code > .
2009-02-26 17:37:23 -07:00
The value < code > x< / code > is called the
2009-09-15 10:54:22 -06:00
< i > index< / i > or < i > map key< / i > , respectively. The following
2008-10-09 18:12:09 -06:00
rules apply:
2009-02-19 18:31:36 -07:00
< / p >
2009-06-25 15:43:55 -06:00
2012-12-12 12:06:26 -07:00
< p >
If < code > a< / code > is not a map:
< / p >
< ul >
< li > the index < code > x< / code > must be an integer value; it is < i > in range< / i > if < code > 0 < = x < len(a)< / code > ,
otherwise it is < i > out of range< / i > < / li >
< li > a < a href = "#Constants" > constant< / a > index must be non-negative
2013-01-24 02:46:33 -07:00
and representable by a value of type < code > int< / code >
2012-12-12 12:06:26 -07:00
< / ul >
2009-02-19 17:49:10 -07:00
< p >
2009-02-26 17:37:23 -07:00
For < code > a< / code > of type < code > A< / code > or < code > *A< / code >
2012-10-17 12:08:42 -06:00
where < code > A< / code > is an < a href = "#Array_types" > array type< / a > :
2009-02-19 18:31:36 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< ul >
2012-10-17 12:08:42 -06:00
< li > a < a href = "#Constants" > constant< / a > index must be in range< / li >
< li > if < code > a< / code > is < code > nil< / code > or if < code > x< / code > is out of range at run time,
a < a href = "#Run_time_panics" > run-time panic< / a > occurs< / li >
2009-02-26 17:37:23 -07:00
< li > < code > a[x]< / code > is the array element at index < code > x< / code > and the type of
2013-01-24 02:46:33 -07:00
< code > a[x]< / code > is the element type of < code > A< / code > < / li >
2012-10-17 12:08:42 -06:00
< / ul >
< p >
For < code > a< / code > of type < code > S< / code > where < code > S< / code > is a < a href = "#Slice_types" > slice type< / a > :
< / p >
< ul >
< li > if the slice is < code > nil< / code > or if < code > x< / code > is out of range at run time,
a < a href = "#Run_time_panics" > run-time panic< / a > occurs< / li >
< li > < code > a[x]< / code > is the slice element at index < code > x< / code > and the type of
2013-01-24 02:46:33 -07:00
< code > a[x]< / code > is the element type of < code > S< / code > < / li >
2009-02-19 17:49:10 -07:00
< / ul >
2009-06-25 15:43:55 -06:00
< p >
For < code > a< / code > of type < code > T< / code >
2009-09-24 20:36:48 -06:00
where < code > T< / code > is a < a href = "#String_types" > string type< / a > :
2009-06-25 15:43:55 -06:00
< / p >
< ul >
2012-12-12 12:06:26 -07:00
< li > a < a href = "#Constants" > constant< / a > index must be in range
2012-10-17 12:08:42 -06:00
if the string < code > a< / code > is also constant< / li >
< li > if < code > x< / code > is out of range at run time,
a < a href = "#Run_time_panics" > run-time panic< / a > occurs< / li >
2009-06-25 15:43:55 -06:00
< li > < code > a[x]< / code > is the byte at index < code > x< / code > and the type of
2013-01-24 02:46:33 -07:00
< code > a[x]< / code > is < code > byte< / code > < / li >
2010-05-14 14:11:48 -06:00
< li > < code > a[x]< / code > may not be assigned to< / li >
2009-06-25 15:43:55 -06:00
< / ul >
2009-02-19 17:49:10 -07:00
< p >
2009-06-25 15:43:55 -06:00
For < code > a< / code > of type < code > M< / code >
2009-09-08 16:41:14 -06:00
where < code > M< / code > is a < a href = "#Map_types" > map type< / a > :
2009-02-19 18:31:36 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< ul >
2010-03-23 15:01:51 -06:00
< li > < code > x< / code > 's type must be
2013-01-24 02:46:33 -07:00
< a href = "#Assignability" > assignable< / a >
to the key type of < code > M< / code > < / li >
2010-03-23 15:01:51 -06:00
< li > if the map contains an entry with key < code > x< / code > ,
2013-01-24 02:46:33 -07:00
< code > a[x]< / code > is the map value with key < code > x< / code >
and the type of < code > a[x]< / code > is the value type of < code > M< / code > < / li >
2011-05-12 10:15:59 -06:00
< li > if the map is < code > nil< / code > or does not contain such an entry,
2013-01-24 02:46:33 -07:00
< code > a[x]< / code > is the < a href = "#The_zero_value" > zero value< / a >
for the value type of < code > M< / code > < / li >
2009-02-19 17:49:10 -07:00
< / ul >
2008-10-09 18:12:09 -06:00
2009-02-19 17:49:10 -07:00
< p >
2010-03-23 15:01:51 -06:00
Otherwise < code > a[x]< / code > is illegal.
2009-02-26 17:37:23 -07:00
< / p >
< p >
2010-03-23 15:01:51 -06:00
An index expression on a map < code > a< / code > of type < code > map[K]V< / code >
may be used in an assignment or initialization of the special form
2009-02-26 17:37:23 -07:00
< / p >
< pre >
2010-03-23 15:01:51 -06:00
v, ok = a[x]
v, ok := a[x]
var v, ok = a[x]
2009-02-26 17:37:23 -07:00
< / pre >
< p >
2010-03-23 15:01:51 -06:00
where the result of the index expression is a pair of values with types
< code > (V, bool)< / code > . In this form, the value of < code > ok< / code > is
< code > true< / code > if the key < code > x< / code > is present in the map, and
< code > false< / code > otherwise. The value of < code > v< / code > is the value
< code > a[x]< / code > as in the single-result form.
2009-02-26 17:37:23 -07:00
< / p >
2011-05-12 10:15:59 -06:00
< p >
Assigning to an element of a < code > nil< / code > map causes a
< a href = "#Run_time_panics" > run-time panic< / a > .
< / p >
2010-03-23 15:01:51 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Slices" > Slices< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2011-12-02 11:11:30 -07:00
For a string, array, pointer to array, or slice < code > a< / code > , the primary expression
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2010-09-07 17:32:35 -06:00
a[low : high]
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
spec: consistently use "indices" (rather than "indexes")
We have been using all three terms "indices", "indexes",
and "index expressions" indiscriminatly for index values.
With this change, "index" refers to an index value,
"indices" is the plural of "index", and "index expression"
refers to an array, slice, or map indexed by an index: a[x].
R=r, rsc, iant, ken, mtj
CC=golang-dev
https://golang.org/cl/6912056
2012-12-10 12:55:57 -07:00
constructs a substring or slice. The indices < code > low< / code > and
2010-09-07 17:32:35 -06:00
< code > high< / code > select which elements appear in the result. The result has
2012-10-17 12:08:42 -06:00
indices starting at 0 and length equal to
2010-09-07 17:32:35 -06:00
< code > high< / code > - < code > low< / code > .
2009-11-18 20:15:25 -07:00
After slicing the array < code > a< / code >
< / p >
< pre >
2009-12-10 17:43:01 -07:00
a := [5]int{1, 2, 3, 4, 5}
s := a[1:4]
2009-11-18 20:15:25 -07:00
< / pre >
< p >
the slice < code > s< / code > has type < code > []int< / code > , length 3, capacity 4, and elements
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
s[0] == 2
s[1] == 3
2009-11-18 20:15:25 -07:00
s[2] == 4
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
spec: consistently use "indices" (rather than "indexes")
We have been using all three terms "indices", "indexes",
and "index expressions" indiscriminatly for index values.
With this change, "index" refers to an index value,
"indices" is the plural of "index", and "index expression"
refers to an array, slice, or map indexed by an index: a[x].
R=r, rsc, iant, ken, mtj
CC=golang-dev
https://golang.org/cl/6912056
2012-12-10 12:55:57 -07:00
For convenience, any of the indices may be omitted. A missing < code > low< / code >
2010-09-07 17:32:35 -06:00
index defaults to zero; a missing < code > high< / code > index defaults to the length of the
sliced operand:
2010-09-07 15:30:17 -06:00
< / p >
2010-09-07 17:32:35 -06:00
< pre >
2011-11-29 16:47:36 -07:00
a[2:] // same a[2 : len(a)]
a[:3] // same as a[0 : 3]
a[:] // same as a[0 : len(a)]
2010-09-07 17:32:35 -06:00
< / pre >
2010-09-07 15:30:17 -06:00
< p >
2012-10-17 12:08:42 -06:00
For arrays or strings, the indices < code > low< / code > and < code > high< / code > are
< i > in range< / i > if < code > 0 < = < code > low< / code > < = < code > high< / code > < = len(a)< / code > ,
otherwise they are < i > out of range< / i > .
For slices, the upper index bound is the slice capacity < code > cap(a)< / code > rather than the length.
2012-12-12 12:06:26 -07:00
A < a href = "#Constants" > constant< / a > index must be non-negative and representable by a value of type
< code > int< / code > .
If both indices
2012-10-17 12:08:42 -06:00
are constant, they must satisfy < code > low < = high< / code > . If < code > a< / code > is < code > nil< / code >
or if the indices are out of range at run time, a < a href = "#Run_time_panics" > run-time panic< / a > occurs.
2009-09-24 20:36:48 -06:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2009-09-24 20:36:48 -06:00
If the sliced operand is a string or slice, the result of the slice operation
is a string or slice of the same type.
2010-09-02 11:16:31 -06:00
If the sliced operand is an array, it must be < a href = "#Address_operators" > addressable< / a >
and the result of the slice operation is a slice with the same element type as the array.
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Type_assertions" > Type assertions< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2009-12-01 17:15:53 -07:00
For an expression < code > x< / code > of < a href = "#Interface_types" > interface type< / a >
and a type < code > T< / code > , the primary expression
2009-02-26 17:37:23 -07:00
< / p >
2008-11-07 14:34:37 -07:00
2009-02-19 17:49:10 -07:00
< pre >
x.(T)
< / pre >
2008-11-07 14:34:37 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-12-01 17:15:53 -07:00
asserts that < code > x< / code > is not < code > nil< / code >
2009-05-20 19:16:04 -06:00
and that the value stored in < code > x< / code > is of type < code > T< / code > .
2009-03-04 18:19:21 -07:00
The notation < code > x.(T)< / code > is called a < i > type assertion< / i > .
2009-02-26 17:37:23 -07:00
< / p >
< p >
2009-03-04 18:19:21 -07:00
More precisely, if < code > T< / code > is not an interface type, < code > x.(T)< / code > asserts
2010-06-07 16:49:39 -06:00
that the dynamic type of < code > x< / code > is < a href = "#Type_identity" > identical< / a >
to the type < code > T< / code > .
2012-12-06 10:17:20 -07:00
In this case, < code > T< / code > must < a href = "#Method_sets" > implement< / a > the (interface) type of < code > x< / code > ;
otherwise the type assertion is invalid since it is not possible for < code > x< / code >
to store a value of type < code > T< / code > .
2009-03-04 18:19:21 -07:00
If < code > T< / code > is an interface type, < code > x.(T)< / code > asserts that the dynamic type
2012-12-06 10:17:20 -07:00
of < code > x< / code > implements the interface < code > T< / code > .
2009-02-26 17:37:23 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2009-03-04 18:19:21 -07:00
If the type assertion holds, the value of the expression is the value
2010-03-25 18:59:59 -06:00
stored in < code > x< / code > and its type is < code > T< / code > . If the type assertion is false,
a < a href = "#Run_time_panics" > run-time panic< / a > occurs.
In other words, even though the dynamic type of < code > x< / code >
2012-10-17 12:08:42 -06:00
is known only at run time, the type of < code > x.(T)< / code > is
2009-02-26 17:37:23 -07:00
known to be < code > T< / code > in a correct program.
< / p >
2012-12-06 10:17:20 -07:00
< pre >
var x interface{} = 7 // x has dynamic type int and value 7
i := x.(int) // i has type int and value 7
type I interface { m() }
var y I
s := y.(string) // illegal: string does not implement I (missing method m)
r := y.(io.Reader) // r has type io.Reader and y must implement both I and io.Reader
< / pre >
2009-02-19 17:49:10 -07:00
< p >
2012-12-06 10:17:20 -07:00
If a type assertion is used in an < a href = "#Assignments" > assignment< / a > or initialization of the form
2009-02-26 17:37:23 -07:00
< / p >
2008-11-07 14:34:37 -07:00
2009-02-19 17:49:10 -07:00
< pre >
v, ok = x.(T)
v, ok := x.(T)
2009-08-22 01:04:04 -06:00
var v, ok = x.(T)
2009-02-19 17:49:10 -07:00
< / pre >
2008-11-07 14:34:37 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-03-04 18:19:21 -07:00
the result of the assertion is a pair of values with types < code > (T, bool)< / code > .
If the assertion holds, the expression returns the pair < code > (x.(T), true)< / code > ;
2009-02-26 17:37:23 -07:00
otherwise, the expression returns < code > (Z, false)< / code > where < code > Z< / code >
2009-09-08 16:41:14 -06:00
is the < a href = "#The_zero_value" > zero value< / a > for type < code > T< / code > .
2010-03-25 18:59:59 -06:00
No run-time panic occurs in this case.
2009-03-04 18:19:21 -07:00
The type assertion in this construct thus acts like a function call
2012-12-06 10:17:20 -07:00
returning a value and a boolean indicating success.
2009-02-26 17:37:23 -07:00
< / p >
2008-09-03 16:15:51 -06:00
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Calls" > Calls< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-27 17:47:48 -07:00
Given an expression < code > f< / code > of function type
< code > F< / code > ,
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-05-24 15:18:44 -06:00
f(a1, a2, … an)
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2011-05-24 15:18:44 -06:00
calls < code > f< / code > with arguments < code > a1, a2, … an< / code > .
2009-11-07 23:00:59 -07:00
Except for one special case, arguments must be single-valued expressions
2010-06-07 18:40:21 -06:00
< a href = "#Assignability" > assignable< / a > to the parameter types of
2009-02-26 17:37:23 -07:00
< code > F< / code > and are evaluated before the function is called.
The type of the expression is the result type
of < code > F< / code > .
A method invocation is similar but the method itself
is specified as a selector upon a value of the receiver type for
the method.
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-11-29 16:47:36 -07:00
math.Atan2(x, y) // function call
2009-12-10 17:43:01 -07:00
var pt *Point
2009-02-26 17:37:23 -07:00
pt.Scale(3.5) // method call with receiver pt
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2012-01-23 09:40:13 -07:00
< p >
In a function call, the function value and arguments are evaluated in
< a href = "#Order_of_evaluation" > the usual order< / a > .
After they are evaluated, the parameters of the call are passed by value to the function
and the called function begins execution.
The return parameters of the function are passed by value
back to the calling function when the function returns.
< / p >
< p >
2012-04-05 06:37:07 -06:00
Calling a < code > nil< / code > function value
2012-01-23 09:40:13 -07:00
causes a < a href = "#Run_time_panics" > run-time panic< / a > .
< / p >
2009-11-07 23:00:59 -07:00
< p >
2013-02-09 12:46:55 -07:00
As a special case, if the return values of a function or method
2010-06-07 18:40:21 -06:00
< code > g< / code > are equal in number and individually
assignable to the parameters of another function or method
2009-11-07 23:00:59 -07:00
< code > f< / code > , then the call < code > f(g(< i > parameters_of_g< / i > ))< / code >
will invoke < code > f< / code > after binding the return values of
< code > g< / code > to the parameters of < code > f< / code > in order. The call
2013-02-09 12:46:55 -07:00
of < code > f< / code > must contain no parameters other than the call of < code > g< / code > ,
and < code > g< / code > must have at least one return value.
2009-11-07 23:00:59 -07:00
If < code > f< / code > has a final < code > ...< / code > parameter, it is
assigned the return values of < code > g< / code > that remain after
assignment of regular parameters.
< / p >
< pre >
func Split(s string, pos int) (string, string) {
2009-11-18 20:15:25 -07:00
return s[0:pos], s[pos:]
2009-11-07 23:00:59 -07:00
}
func Join(s, t string) string {
return s + t
}
if Join(Split(value, len(value)/2)) != value {
2011-02-01 13:51:10 -07:00
log.Panic("test fails")
2009-11-07 23:00:59 -07:00
}
< / pre >
2009-02-26 17:37:23 -07:00
< p >
2011-02-08 14:31:01 -07:00
A method call < code > x.m()< / code > is valid if the < a href = "#Method_sets" > method set< / a >
of (the type of) < code > x< / code > contains < code > m< / code > and the
2010-05-28 15:17:30 -06:00
argument list can be assigned to the parameter list of < code > m< / code > .
2009-09-15 10:54:22 -06:00
If < code > x< / code > is < a href = "#Address_operators" > addressable< / a > and < code > & x< / code > 's method
2009-05-20 12:02:48 -06:00
set contains < code > m< / code > , < code > x.m()< / code > is shorthand
for < code > (& x).m()< / code > :
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-12-10 17:43:01 -07:00
var p Point
2009-02-26 17:37:23 -07:00
p.Scale(3.5)
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2008-08-28 18:47:53 -06:00
There is no distinct method type and there are no method literals.
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Passing_arguments_to_..._parameters" > Passing arguments to < code > ...< / code > parameters< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2010-06-12 12:37:13 -06:00
If < code > f< / code > is variadic with final parameter type < code > ...T< / code > ,
then within the function the argument is equivalent to a parameter of type
< code > []T< / code > . At each call of < code > f< / code > , the argument
passed to the final parameter is
a new slice of type < code > []T< / code > whose successive elements are
2010-09-24 15:08:28 -06:00
the actual arguments, which all must be < a href = "#Assignability" > assignable< / a >
to the type < code > T< / code > . The length of the slice is therefore the number of
arguments bound to the final parameter and may differ for each call site.
2010-01-27 14:14:40 -07:00
< / p >
2008-11-04 17:46:45 -07:00
2009-02-26 17:37:23 -07:00
< p >
2010-01-27 14:14:40 -07:00
Given the function and call
< / p >
< pre >
2011-05-24 15:18:44 -06:00
func Greeting(prefix string, who ...string)
2010-01-27 14:14:40 -07:00
Greeting("hello:", "Joe", "Anna", "Eileen")
< / pre >
< p >
2010-09-24 15:08:28 -06:00
within < code > Greeting< / code > , < code > who< / code > will have the value
2010-09-20 11:51:05 -06:00
< code > []string{"Joe", "Anna", "Eileen"}< / code >
2010-01-27 14:14:40 -07:00
< / p >
2010-09-24 15:08:28 -06:00
< p >
2010-10-27 11:44:31 -06:00
If the final argument is assignable to a slice type < code > []T< / code > , it may be
passed unchanged as the value for a < code > ...T< / code > parameter if the argument
is followed by < code > ...< / code > . In this case no new slice is created.
2010-09-24 15:08:28 -06:00
< / p >
2010-01-27 14:14:40 -07:00
< p >
2010-09-24 15:08:28 -06:00
Given the slice < code > s< / code > and call
2010-01-27 14:14:40 -07:00
< / p >
2008-11-04 17:46:45 -07:00
2010-09-24 15:08:28 -06:00
< pre >
s := []string{"James", "Jasmine"}
Greeting("goodbye:", s...)
< / pre >
< p >
within < code > Greeting< / code > , < code > who< / code > will have the same value as < code > s< / code >
with the same underlying array.
< / p >
2009-08-20 12:11:03 -06:00
< h3 id = "Operators" > Operators< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2008-09-04 16:17:27 -06:00
Operators combine operands into expressions.
2009-02-26 17:37:23 -07:00
< / p >
2008-09-04 16:17:27 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-04 18:19:21 -07:00
Expression = UnaryExpr | Expression binary_op UnaryExpr .
2009-02-26 17:37:23 -07:00
UnaryExpr = PrimaryExpr | unary_op UnaryExpr .
2008-10-10 13:45:44 -06:00
2011-02-01 13:02:49 -07:00
binary_op = "||" | "& & " | rel_op | add_op | mul_op .
2009-02-26 17:37:23 -07:00
rel_op = "==" | "!=" | "< " | "< =" | ">" | ">=" .
add_op = "+" | "-" | "|" | "^" .
2009-08-27 17:45:42 -06:00
mul_op = "*" | "/" | "%" | "< < " | "> > " | "& " | "& ^" .
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
unary_op = "+" | "-" | "!" | "^" | "*" | "& " | "< -" .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-09-24 20:36:48 -06:00
Comparisons are discussed < a href = "#Comparison_operators" > elsewhere< / a > .
2010-06-07 16:49:39 -06:00
For other binary operators, the operand types must be < a href = "#Type_identity" > identical< / a >
2011-05-23 15:12:42 -06:00
unless the operation involves shifts or untyped < a href = "#Constants" > constants< / a > .
2009-09-24 20:36:48 -06:00
For operations involving constants only, see the section on
< a href = "#Constant_expressions" > constant expressions< / a > .
2009-02-19 18:31:36 -07:00
< / p >
2008-09-12 13:26:22 -06:00
2009-08-21 15:18:08 -06:00
< p >
2011-05-23 15:12:42 -06:00
Except for shift operations, if one operand is an untyped < a href = "#Constants" > constant< / a >
2009-09-24 20:36:48 -06:00
and the other operand is not, the constant is < a href = "#Conversions" > converted< / a >
to the type of the other operand.
2009-08-21 15:18:08 -06:00
< / p >
2009-07-31 19:05:07 -06:00
2009-08-21 15:18:08 -06:00
< p >
2011-05-23 15:12:42 -06:00
The right operand in a shift expression must have unsigned integer type
2009-09-24 20:36:48 -06:00
or be an untyped constant that can be converted to unsigned integer type.
2011-05-23 15:12:42 -06:00
If the left operand of a non-constant shift expression is an untyped constant,
the type of the constant is what it would be if the shift expression were
2011-06-08 10:11:18 -06:00
replaced by its left operand alone; the type is < code > int< / code > if it cannot
be determined from the context (for instance, if the shift expression is an
operand in a comparison against an untyped constant).
2009-08-21 15:18:08 -06:00
< / p >
2008-10-20 12:46:40 -06:00
2009-08-21 15:18:08 -06:00
< pre >
2009-12-10 17:43:01 -07:00
var s uint = 33
2011-05-23 15:12:42 -06:00
var i = 1< < s // 1 has type int
var j int32 = 1< < s // 1 has type int32; j == 0
var k = uint64(1< < s) // 1 has type uint64; k == 1< < 33
2012-03-01 11:35:15 -07:00
var m int = 1.0< < s // 1.0 has type int
var n = 1.0< < s != 0 // 1.0 has type int; n == false if ints are 32bits in size
var o = 1< < s == 2< < s // 1 and 2 have type int; o == true if ints are 32bits in size
2011-06-08 10:11:18 -06:00
var p = 1< < s == 1< < 33 // illegal if ints are 32bits in size: 1 has type int, but 1< < 33 overflows int
2011-05-23 15:12:42 -06:00
var u = 1.0< < s // illegal: 1.0 has type float64, cannot shift
var v float32 = 1< < s // illegal: 1 has type float32, cannot shift
2012-03-01 11:35:15 -07:00
var w int64 = 1.0< < 33 // 1.0< < 33 is a constant shift expression
2009-08-21 15:18:08 -06:00
< / pre >
2009-01-26 10:34:19 -07:00
2009-09-18 12:58:35 -06:00
< h3 id = "Operator_precedence" > Operator precedence< / h3 >
2009-02-19 17:49:10 -07:00
< p >
2009-07-09 17:44:13 -06:00
Unary operators have the highest precedence.
As the < code > ++< / code > and < code > --< / code > operators form
2009-02-26 17:37:23 -07:00
statements, not expressions, they fall
2009-07-09 17:44:13 -06:00
outside the operator hierarchy.
2009-02-26 17:37:23 -07:00
As a consequence, statement < code > *p++< / code > is the same as < code > (*p)++< / code > .
< p >
2011-02-01 13:02:49 -07:00
There are five precedence levels for binary operators.
2009-02-26 17:37:23 -07:00
Multiplication operators bind strongest, followed by addition
2012-09-12 10:05:24 -06:00
operators, comparison operators, < code > & & < / code > (logical AND),
and finally < code > ||< / code > (logical OR):
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-20 14:36:14 -07:00
< pre class = "grammar" >
2009-02-19 17:49:10 -07:00
Precedence Operator
2011-02-01 13:02:49 -07:00
5 * / % < < > > & & ^
4 + - | ^
2011-02-22 16:31:57 -07:00
3 == != < < = > > =
2009-02-19 17:49:10 -07:00
2 & &
1 ||
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2008-10-10 13:45:44 -06:00
Binary operators of the same precedence associate from left to right.
2009-09-18 12:58:35 -06:00
For instance, < code > x / y * z< / code > is the same as < code > (x / y) * z< / code > .
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
+x
23 + 3*x[i]
x < = f()
2009-08-27 17:45:42 -06:00
^a > > b
2009-02-19 17:49:10 -07:00
f() || g()
2012-02-21 20:04:30 -07:00
x == y+1 & & < -chanPtr > 0
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Arithmetic_operators" > Arithmetic operators< / h3 >
2009-02-19 17:49:10 -07:00
< p >
2009-09-24 20:36:48 -06:00
Arithmetic operators apply to numeric values and yield a result of the same
2009-02-26 17:37:23 -07:00
type as the first operand. The four standard arithmetic operators (< code > +< / code > ,
2010-03-04 13:35:16 -07:00
< code > -< / code > , < code > *< / code > , < code > /< / code > ) apply to integer,
floating-point, and complex types; < code > +< / code > also applies
2009-09-24 20:36:48 -06:00
to strings. All other arithmetic operators apply to integers only.
2009-02-26 17:37:23 -07:00
< / p >
2008-09-04 16:17:27 -06:00
2009-02-20 14:36:14 -07:00
< pre class = "grammar" >
2010-03-04 13:35:16 -07:00
+ sum integers, floats, complex values, strings
- difference integers, floats, complex values
* product integers, floats, complex values
/ quotient integers, floats, complex values
2009-03-12 16:53:56 -06:00
% remainder integers
2009-02-19 17:49:10 -07:00
2012-09-12 10:05:24 -06:00
& bitwise AND integers
| bitwise OR integers
^ bitwise XOR integers
& ^ bit clear (AND NOT) integers
2009-02-19 17:49:10 -07:00
2009-08-27 17:45:42 -06:00
< < left shift integer < < unsigned integer
> > right shift integer > > unsigned integer
2009-02-19 17:49:10 -07:00
< / pre >
2008-09-04 16:17:27 -06:00
2009-02-26 17:37:23 -07:00
< p >
Strings can be concatenated using the < code > +< / code > operator
or the < code > +=< / code > assignment operator:
< / p >
2008-09-04 16:17:27 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-12-10 17:43:01 -07:00
s := "hi" + string(c)
s += " and good bye"
2009-02-19 17:49:10 -07:00
< / pre >
2008-09-04 16:17:27 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-26 17:37:23 -07:00
String addition creates a new string by concatenating the operands.
< / p >
< p >
2011-05-02 18:23:18 -06:00
For two integer values < code > x< / code > and < code > y< / code > , the integer quotient
< code > q = x / y< / code > and remainder < code > r = x % y< / code > satisfy the following
relationships:
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-05-02 18:23:18 -06:00
x = q*y + r and |r| < |y|
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2011-05-02 18:23:18 -06:00
with < code > x / y< / code > truncated towards zero
(< a href = "http://en.wikipedia.org/wiki/Modulo_operation" > "truncated division"< / a > ).
2009-02-26 17:37:23 -07:00
< / p >
2008-09-04 16:17:27 -06:00
2009-02-19 17:49:10 -07:00
< pre >
x y x / y x % y
5 3 1 2
-5 3 -1 -2
5 -3 -1 2
-5 -3 1 -2
< / pre >
2008-08-28 18:47:53 -06:00
2011-05-02 18:23:18 -06:00
< p >
As an exception to this rule, if the dividend < code > x< / code > is the most
negative value for the int type of < code > x< / code > , the quotient
< code > q = x / -1< / code > is equal to < code > x< / code > (and < code > r = 0< / code > ).
< / p >
< pre >
x, q
int8 -128
int16 -32768
int32 -2147483648
int64 -9223372036854775808
< / pre >
2009-02-26 17:37:23 -07:00
< p >
2012-10-19 11:12:09 -06:00
If the divisor is a < a href = "#Constants" > constant< / a > , it must not be zero.
If the divisor is zero at run time, a < a href = "#Run_time_panics" > run-time panic< / a > occurs.
2013-01-06 17:56:06 -07:00
If the dividend is non-negative and the divisor is a constant power of 2,
2009-09-14 18:39:17 -06:00
the division may be replaced by a right shift, and computing the remainder may
2012-09-12 10:05:24 -06:00
be replaced by a bitwise AND operation:
2009-02-26 17:37:23 -07:00
< / p >
2008-09-04 16:17:27 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-08-27 17:45:42 -06:00
x x / 4 x % 4 x > > 2 x & 3
2009-02-19 17:49:10 -07:00
11 2 3 2 3
-11 -2 -3 -3 1
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2008-08-28 18:47:53 -06:00
The shift operators shift the left operand by the shift count specified by the
right operand. They implement arithmetic shifts if the left operand is a signed
2011-05-23 15:12:42 -06:00
integer and logical shifts if it is an unsigned integer.
There is no upper limit on the shift count. Shifts behave
2009-02-26 17:37:23 -07:00
as if the left operand is shifted < code > n< / code > times by 1 for a shift
count of < code > n< / code > .
2009-08-27 17:45:42 -06:00
As a result, < code > x < < 1< / code > is the same as < code > x*2< / code >
and < code > x > > 1< / code > is the same as
2009-12-01 17:15:53 -07:00
< code > x/2< / code > but truncated towards negative infinity.
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
For integer operands, the unary operators
< code > +< / code > , < code > -< / code > , and < code > ^< / code > are defined as
2008-12-12 11:30:10 -07:00
follows:
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-20 14:36:14 -07:00
< pre class = "grammar" >
2009-02-19 17:49:10 -07:00
+x is 0 + x
-x negation is 0 - x
2009-05-29 17:04:16 -06:00
^x bitwise complement is m ^ x with m = "all bits set to 1" for unsigned x
and m = -1 for signed x
2009-02-19 17:49:10 -07:00
< / pre >
2008-12-12 11:30:10 -07:00
2009-03-04 18:19:21 -07:00
< p >
2012-08-17 12:36:21 -06:00
For floating-point and complex numbers,
2009-03-04 18:19:21 -07:00
< code > +x< / code > is the same as < code > x< / code > ,
while < code > -x< / code > is the negation of < code > x< / code > .
2012-08-17 12:36:21 -06:00
The result of a floating-point or complex division by zero is not specified beyond the
2010-05-04 18:31:40 -06:00
IEEE-754 standard; whether a < a href = "#Run_time_panics" > run-time panic< / a >
occurs is implementation-specific.
2009-03-04 18:19:21 -07:00
< / p >
2008-12-12 11:30:10 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Integer_overflow" > Integer overflow< / h3 >
2008-12-12 11:30:10 -07:00
2009-02-26 17:37:23 -07:00
< p >
For unsigned integer values, the operations < code > +< / code > ,
< code > -< / code > , < code > *< / code > , and < code > < < < / code > are
computed modulo 2< sup > < i > n< / i > < / sup > , where < i > n< / i > is the bit width of
the unsigned integer's type
2009-08-20 12:11:03 -06:00
(§< a href = "#Numeric_types" > Numeric types< / a > ). Loosely speaking, these unsigned integer operations
2008-12-12 11:30:10 -07:00
discard high bits upon overflow, and programs may rely on ``wrap around''.
2009-02-26 17:37:23 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2009-02-26 17:37:23 -07:00
For signed integers, the operations < code > +< / code > ,
< code > -< / code > , < code > *< / code > , and < code > < < < / code > may legally
2008-12-12 11:30:10 -07:00
overflow and the resulting value exists and is deterministically defined
by the signed integer representation, the operation, and its operands.
2009-02-26 17:37:23 -07:00
No exception is raised as a result of overflow. A
2008-12-12 11:30:10 -07:00
compiler may not optimize code under the assumption that overflow does
2009-02-26 17:37:23 -07:00
not occur. For instance, it may not assume that < code > x < x + 1< / code > is always true.
< / p >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Comparison_operators" > Comparison operators< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-24 16:17:59 -07:00
< p >
2012-02-21 20:04:30 -07:00
Comparison operators compare two operands and yield a boolean value.
2009-02-24 16:17:59 -07:00
< / p >
2008-09-04 16:17:27 -06:00
2009-02-20 14:36:14 -07:00
< pre class = "grammar" >
2009-02-19 17:49:10 -07:00
== equal
!= not equal
2011-02-08 15:51:15 -07:00
< less
< = less or equal
2011-12-12 20:21:46 -07:00
> greater
> = greater or equal
2009-02-19 17:49:10 -07:00
< / pre >
2008-09-04 16:17:27 -06:00
2009-02-24 16:17:59 -07:00
< p >
2011-12-12 20:21:46 -07:00
In any comparison, the first operand
2010-06-07 18:40:21 -06:00
must be < a href = "#Assignability" > assignable< / a >
to the type of the second operand, or vice versa.
2009-02-24 16:17:59 -07:00
< / p >
2010-06-07 16:49:39 -06:00
< p >
2011-12-12 20:21:46 -07:00
The equality operators < code > ==< / code > and < code > !=< / code > apply
to operands that are < i > comparable< / i > .
The ordering operators < code > < < / code > , < code > < =< / code > , < code > > < / code > , and < code > > =< / code >
apply to operands that are < i > ordered< / i > .
These terms and the result of the comparisons are defined as follows:
2009-02-24 16:17:59 -07:00
< / p >
2009-01-05 12:17:26 -07:00
2010-06-03 17:55:50 -06:00
< ul >
< li >
2011-12-12 20:21:46 -07:00
Boolean values are comparable.
Two boolean values are equal if they are either both
< code > true< / code > or both < code > false< / code > .
2010-06-03 17:55:50 -06:00
< / li >
2011-12-12 20:21:46 -07:00
2010-06-03 17:55:50 -06:00
< li >
2011-12-12 20:21:46 -07:00
Integer values are comparable and ordered, in the usual way.
2010-06-03 17:55:50 -06:00
< / li >
2012-04-05 06:37:07 -06:00
2010-06-03 17:55:50 -06:00
< li >
2011-12-12 20:21:46 -07:00
Floating point values are comparable and ordered,
as defined by the IEEE-754 standard.
2010-06-03 17:55:50 -06:00
< / li >
2012-04-05 06:37:07 -06:00
2010-06-03 17:55:50 -06:00
< li >
2011-12-12 20:21:46 -07:00
Complex values are comparable.
Two complex values < code > u< / code > and < code > v< / code > are
equal if both < code > real(u) == real(v)< / code > and
< code > imag(u) == imag(v)< / code > .
2010-06-03 17:55:50 -06:00
< / li >
2012-04-05 06:37:07 -06:00
2010-06-03 17:55:50 -06:00
< li >
2011-12-12 20:21:46 -07:00
String values are comparable and ordered, lexically byte-wise.
2010-06-03 17:55:50 -06:00
< / li >
2012-04-05 06:37:07 -06:00
2010-06-03 17:55:50 -06:00
< li >
2011-12-12 20:21:46 -07:00
Pointer values are comparable.
2012-01-09 17:54:24 -07:00
Two pointer values are equal if they point to the same variable or if both have value < code > nil< / code > .
Pointers to distinct < a href = "#Size_and_alignment_guarantees" > zero-size< / a > variables may or may not be equal.
2010-06-03 17:55:50 -06:00
< / li >
2012-04-05 06:37:07 -06:00
2010-06-03 17:55:50 -06:00
< li >
2011-12-12 20:21:46 -07:00
Channel values are comparable.
Two channel values are equal if they were created by the same call to < code > make< / code >
(§< a href = "#Making_slices_maps_and_channels" > Making slices, maps, and channels< / a > )
or if both have value < code > nil< / code > .
2010-06-03 17:55:50 -06:00
< / li >
2011-12-12 20:21:46 -07:00
2010-06-03 17:55:50 -06:00
< li >
2011-12-12 20:21:46 -07:00
Interface values are comparable.
Two interface values are equal if they have < a href = "#Type_identity" > identical< / a > dynamic types
and equal dynamic values or if both have value < code > nil< / code > .
2010-06-03 17:55:50 -06:00
< / li >
2012-04-05 06:37:07 -06:00
2010-06-03 17:55:50 -06:00
< li >
2011-12-12 20:21:46 -07:00
A value < code > x< / code > of non-interface type < code > X< / code > and
a value < code > t< / code > of interface type < code > T< / code > are comparable when values
of type < code > X< / code > are comparable and
< code > X< / code > implements < code > T< / code > .
They are equal if < code > t< / code > 's dynamic type is identical to < code > X< / code >
and < code > t< / code > 's dynamic value is equal to < code > x< / code > .
2010-06-03 17:55:50 -06:00
< / li >
2011-12-12 20:21:46 -07:00
2010-06-03 17:55:50 -06:00
< li >
2012-02-16 15:13:17 -07:00
Struct values are comparable if all their fields are comparable.
Two struct values are equal if their corresponding
non-< a href = "#Blank_identifier" > blank< / a > fields are equal.
2010-06-03 17:55:50 -06:00
< / li >
2012-04-05 06:37:07 -06:00
2010-06-03 17:55:50 -06:00
< li >
2011-12-12 20:21:46 -07:00
Array values are comparable if values of the array element type are comparable.
Two array values are equal if their corresponding elements are equal.
2010-06-03 17:55:50 -06:00
< / li >
< / ul >
2011-12-12 20:21:46 -07:00
< p >
A comparison of two interface values with identical dynamic types
causes a < a href = "#Run_time_panics" > run-time panic< / a > if values
of that type are not comparable. This behavior applies not only to direct interface
value comparisons but also when comparing arrays of interface values
or structs with interface-valued fields.
< / p >
< p >
Slice, map, and function values are not comparable.
However, as a special case, a slice, map, or function value may
be compared to the predeclared identifier < code > nil< / code > .
Comparison of pointer, channel, and interface values to < code > nil< / code >
is also allowed and follows from the general rules above.
< / p >
2008-08-28 18:47:53 -06:00
2012-02-21 20:04:30 -07:00
< p >
The result of a comparison can be assigned to any boolean type.
If the context does not demand a specific boolean type,
the result has type < code > bool< / code > .
< / p >
< pre >
type MyBool bool
var x, y int
var (
b1 MyBool = x == y // result of comparison has type MyBool
b2 bool = x == y // result of comparison has type bool
b3 = x == y // result of comparison has type bool
)
< / pre >
2009-08-20 12:11:03 -06:00
< h3 id = "Logical_operators" > Logical operators< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2009-09-24 20:36:48 -06:00
Logical operators apply to < a href = "#Boolean_types" > boolean< / a > values
and yield a result of the same type as the operands.
2008-09-04 16:17:27 -06:00
The right operand is evaluated conditionally.
2009-02-26 17:37:23 -07:00
< / p >
2008-09-04 16:17:27 -06:00
2009-02-20 14:36:14 -07:00
< pre class = "grammar" >
2012-09-12 10:05:24 -06:00
& & conditional AND p & & q is "if p then q else false"
|| conditional OR p || q is "if p then true else q"
! NOT !p is "not p"
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Address_operators" > Address operators< / h3 >
2008-09-04 16:17:27 -06:00
2009-02-26 17:37:23 -07:00
< p >
2011-01-26 12:21:23 -07:00
For an operand < code > x< / code > of type < code > T< / code > , the address operation
< code > & x< / code > generates a pointer of type < code > *T< / code > to < code > x< / code > .
The operand must be < i > addressable< / i > ,
2010-05-24 15:31:43 -06:00
that is, either a variable, pointer indirection, or slice indexing
2011-01-26 12:21:23 -07:00
operation; or a field selector of an addressable struct operand;
2010-05-24 15:31:43 -06:00
or an array indexing operation of an addressable array.
2011-01-26 12:21:23 -07:00
As an exception to the addressability requirement, < code > x< / code > may also be a
2013-01-02 19:11:49 -07:00
(possibly parenthesized)
2011-01-26 12:21:23 -07:00
< a href = "#Composite_literals" > composite literal< / a > .
< / p >
< p >
For an operand < code > x< / code > of pointer type < code > *T< / code > , the pointer
indirection < code > *x< / code > denotes the value of type < code > T< / code > pointed
to by < code > x< / code > .
2012-01-23 09:40:13 -07:00
If < code > x< / code > is < code > nil< / code > , an attempt to evaluate < code > *x< / code >
will cause a < a href = "#Run_time_panics" > run-time panic< / a > .
2009-03-20 18:41:25 -06:00
< / p >
< pre >
& x
& a[f(2)]
2013-01-02 19:11:49 -07:00
& Point{2, 3}
2009-03-20 18:41:25 -06:00
*p
*pf(x)
< / pre >
2009-09-15 16:56:44 -06:00
2011-02-01 13:02:49 -07:00
< h3 id = "Receive_operator" > Receive operator< / h3 >
2008-08-28 18:47:53 -06:00
2009-03-20 18:41:25 -06:00
< p >
2011-02-01 13:02:49 -07:00
For an operand < code > ch< / code > of < a href = "#Channel_types" > channel type< / a > ,
the value of the receive operation < code > < -ch< / code > is the value received
2012-12-03 15:23:41 -07:00
from the channel < code > ch< / code > . The channel direction must permit receive operations,
and the type of the receive operation is the element type of the channel.
The expression blocks until a value is available.
2011-05-12 10:15:59 -06:00
Receiving from a < code > nil< / code > channel blocks forever.
2012-06-25 12:28:24 -06:00
Receiving from a < a href = "#Close" > closed< / a > channel always succeeds,
immediately returning the element type's < a href = "#The_zero_value" > zero
value< / a > .
2009-03-20 18:41:25 -06:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-09-25 15:11:03 -06:00
v1 := < -ch
v2 = < -ch
f(< -ch)
2011-02-01 13:02:49 -07:00
< -strobe // wait until clock pulse and discard received value
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-03-20 18:41:25 -06:00
< p >
2011-04-29 13:20:31 -06:00
A receive expression used in an assignment or initialization of the form
2009-03-20 18:41:25 -06:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-09-25 15:11:03 -06:00
x, ok = < -ch
x, ok := < -ch
var x, ok = < -ch
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-03-20 18:41:25 -06:00
< p >
2012-06-25 12:28:24 -06:00
yields an additional result of type < code > bool< / code > reporting whether the
communication succeeded. The value of < code > ok< / code > is < code > true< / code >
if the value received was delivered by a successful send operation to the
channel, or < code > false< / code > if it is a zero value generated because the
channel is closed and empty.
2009-03-20 18:41:25 -06:00
< / p >
2008-08-28 18:47:53 -06:00
2011-05-12 10:15:59 -06:00
<!--
2009-03-20 18:41:25 -06:00
< p >
2009-10-22 10:41:38 -06:00
< span class = "alert" > TODO: Probably in a separate section, communication semantics
need to be presented regarding send, receive, select, and goroutines.< / span >
2009-03-20 18:41:25 -06:00
< / p >
2011-05-08 15:05:18 -06:00
-->
2009-09-15 16:56:44 -06:00
2011-02-01 13:02:49 -07:00
2009-09-15 16:56:44 -06:00
< h3 id = "Method_expressions" > Method expressions< / h3 >
2009-02-19 17:49:10 -07:00
< p >
2011-02-08 14:31:01 -07:00
If < code > M< / code > is in the < a href = "#Method_sets" > method set< / a > of type < code > T< / code > ,
2009-09-15 16:56:44 -06:00
< code > T.M< / code > is a function that is callable as a regular function
with the same arguments as < code > M< / code > prefixed by an additional
argument that is the receiver of the method.
2009-03-20 18:41:25 -06:00
< / p >
2008-08-28 18:47:53 -06:00
2009-09-17 12:01:50 -06:00
< pre class = "ebnf" >
2009-09-15 16:56:44 -06:00
MethodExpr = ReceiverType "." MethodName .
2012-12-06 10:31:42 -07:00
ReceiverType = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-03-20 18:41:25 -06:00
< p >
2009-09-15 16:56:44 -06:00
Consider a struct type < code > T< / code > with two methods,
< code > Mv< / code > , whose receiver is of type < code > T< / code > , and
< code > Mp< / code > , whose receiver is of type < code > *T< / code > .
2009-03-20 18:41:25 -06:00
< / p >
2009-01-30 15:48:29 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2009-09-15 16:56:44 -06:00
type T struct {
2009-12-10 17:43:01 -07:00
a int
2009-02-19 17:49:10 -07:00
}
2011-11-29 16:47:36 -07:00
func (tv T) Mv(a int) int { return 0 } // value receiver
2011-01-19 21:07:21 -07:00
func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver
2009-12-10 17:43:01 -07:00
var t T
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-30 15:48:29 -07:00
2009-03-20 18:41:25 -06:00
< p >
2009-09-15 16:56:44 -06:00
The expression
2009-03-20 18:41:25 -06:00
< / p >
2008-08-28 18:47:53 -06:00
2009-09-15 16:56:44 -06:00
< pre >
T.Mv
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-09-15 16:56:44 -06:00
yields a function equivalent to < code > Mv< / code > but
with an explicit receiver as its first argument; it has signature
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2010-01-26 11:25:56 -07:00
func(tv T, a int) int
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2009-09-15 16:56:44 -06:00
That function may be called normally with an explicit receiver, so
2012-12-06 10:31:42 -07:00
these five invocations are equivalent:
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-09-15 16:56:44 -06:00
t.Mv(7)
T.Mv(t, 7)
2012-12-11 10:17:53 -07:00
(T).Mv(t, 7)
2012-12-06 10:31:42 -07:00
f1 := T.Mv; f1(t, 7)
f2 := (T).Mv; f2(t, 7)
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2009-09-15 16:56:44 -06:00
Similarly, the expression
2009-02-26 17:37:23 -07:00
< / p >
2009-09-15 16:56:44 -06:00
< pre >
(*T).Mp
< / pre >
2009-02-19 17:49:10 -07:00
< p >
2009-09-15 16:56:44 -06:00
yields a function value representing < code > Mp< / code > with signature
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-01-19 21:07:21 -07:00
func(tp *T, f float32) float32
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2009-09-15 16:56:44 -06:00
For a method with a value receiver, one can derive a function
with an explicit pointer receiver, so
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-09-15 16:56:44 -06:00
(*T).Mv
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2009-09-15 16:56:44 -06:00
yields a function value representing < code > Mv< / code > with signature
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2010-01-26 11:25:56 -07:00
func(tv *T, a int) int
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2009-09-15 16:56:44 -06:00
Such a function indirects through the receiver to create a value
to pass as the receiver to the underlying method;
the method does not overwrite the value whose address is passed in
the function call.
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-26 17:37:23 -07:00
< p >
2009-09-15 16:56:44 -06:00
The final case, a value-receiver function for a pointer-receiver method,
is illegal because pointer-receiver methods are not in the method set
of the value type.
< / p >
< p >
Function values derived from methods are called with function call syntax;
the receiver is provided as the first argument to the call.
That is, given < code > f := T.Mv< / code > , < code > f< / code > is invoked
as < code > f(t, 7)< / code > not < code > t.f(7)< / code > .
To construct a function that binds the receiver, use a
2009-09-18 12:58:35 -06:00
< a href = "#Function_literals" > closure< / a > .
2009-09-15 16:56:44 -06:00
< / p >
< p >
It is legal to derive a function value from a method of an interface type.
The resulting function takes an explicit receiver of that interface type.
2009-02-26 17:37:23 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-09-30 13:00:25 -06:00
< h3 id = "Conversions" > Conversions< / h3 >
< p >
Conversions are expressions of the form < code > T(x)< / code >
where < code > T< / code > is a type and < code > x< / code > is an expression
that can be converted to type < code > T< / code > .
< / p >
< pre class = "ebnf" >
2012-09-26 11:31:57 -06:00
Conversion = Type "(" Expression [ "," ] ")" .
2010-05-24 15:58:26 -06:00
< / pre >
< p >
2012-10-03 14:46:37 -06:00
If the type starts with the operator < code > *< / code > or < code > < -< / code > ,
2013-02-11 05:48:14 -07:00
or if the type starts with the keyword < code > func< / code >
and has no result list, it must be parenthesized when
necessary to avoid ambiguity:
2010-05-24 15:58:26 -06:00
< / p >
< pre >
*Point(p) // same as *(Point(p))
2013-02-11 05:48:14 -07:00
(*Point)(p) // p is converted to *Point
2010-05-24 15:58:26 -06:00
< -chan int(c) // same as < -(chan int(c))
2013-02-11 05:48:14 -07:00
(< -chan int)(c) // c is converted to < -chan int
2012-10-03 14:46:37 -06:00
func()(x) // function signature func() x
2013-02-11 05:48:14 -07:00
(func())(x) // x is converted to func()
(func() int)(x) // x is converted to func() int
func() int(x) // x is converted to func() int (unambiguous)
2009-09-30 13:00:25 -06:00
< / pre >
< p >
2011-06-13 17:47:33 -06:00
A < a href = "#Constants" > constant< / a > value < code > x< / code > can be converted to
type < code > T< / code > in any of these cases:
< / p >
< ul >
< li >
< code > x< / code > is representable by a value of type < code > T< / code > .
< / li >
< li >
2013-02-11 05:47:41 -07:00
< code > x< / code > is a floating-point constant,
< code > T< / code > is a floating-point type,
and < code > x< / code > is representable by a value
of type < code > T< / code > after rounding using
IEEE 754 round-to-even rules.
The constant < code > T(x)< / code > is the rounded value.
< / li >
< li >
2011-06-13 17:47:33 -06:00
< code > x< / code > is an integer constant and < code > T< / code > is a
< a href = "#String_types" > string type< / a > .
The same rule as for non-constant < code > x< / code > applies in this case
(§< a href = "#Conversions_to_and_from_a_string_type" > Conversions to and from a string type< / a > ).
< / li >
< / ul >
< p >
Converting a constant yields a typed constant as result.
< / p >
< pre >
uint(iota) // iota value of type uint
float32(2.718281828) // 2.718281828 of type float32
complex128(1) // 1.0 + 0.0i of type complex128
2013-02-11 05:47:41 -07:00
float32(0.49999999) // 0.5 of type float32
2011-06-13 17:47:33 -06:00
string('x') // "x" of type string
string(0x266c) // "♬" of type string
MyString("foo" + "bar") // "foobar" of type MyString
string([]byte{'a'}) // not a constant: []byte{'a'} is not a constant
(*int)(nil) // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
int(1.2) // illegal: 1.2 cannot be represented as an int
string(65.0) // illegal: 65.0 is not an integer constant
< / pre >
< p >
A non-constant value < code > x< / code > can be converted to type < code > T< / code >
in any of these cases:
2009-09-30 13:00:25 -06:00
< / p >
2009-10-19 14:13:59 -06:00
2010-06-07 16:49:39 -06:00
< ul >
< li >
2010-06-07 18:40:21 -06:00
< code > x< / code > is < a href = "#Assignability" > assignable< / a >
2010-06-07 16:49:39 -06:00
to < code > T< / code > .
< / li >
< li >
< code > x< / code > 's type and < code > T< / code > have identical
< a href = "#Types" > underlying types< / a > .
< / li >
< li >
< code > x< / code > 's type and < code > T< / code > are unnamed pointer types
and their pointer base types have identical underlying types.
< / li >
< li >
< code > x< / code > 's type and < code > T< / code > are both integer or floating
point types.
< / li >
< li >
< code > x< / code > 's type and < code > T< / code > are both complex types.
< / li >
< li >
2012-09-26 11:31:57 -06:00
< code > x< / code > is an integer or a slice of bytes or runes
and < code > T< / code > is a string type.
2010-06-07 16:49:39 -06:00
< / li >
< li >
2012-09-26 11:31:57 -06:00
< code > x< / code > is a string and < code > T< / code > is a slice of bytes or runes.
2010-06-07 16:49:39 -06:00
< / li >
< / ul >
2009-10-19 14:13:59 -06:00
< p >
2011-06-13 17:47:33 -06:00
Specific rules apply to (non-constant) conversions between numeric types or
to and from a string type.
2010-06-07 16:49:39 -06:00
These conversions may change the representation of < code > x< / code >
and incur a run-time cost.
All other conversions only change the type but not the representation
of < code > x< / code > .
2009-10-19 14:13:59 -06:00
< / p >
2011-06-13 17:47:33 -06:00
< p >
There is no linguistic mechanism to convert between pointers and integers.
The package < a href = "#Package_unsafe" > < code > unsafe< / code > < / a >
implements this functionality under
restricted circumstances.
< / p >
2010-06-07 16:49:39 -06:00
< h4 > Conversions between numeric types< / h4 >
2011-06-13 17:47:33 -06:00
< p >
For the conversion of non-constant numeric values, the following rules apply:
< / p >
2009-10-19 14:13:59 -06:00
< ol >
2009-09-30 13:00:25 -06:00
< li >
2010-06-07 16:49:39 -06:00
When converting between integer types, if the value is a signed integer, it is
sign extended to implicit infinite precision; otherwise it is zero extended.
It is then truncated to fit in the result type's size.
For example, if < code > v := uint16(0x10F0)< / code > , then < code > uint32(int8(v)) == 0xFFFFFFF0< / code > .
The conversion always yields a valid value; there is no indication of overflow.
2009-09-30 13:00:25 -06:00
< / li >
< li >
2010-06-07 16:49:39 -06:00
When converting a floating-point number to an integer, the fraction is discarded
(truncation towards zero).
2010-05-14 14:11:48 -06:00
< / li >
2010-03-04 13:35:16 -07:00
< li >
2010-06-07 16:49:39 -06:00
When converting an integer or floating-point number to a floating-point type,
or a complex number to another complex type, the result value is rounded
2010-03-04 13:35:16 -07:00
to the precision specified by the destination type.
2009-10-19 14:13:59 -06:00
For instance, the value of a variable < code > x< / code > of type < code > float32< / code >
may be stored using additional precision beyond that of an IEEE-754 32-bit number,
but float32(x) represents the result of rounding < code > x< / code > 's value to
32-bit precision. Similarly, < code > x + 0.1< / code > may use more than 32 bits
2010-05-23 12:21:47 -06:00
of precision, but < code > float32(x + 0.1)< / code > does not.
2009-09-30 13:00:25 -06:00
< / li >
2009-10-19 14:13:59 -06:00
< / ol >
< p >
2011-06-13 17:47:33 -06:00
In all non-constant conversions involving floating-point or complex values,
2010-03-04 13:35:16 -07:00
if the result type cannot represent the value the conversion
2011-06-13 17:47:33 -06:00
succeeds but the result value is implementation-dependent.
2009-10-19 14:13:59 -06:00
< / p >
2011-06-13 17:47:33 -06:00
< h4 id = "Conversions_to_and_from_a_string_type" > Conversions to and from a string type< / h4 >
2010-02-16 17:26:09 -07:00
2009-10-19 14:13:59 -06:00
< ol >
2009-09-30 13:00:25 -06:00
< li >
2010-02-16 17:26:09 -07:00
Converting a signed or unsigned integer value to a string type yields a
2010-06-07 16:49:39 -06:00
string containing the UTF-8 representation of the integer. Values outside
the range of valid Unicode code points are converted to < code > "\uFFFD"< / code > .
2010-02-16 17:26:09 -07:00
< pre >
2011-11-29 16:47:36 -07:00
string('a') // "a"
2012-07-11 12:26:51 -06:00
string(-1) // "\ufffd" == "\xef\xbf\xbd"
2011-11-29 16:47:36 -07:00
string(0xf8) // "\u00f8" == "ø" == "\xc3\xb8"
2010-02-16 17:26:09 -07:00
type MyString string
2011-11-29 16:47:36 -07:00
MyString(0x65e5) // "\u65e5" == "日" == "\xe6\x97\xa5"
2010-02-16 17:26:09 -07:00
< / pre >
< / li >
< li >
2011-11-22 10:30:02 -07:00
Converting a slice of bytes to a string type yields
2011-10-31 23:09:22 -06:00
a string whose successive bytes are the elements of the slice. If
2010-02-16 17:26:09 -07:00
the slice value is < code > nil< / code > , the result is the empty string.
2009-09-30 13:00:25 -06:00
< pre >
2011-11-29 16:47:36 -07:00
string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø"
2011-11-22 10:30:02 -07:00
type MyBytes []byte
string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø"
2009-09-30 13:00:25 -06:00
< / pre >
< / li >
2009-10-19 14:13:59 -06:00
2009-09-30 13:00:25 -06:00
< li >
2011-11-22 10:30:02 -07:00
Converting a slice of runes to a string type yields
2011-10-31 23:09:22 -06:00
a string that is the concatenation of the individual rune values
2010-02-16 17:26:09 -07:00
converted to strings. If the slice value is < code > nil< / code > , the
result is the empty string.
2011-10-31 23:09:22 -06:00
2009-09-30 13:00:25 -06:00
< pre >
2011-11-29 16:47:36 -07:00
string([]rune{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔"
2011-11-22 10:30:02 -07:00
type MyRunes []rune
string(MyRunes{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔"
2009-10-19 14:13:59 -06:00
< / pre >
2009-09-30 13:00:25 -06:00
< / li >
< li >
2011-11-22 10:30:02 -07:00
Converting a value of a string type to a slice of bytes type
2010-02-16 17:26:09 -07:00
yields a slice whose successive elements are the bytes of the string.
If the string is empty, the result is < code > []byte(nil)< / code > .
< pre >
2011-11-29 16:47:36 -07:00
[]byte("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
MyBytes("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
2010-02-16 17:26:09 -07:00
< / pre >
< / li >
2009-09-30 13:00:25 -06:00
2010-02-16 17:26:09 -07:00
< li >
2011-11-22 10:30:02 -07:00
Converting a value of a string type to a slice of runes type
yields a slice containing the individual Unicode code points of the string.
2011-10-31 23:09:22 -06:00
If the string is empty, the result is < code > []rune(nil)< / code > .
2009-09-30 13:00:25 -06:00
< pre >
2011-10-31 23:09:22 -06:00
[]rune(MyString("白鵬翔")) // []rune{0x767d, 0x9d6c, 0x7fd4}
2011-11-22 10:30:02 -07:00
MyRunes("白鵬翔") // []rune{0x767d, 0x9d6c, 0x7fd4}
2009-09-30 13:00:25 -06:00
< / pre >
< / li >
2009-10-19 14:13:59 -06:00
< / ol >
2009-09-30 13:00:25 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Constant_expressions" > Constant expressions< / h3 >
2008-09-19 16:49:55 -06:00
2009-02-23 20:22:05 -07:00
< p >
2009-09-24 20:36:48 -06:00
Constant expressions may contain only < a href = "#Constants" > constant< / a >
2012-10-17 12:08:42 -06:00
operands and are evaluated at compile time.
2009-02-23 20:22:05 -07:00
< / p >
2008-09-19 16:49:55 -06:00
2009-02-23 20:22:05 -07:00
< p >
2009-09-24 20:36:48 -06:00
Untyped boolean, numeric, and string constants may be used as operands
wherever it is legal to use an operand of boolean, numeric, or string type,
2011-12-08 19:48:19 -07:00
respectively.
Except for shift operations, if the operands of a binary operation are
2012-02-21 20:04:30 -07:00
different kinds of untyped constants, the operation and, for non-boolean operations, the result use
2012-08-29 15:46:57 -06:00
the kind that appears later in this list: integer, rune, floating-point, complex.
2011-12-08 19:48:19 -07:00
For example, an untyped integer constant divided by an
untyped complex constant yields an untyped complex constant.
2009-09-24 20:36:48 -06:00
< / p >
2009-09-25 16:36:25 -06:00
< p >
2011-05-23 15:12:42 -06:00
A constant < a href = "#Comparison_operators" > comparison< / a > always yields
2012-02-21 20:04:30 -07:00
an untyped boolean constant. If the left operand of a constant
2011-05-23 15:12:42 -06:00
< a href = "#Operators" > shift expression< / a > is an untyped constant, the
result is an integer constant; otherwise it is a constant of the same
type as the left operand, which must be of integer type
(§< a href = "#Arithmetic_operators" > Arithmetic operators< / a > ).
Applying all other operators to untyped constants results in an untyped
2010-03-04 13:35:16 -07:00
constant of the same kind (that is, a boolean, integer, floating-point,
2011-05-23 15:12:42 -06:00
complex, or string constant).
2009-02-23 20:22:05 -07:00
< / p >
2011-05-23 15:12:42 -06:00
< pre >
2011-12-08 19:48:19 -07:00
const a = 2 + 3.0 // a == 5.0 (untyped floating-point constant)
const b = 15 / 4 // b == 3 (untyped integer constant)
const c = 15 / 4.0 // c == 3.75 (untyped floating-point constant)
2012-11-17 12:16:07 -07:00
const Θ float64 = 3/2 // Θ == 1.0 (type float64, 3/2 is integer division)
const Π float64 = 3/2. // Π == 1.5 (type float64, 3/2. is float division)
2011-12-08 19:48:19 -07:00
const d = 1 < < 3.0 // d == 8 (untyped integer constant)
const e = 1.0 < < 3 // e == 8 (untyped integer constant)
2011-05-23 15:12:42 -06:00
const f = int32(1) < < 33 // f == 0 (type int32)
const g = float64(2) > > 1 // illegal (float64(2) is a typed floating-point constant)
2011-12-08 22:13:19 -07:00
const h = "foo" > "bar" // h == true (untyped boolean constant)
const j = true // j == true (untyped boolean constant)
2012-08-29 15:46:57 -06:00
const k = 'w' + 1 // k == 'x' (untyped rune constant)
2011-12-08 22:13:19 -07:00
const l = "hi" // l == "hi" (untyped string constant)
const m = string(k) // m == "x" (type string)
2011-12-10 11:04:33 -07:00
const Σ = 1 - 0.707i // (untyped complex constant)
2011-12-08 19:48:19 -07:00
const Δ = Σ + 2.0e-4 // (untyped complex constant)
const Φ = iota*1i - 1/1i // (untyped complex constant)
2011-05-23 15:12:42 -06:00
< / pre >
2010-03-04 13:35:16 -07:00
< p >
2011-12-08 19:48:19 -07:00
Applying the built-in function < code > complex< / code > to untyped
2012-08-29 15:46:57 -06:00
integer, rune, or floating-point constants yields
2011-12-08 19:48:19 -07:00
an untyped complex constant.
2010-03-04 13:35:16 -07:00
< / p >
< pre >
2012-12-12 15:25:40 -07:00
const ic = complex(0, c) // ic == 3.75i (untyped complex constant)
const iΘ = complex(0, Θ) // iΘ == 1.5i (type complex128)
2010-03-04 13:35:16 -07:00
< / pre >
2009-02-23 20:22:05 -07:00
< p >
2009-09-24 20:36:48 -06:00
Constant expressions are always evaluated exactly; intermediate values and the
constants themselves may require precision significantly larger than supported
by any predeclared type in the language. The following are legal declarations:
2009-02-23 20:22:05 -07:00
< / p >
< pre >
2012-12-12 15:25:40 -07:00
const Huge = 1 < < 100 // Huge == 1267650600228229401496703205376 (untyped integer constant)
const Four int8 = Huge > > 98 // Four == 4 (type int8)
2009-02-19 17:49:10 -07:00
< / pre >
2008-09-19 16:49:55 -06:00
2012-10-19 11:12:09 -06:00
< p >
The divisor of a constant division or remainder operation must not be zero:
< / p >
< pre >
3.14 / 0.0 // illegal: division by zero
< / pre >
2009-02-19 17:49:10 -07:00
< p >
2009-09-24 20:36:48 -06:00
The values of < i > typed< / i > constants must always be accurately representable as values
of the constant type. The following constant expressions are illegal:
2009-03-24 20:16:42 -06:00
< / p >
< pre >
2011-11-29 16:47:36 -07:00
uint(-1) // -1 cannot be represented as a uint
int(3.14) // 3.14 cannot be represented as an int
2012-12-12 15:25:40 -07:00
int64(Huge) // 1267650600228229401496703205376 cannot be represented as an int64
Four * 300 // operand 300 cannot be represented as an int8 (type of Four)
Four * 100 // product 400 cannot be represented as an int8 (type of Four)
2009-03-24 20:16:42 -06:00
< / pre >
< p >
2009-09-24 20:36:48 -06:00
The mask used by the unary bitwise complement operator < code > ^< / code > matches
2009-09-15 10:54:22 -06:00
the rule for non-constants: the mask is all 1s for unsigned constants
2009-09-24 20:36:48 -06:00
and -1 for signed and untyped constants.
2009-03-24 20:16:42 -06:00
< / p >
< pre >
2011-11-29 16:47:36 -07:00
^1 // untyped integer constant, equal to -2
2012-12-12 15:25:40 -07:00
uint8(^1) // illegal: same as uint8(-2), -2 cannot be represented as a uint8
2011-11-29 16:47:36 -07:00
^uint8(1) // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
int8(^1) // same as int8(-2)
^int8(1) // same as -1 ^ int8(1) = -2
2009-03-24 20:16:42 -06:00
< / pre >
2012-02-13 12:25:56 -07:00
< p >
Implementation restriction: A compiler may use rounding while
computing untyped floating-point or complex constant expressions; see
the implementation restriction in the section
on < a href = "#Constants" > constants< / a > . This rounding may cause a
floating-point constant expression to be invalid in an integer
context, even if it would be integral when calculated using infinite
precision.
< / p >
2011-05-12 10:15:59 -06:00
<!--
2009-03-24 20:16:42 -06:00
< p >
2009-10-22 10:41:38 -06:00
< span class = "alert" >
2009-03-24 20:16:42 -06:00
TODO: perhaps ^ should be disallowed on non-uints instead of assuming twos complement.
Also it may be possible to make typed constants more like variables, at the cost of fewer
overflow etc. errors being caught.
2009-10-22 10:41:38 -06:00
< / span >
2009-03-24 20:16:42 -06:00
< / p >
2011-05-08 15:05:18 -06:00
-->
2009-09-24 20:36:48 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Order_of_evaluation" > Order of evaluation< / h3 >
2009-04-14 21:10:49 -06:00
< p >
2012-08-09 12:50:16 -06:00
When evaluating the < a href = "#Operands" > operands< / a > of an expression,
< a href = "#Assignments" > assignment< / a > , or
< a href = "#Return_statements" > return statement< / a > ,
all function calls, method calls, and
2009-04-14 21:10:49 -06:00
communication operations are evaluated in lexical left-to-right
2009-10-19 14:13:59 -06:00
order.
< / p >
2009-04-14 21:10:49 -06:00
< p >
2009-05-01 18:00:16 -06:00
For example, in the assignment
2009-04-14 21:10:49 -06:00
< / p >
< pre >
2011-11-29 16:47:36 -07:00
y[f()], ok = g(h(), i()+x[j()], < -c), k()
2009-04-14 21:10:49 -06:00
< / pre >
< p >
2009-05-01 18:00:16 -06:00
the function calls and communication happen in the order
< code > f()< / code > , < code > h()< / code > , < code > i()< / code > , < code > j()< / code > ,
2009-09-25 15:11:03 -06:00
< code > < -c< / code > , < code > g()< / code > , and < code > k()< / code > .
2009-05-01 18:00:16 -06:00
However, the order of those events compared to the evaluation
and indexing of < code > x< / code > and the evaluation
of < code > y< / code > is not specified.
2009-04-14 21:10:49 -06:00
< / p >
2012-08-09 12:50:16 -06:00
< pre >
a := 1
f := func() int { a = 2; return 3 }
x := []int{a, f()} // x may be [1, 3] or [2, 3]: evaluation order between a and f() is not specified
< / pre >
2009-11-07 23:00:59 -07:00
< p >
Floating-point operations within a single expression are evaluated according to
the associativity of the operators. Explicit parentheses affect the evaluation
by overriding the default associativity.
In the expression < code > x + (y + z)< / code > the addition < code > y + z< / code >
is performed before adding < code > x< / code > .
< / p >
2009-08-20 12:11:03 -06:00
< h2 id = "Statements" > Statements< / h2 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
2008-08-28 18:47:53 -06:00
Statements control execution.
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-16 18:36:52 -06:00
Statement =
2009-09-14 18:39:17 -06:00
Declaration | LabeledStmt | SimpleStmt |
GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
2009-03-24 18:45:53 -06:00
FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
DeferStmt .
2008-10-07 18:14:30 -06:00
2011-02-01 13:02:49 -07:00
SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
2009-02-19 17:49:10 -07:00
< / pre >
2008-10-09 21:05:24 -06:00
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Empty_statements" > Empty statements< / h3 >
2008-10-08 18:05:30 -06:00
2009-02-27 17:47:48 -07:00
< p >
2008-10-08 18:05:30 -06:00
The empty statement does nothing.
2009-02-27 17:47:48 -07:00
< / p >
2008-10-08 18:05:30 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-24 18:45:53 -06:00
EmptyStmt = .
2009-02-19 17:49:10 -07:00
< / pre >
2008-10-08 18:05:30 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Labeled_statements" > Labeled statements< / h3 >
2009-03-16 18:36:52 -06:00
< p >
A labeled statement may be the target of a < code > goto< / code > ,
< code > break< / code > or < code > continue< / code > statement.
< / p >
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-24 18:45:53 -06:00
LabeledStmt = Label ":" Statement .
2009-03-16 18:36:52 -06:00
Label = identifier .
< / pre >
< pre >
2011-02-01 13:51:10 -07:00
Error: log.Panic("error encountered")
2009-03-16 18:36:52 -06:00
< / pre >
2009-08-20 12:11:03 -06:00
< h3 id = "Expression_statements" > Expression statements< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
2012-09-18 12:25:53 -06:00
With the exception of specific built-in functions,
function and method < a href = "#Calls" > calls< / a > and
< a href = "#Receive_operator" > receive operations< / a >
2011-05-02 10:16:31 -06:00
can appear in statement context. Such statements may be parenthesized.
2009-02-27 17:47:48 -07:00
< / p >
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2011-04-29 13:20:31 -06:00
ExpressionStmt = Expression .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2012-09-18 12:25:53 -06:00
< p >
The following built-in functions are not permitted in statement context:
< / p >
< pre >
append cap complex imag len make new real
unsafe.Alignof unsafe.Offsetof unsafe.Sizeof
< / pre >
2009-02-19 17:49:10 -07:00
< pre >
2011-02-01 13:02:49 -07:00
h(x+y)
f.Close()
2009-09-25 15:11:03 -06:00
< -ch
2011-05-02 10:16:31 -06:00
(< -ch)
2012-09-18 12:25:53 -06:00
len("foo") // illegal if len is the built-in function
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2011-02-01 13:02:49 -07:00
< h3 id = "Send_statements" > Send statements< / h3 >
< p >
A send statement sends a value on a channel.
2012-12-03 15:23:41 -07:00
The channel expression must be of < a href = "#Channel_types" > channel type< / a > ,
the channel direction must permit send operations,
and the type of the value to be sent must be < a href = "#Assignability" > assignable< / a >
2011-02-01 13:02:49 -07:00
to the channel's element type.
< / p >
< pre class = "ebnf" >
SendStmt = Channel "< -" Expression .
Channel = Expression .
< / pre >
< p >
Both the channel and the value expression are evaluated before communication
2012-02-08 13:24:48 -07:00
begins. Communication blocks until the send can proceed.
2011-02-01 13:02:49 -07:00
A send on an unbuffered channel can proceed if a receiver is ready.
A send on a buffered channel can proceed if there is room in the buffer.
2012-02-08 13:24:48 -07:00
A send on a closed channel proceeds by causing a < a href = "#Run_time_panics" > run-time panic< / a > .
2011-05-12 10:15:59 -06:00
A send on a < code > nil< / code > channel blocks forever.
2011-02-01 13:02:49 -07:00
< / p >
< pre >
ch < - 3
< / pre >
2009-08-20 12:11:03 -06:00
< h3 id = "IncDec_statements" > IncDec statements< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
2008-09-30 14:02:50 -06:00
The "++" and "--" statements increment or decrement their operands
2009-09-24 20:36:48 -06:00
by the untyped < a href = "#Constants" > constant< / a > < code > 1< / code > .
2010-09-28 15:44:19 -06:00
As with an assignment, the operand must be < a href = "#Address_operators" > addressable< / a >
or a map index expression.
2009-02-27 17:47:48 -07:00
< / p >
2008-09-30 14:02:50 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-24 18:45:53 -06:00
IncDecStmt = Expression ( "++" | "--" ) .
2009-02-19 17:49:10 -07:00
< / pre >
2009-03-04 18:19:21 -07:00
2009-02-27 17:47:48 -07:00
< p >
2009-09-08 16:41:14 -06:00
The following < a href = "#Assignments" > assignment statements< / a > are semantically
2008-09-30 14:02:50 -06:00
equivalent:
2009-02-27 17:47:48 -07:00
< / p >
2008-09-30 14:02:50 -06:00
2009-02-20 14:36:14 -07:00
< pre class = "grammar" >
2009-02-19 17:49:10 -07:00
IncDec statement Assignment
x++ x += 1
x-- x -= 1
< / pre >
2008-08-28 18:47:53 -06:00
2010-09-28 15:44:19 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Assignments" > Assignments< / h3 >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-02-19 17:49:10 -07:00
Assignment = ExpressionList assign_op ExpressionList .
2009-02-20 14:36:14 -07:00
2009-02-19 17:49:10 -07:00
assign_op = [ add_op | mul_op ] "=" .
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
2009-09-15 10:54:22 -06:00
Each left-hand side operand must be < a href = "#Address_operators" > addressable< / a > ,
2011-05-02 10:16:31 -06:00
a map index expression, or the < a href = "#Blank_identifier" > blank identifier< / a > .
Operands may be parenthesized.
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
x = 1
*p = f()
a[i] = 23
2011-05-02 10:16:31 -06:00
(k) = < -ch // same as: k = < -ch
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
An < i > assignment operation< / i > < code > x< / code > < i > op< / i > < code > =< / code >
< code > y< / code > where < i > op< / i > is a binary arithmetic operation is equivalent
to < code > x< / code > < code > =< / code > < code > x< / code > < i > op< / i >
2009-11-07 23:00:59 -07:00
< code > y< / code > but evaluates < code > x< / code >
2009-02-27 17:47:48 -07:00
only once. The < i > op< / i > < code > =< / code > construct is a single token.
2009-09-15 10:54:22 -06:00
In assignment operations, both the left- and right-hand expression lists
must contain exactly one single-valued expression.
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-08-27 17:45:42 -06:00
a[i] < < = 2
2009-09-15 10:54:22 -06:00
i & ^= 1< < n
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
A tuple assignment assigns the individual elements of a multi-valued
operation to a list of variables. There are two forms. In the
first, the right hand operand is a single multi-valued expression
2009-09-08 16:41:14 -06:00
such as a function evaluation or < a href = "#Channel_types" > channel< / a > or
< a href = "#Map_types" > map< / a > operation or a < a href = "#Type_assertions" > type assertion< / a > .
2009-03-04 18:19:21 -07:00
The number of operands on the left
2009-09-10 11:14:00 -06:00
hand side must match the number of values. For instance, if
2009-02-27 17:47:48 -07:00
< code > f< / code > is a function returning two values,
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
x, y = f()
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
assigns the first value to < code > x< / code > and the second to < code > y< / code > .
2009-09-15 10:54:22 -06:00
The < a href = "#Blank_identifier" > blank identifier< / a > provides a
2009-09-10 11:14:00 -06:00
way to ignore values returned by a multi-valued expression:
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-09-10 11:14:00 -06:00
< pre >
x, _ = f() // ignore second value returned by f()
< / pre >
2009-02-27 17:47:48 -07:00
< p >
In the second form, the number of operands on the left must equal the number
2009-08-21 12:25:00 -06:00
of expressions on the right, each of which must be single-valued, and the
< i > n< / i > th expression on the right is assigned to the < i > n< / i > th
2012-05-24 11:59:48 -06:00
operand on the left.
< / p >
< p >
The assignment proceeds in two phases.
spec: consistently use "indices" (rather than "indexes")
We have been using all three terms "indices", "indexes",
and "index expressions" indiscriminatly for index values.
With this change, "index" refers to an index value,
"indices" is the plural of "index", and "index expression"
refers to an array, slice, or map indexed by an index: a[x].
R=r, rsc, iant, ken, mtj
CC=golang-dev
https://golang.org/cl/6912056
2012-12-10 12:55:57 -07:00
First, the operands of < a href = "#Index_expressions" > index expressions< / a >
2011-10-13 13:44:17 -06:00
and < a href = "#Address_operators" > pointer indirections< / a >
(including implicit pointer indirections in < a href = "#Selectors" > selectors< / a > )
on the left and the expressions on the right are all
< a href = "#Order_of_evaluation" > evaluated in the usual order< / a > .
Second, the assignments are carried out in left-to-right order.
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-02-27 17:47:48 -07:00
a, b = b, a // exchange a and b
2011-10-13 13:44:17 -06:00
x := []int{1, 2, 3}
i := 0
2011-11-29 16:47:36 -07:00
i, x[i] = 1, 2 // set i = 1, x[0] = 2
2011-10-13 13:44:17 -06:00
i = 0
x[i], i = 2, 1 // set x[0] = 2, i = 1
2012-05-24 11:59:48 -06:00
x[0], x[0] = 1, 2 // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)
2011-10-13 13:44:17 -06:00
2011-11-29 16:47:36 -07:00
x[1], x[3] = 4, 5 // set x[1] = 4, then panic setting x[3] = 5.
2011-10-13 13:44:17 -06:00
type Point struct { x, y int }
var p *Point
x[2], p.x = 6, 7 // set x[2] = 6, then panic setting p.x = 7
2012-05-24 11:59:48 -06:00
i = 2
x = []int{3, 5, 7}
for i, x[i] = range x { // set i, x[2] = 0, x[0]
break
}
// after this loop, i == 0 and x == []int{3, 5, 3}
2009-02-19 17:49:10 -07:00
< / pre >
2009-02-27 17:47:48 -07:00
< p >
2009-09-24 20:36:48 -06:00
In assignments, each value must be
2010-06-07 18:40:21 -06:00
< a href = "#Assignability" > assignable< / a > to the type of the
2009-09-24 20:36:48 -06:00
operand to which it is assigned. If an untyped < a href = "#Constants" > constant< / a >
is assigned to a variable of interface type, the constant is < a href = "#Conversions" > converted< / a >
2011-12-08 19:48:19 -07:00
to type < code > bool< / code > , < code > rune< / code > , < code > int< / code > , < code > float64< / code > ,
2011-01-19 21:07:21 -07:00
< code > complex128< / code > or < code > string< / code >
2012-02-21 20:04:30 -07:00
respectively, depending on whether the value is a
2012-08-29 15:46:57 -06:00
boolean, rune, integer, floating-point, complex, or string constant.
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "If_statements" > If statements< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
"If" statements specify the conditional execution of two branches
according to the value of a boolean expression. If the expression
evaluates to true, the "if" branch is executed, otherwise, if
2011-02-22 16:31:57 -07:00
present, the "else" branch is executed.
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2011-07-14 15:15:52 -06:00
IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-02-22 16:31:57 -07:00
if x > max {
x = max
2009-02-19 17:49:10 -07:00
}
< / pre >
2008-08-28 18:47:53 -06:00
2009-03-04 18:19:21 -07:00
< p >
2009-08-20 11:22:52 -06:00
The expression may be preceded by a simple statement, which
executes before the expression is evaluated.
2009-03-04 18:19:21 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-12-10 17:43:01 -07:00
if x := f(); x < y {
return x
2011-02-22 16:31:57 -07:00
} else if x > z {
2009-12-10 17:43:01 -07:00
return z
2009-02-19 17:49:10 -07:00
} else {
2009-12-10 17:43:01 -07:00
return y
2009-02-19 17:49:10 -07:00
}
< / pre >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Switch_statements" > Switch statements< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
"Switch" statements provide multi-way execution.
2009-03-17 17:48:35 -06:00
An expression or type specifier is compared to the "cases"
inside the "switch" to determine which branch
to execute.
2009-03-20 18:41:25 -06:00
< / p >
2009-03-19 09:39:40 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-24 18:45:53 -06:00
SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
2009-03-19 09:39:40 -06:00
< / pre >
2009-03-20 18:41:25 -06:00
< p >
2009-03-17 17:48:35 -06:00
There are two forms: expression switches and type switches.
In an expression switch, the cases contain expressions that are compared
against the value of the switch expression.
In a type switch, the cases contain types that are compared against the
type of a specially annotated switch expression.
< / p >
2009-08-20 12:11:03 -06:00
< h4 id = "Expression_switches" > Expression switches< / h4 >
2009-03-17 17:48:35 -06:00
< p >
In an expression switch,
the switch expression is evaluated and
the case expressions, which need not be constants,
2009-05-01 18:00:16 -06:00
are evaluated left-to-right and top-to-bottom; the first one that equals the
2009-03-17 17:48:35 -06:00
switch expression
2009-02-27 17:47:48 -07:00
triggers execution of the statements of the associated case;
the other cases are skipped.
2009-03-17 17:48:35 -06:00
If no case matches and there is a "default" case,
its statements are executed.
2009-02-27 17:47:48 -07:00
There can be at most one default case and it may appear anywhere in the
"switch" statement.
2009-12-01 17:15:53 -07:00
A missing switch expression is equivalent to
2009-03-18 20:23:59 -06:00
the expression < code > true< / code > .
2009-02-27 17:47:48 -07:00
< / p >
2009-03-18 20:23:59 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-09-14 18:39:17 -06:00
ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
2009-12-10 17:43:01 -07:00
ExprCaseClause = ExprSwitchCase ":" { Statement ";" } .
2009-03-19 09:39:40 -06:00
ExprSwitchCase = "case" ExpressionList | "default" .
2009-03-18 20:23:59 -06:00
< / pre >
2009-02-27 17:47:48 -07:00
< p >
In a case or default clause,
the last statement only may be a "fallthrough" statement
2010-05-25 19:24:07 -06:00
(§< a href = "#Fallthrough_statements" > Fallthrough statement< / a > ) to
2009-02-27 17:47:48 -07:00
indicate that control should flow from the end of this clause to
2008-10-08 18:05:30 -06:00
the first statement of the next clause.
2009-02-27 17:47:48 -07:00
Otherwise control flows to the end of the "switch" statement.
< / p >
2009-08-19 17:44:04 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-08-20 11:22:52 -06:00
The expression may be preceded by a simple statement, which
executes before the expression is evaluated.
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
switch tag {
2009-05-29 16:46:03 -06:00
default: s3()
case 0, 1, 2, 3: s1()
case 4, 5, 6, 7: s2()
2009-02-19 17:49:10 -07:00
}
2008-08-28 18:47:53 -06:00
2010-03-28 20:12:08 -06:00
switch x := f(); { // missing switch expression means "true"
2009-05-29 16:46:03 -06:00
case x < 0: return -x
default: return x
2009-02-19 17:49:10 -07:00
}
2008-08-28 18:47:53 -06:00
2009-12-01 17:15:53 -07:00
switch {
2009-12-10 17:43:01 -07:00
case x < y: f1()
case x < z: f2()
case x == 4: f3()
2009-02-19 17:49:10 -07:00
}
< / pre >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h4 id = "Type_switches" > Type switches< / h4 >
2009-03-17 17:48:35 -06:00
< p >
2009-03-18 20:23:59 -06:00
A type switch compares types rather than values. It is otherwise similar
2009-08-27 17:44:17 -06:00
to an expression switch. It is marked by a special switch expression that
2009-08-27 15:22:51 -06:00
has the form of a < a href = "#Type_assertions" > type assertion< / a >
2012-12-06 10:17:20 -07:00
using the reserved word < code > type< / code > rather than an actual type:
< / p >
< pre >
switch x.(type) {
// cases
}
< / pre >
< p >
Cases then match actual types < code > T< / code > against the dynamic type of the
expression < code > x< / code > . As with type assertions, < code > x< / code > must be of
< a href = "#Interface_types" > interface type< / a > , and each non-interface type
< code > T< / code > listed in a case must implement the type of < code > x< / code > .
2009-03-17 17:48:35 -06:00
< / p >
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-09-14 18:39:17 -06:00
TypeSwitchStmt = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
2009-12-23 14:48:44 -07:00
TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
2009-12-10 17:43:01 -07:00
TypeCaseClause = TypeSwitchCase ":" { Statement ";" } .
2009-09-15 10:54:22 -06:00
TypeSwitchCase = "case" TypeList | "default" .
TypeList = Type { "," Type } .
2009-03-17 17:48:35 -06:00
< / pre >
2009-03-24 18:40:47 -06:00
< p >
2009-08-27 15:22:51 -06:00
The TypeSwitchGuard may include a
< a href = "#Short_variable_declarations" > short variable declaration< / a > .
2012-02-21 22:25:55 -07:00
When that form is used, the variable is declared at the beginning of
the < a href = "#Blocks" > implicit block< / a > in each clause.
2009-08-27 15:22:51 -06:00
In clauses with a case listing exactly one type, the variable
has that type; otherwise, the variable has the type of the expression
in the TypeSwitchGuard.
2009-03-24 18:40:47 -06:00
< / p >
2009-03-17 17:48:35 -06:00
< p >
2009-08-27 15:22:51 -06:00
The type in a case may be < code > nil< / code >
(§< a href = "#Predeclared_identifiers" > Predeclared identifiers< / a > );
that case is used when the expression in the TypeSwitchGuard
2009-08-27 17:44:17 -06:00
is a < code > nil< / code > interface value.
2009-08-27 15:22:51 -06:00
< / p >
< p >
2009-12-01 17:15:53 -07:00
Given an expression < code > x< / code > of type < code > interface{}< / code > ,
2009-03-18 20:23:59 -06:00
the following type switch:
2009-03-17 17:48:35 -06:00
< / p >
< pre >
2009-12-01 17:15:53 -07:00
switch i := x.(type) {
2009-03-24 18:40:47 -06:00
case nil:
2012-12-06 10:17:20 -07:00
printString("x is nil") // type of i is type of x (interface{})
2009-03-17 17:48:35 -06:00
case int:
2012-12-06 10:17:20 -07:00
printInt(i) // type of i is int
2011-01-19 21:07:21 -07:00
case float64:
2012-12-06 10:17:20 -07:00
printFloat64(i) // type of i is float64
2011-01-19 21:07:21 -07:00
case func(int) float64:
2012-12-06 10:17:20 -07:00
printFunction(i) // type of i is func(int) float64
2009-08-27 15:22:51 -06:00
case bool, string:
2012-12-06 10:17:20 -07:00
printString("type is bool or string") // type of i is type of x (interface{})
2009-03-17 17:48:35 -06:00
default:
2012-12-06 10:17:20 -07:00
printString("don't know the type") // type of i is type of x (interface{})
2009-03-17 17:48:35 -06:00
}
2009-03-18 20:23:59 -06:00
< / pre >
2009-03-17 17:48:35 -06:00
2009-03-18 20:23:59 -06:00
< p >
could be rewritten:
< / p >
< pre >
2009-12-10 17:43:01 -07:00
v := x // x is evaluated exactly once
2009-03-24 18:40:47 -06:00
if v == nil {
2012-12-06 10:17:20 -07:00
i := v // type of i is type of x (interface{})
2009-12-10 17:43:01 -07:00
printString("x is nil")
2012-02-21 20:04:30 -07:00
} else if i, isInt := v.(int); isInt {
2012-12-06 10:17:20 -07:00
printInt(i) // type of i is int
2012-02-21 20:04:30 -07:00
} else if i, isFloat64 := v.(float64); isFloat64 {
2012-12-06 10:17:20 -07:00
printFloat64(i) // type of i is float64
2012-02-21 20:04:30 -07:00
} else if i, isFunc := v.(func(int) float64); isFunc {
2012-12-06 10:17:20 -07:00
printFunction(i) // type of i is func(int) float64
2009-03-18 20:23:59 -06:00
} else {
2012-12-06 10:17:20 -07:00
_, isBool := v.(bool)
_, isString := v.(string)
2012-02-21 20:04:30 -07:00
if isBool || isString {
2012-12-06 10:17:20 -07:00
i := v // type of i is type of x (interface{})
printString("type is bool or string")
2009-08-27 15:22:51 -06:00
} else {
2012-12-06 10:17:20 -07:00
i := v // type of i is type of x (interface{})
printString("don't know the type")
2009-08-27 15:22:51 -06:00
}
2009-03-17 17:48:35 -06:00
}
< / pre >
2008-08-28 18:47:53 -06:00
2009-08-31 18:30:55 -06:00
< p >
2009-08-20 11:22:52 -06:00
The type switch guard may be preceded by a simple statement, which
executes before the guard is evaluated.
2009-08-27 17:44:17 -06:00
< / p >
2009-08-27 15:22:51 -06:00
< p >
The "fallthrough" statement is not permitted in a type switch.
2009-08-20 11:22:52 -06:00
< / p >
2009-08-20 12:11:03 -06:00
< h3 id = "For_statements" > For statements< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
A "for" statement specifies repeated execution of a block. The iteration is
controlled by a condition, a "for" clause, or a "range" clause.
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-24 18:45:53 -06:00
ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
2009-02-19 17:49:10 -07:00
Condition = Expression .
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
In its simplest form, a "for" statement specifies the repeated execution of
a block as long as a boolean condition evaluates to true.
The condition is evaluated before each iteration.
If the condition is absent, it is equivalent to < code > true< / code > .
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
for a < b {
a *= 2
}
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
2009-09-15 10:54:22 -06:00
A "for" statement with a ForClause is also controlled by its condition, but
2009-02-27 17:47:48 -07:00
additionally it may specify an < i > init< / i >
and a < i > post< / i > statement, such as an assignment,
2009-08-20 11:22:52 -06:00
an increment or decrement statement. The init statement may be a
2009-08-27 17:45:42 -06:00
< a href = "#Short_variable_declarations" > short variable declaration< / a > , but the post statement must not.
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-12-10 17:43:01 -07:00
ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
2009-03-24 18:45:53 -06:00
InitStmt = SimpleStmt .
PostStmt = SimpleStmt .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-12-10 17:43:01 -07:00
for i := 0; i < 10; i++ {
2009-02-19 17:49:10 -07:00
f(i)
}
< / pre >
2009-03-04 18:19:21 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-27 17:47:48 -07:00
If non-empty, the init statement is executed once before evaluating the
condition for the first iteration;
the post statement is executed after each execution of the block (and
only if the block was executed).
2009-12-10 17:43:01 -07:00
Any element of the ForClause may be empty but the
< a href = "#Semicolons" > semicolons< / a > are
2009-02-27 17:47:48 -07:00
required unless there is only a condition.
If the condition is absent, it is equivalent to < code > true< / code > .
< / p >
2008-12-16 12:38:56 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2009-09-15 10:54:22 -06:00
for cond { S() } is the same as for ; cond ; { S() }
for { S() } is the same as for true { S() }
2009-02-19 17:49:10 -07:00
< / pre >
2008-12-16 12:38:56 -07:00
2009-02-27 17:47:48 -07:00
< p >
A "for" statement with a "range" clause
2009-04-15 21:28:25 -06:00
iterates through all entries of an array, slice, string or map,
2010-09-28 15:44:19 -06:00
or values received on a channel. For each entry it assigns < i > iteration values< / i >
to corresponding < i > iteration variables< / i > and then executes the block.
2009-02-27 17:47:48 -07:00
< / p >
2008-12-16 12:38:56 -07:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2013-01-18 14:59:25 -07:00
RangeClause = ( ExpressionList "=" | IdentifierList ":=" ) "range" Expression .
2010-09-28 15:44:19 -06:00
< / pre >
< p >
The expression on the right in the "range" clause is called the < i > range expression< / i > ,
2012-12-03 15:23:41 -07:00
which may be an array, pointer to an array, slice, string, map, or channel permitting
< a href = "#Receive_operator" > receive operations< / a > .
2010-09-28 15:44:19 -06:00
As with an assignment, the operands on the left must be
< a href = "#Address_operators" > addressable< / a > or map index expressions; they
denote the iteration variables. If the range expression is a channel, only
2012-12-03 15:23:41 -07:00
one iteration variable is permitted, otherwise there may be one or two. In the latter case,
if the second iteration variable is the < a href = "#Blank_identifier" > blank identifier< / a > ,
2011-05-12 10:15:59 -06:00
the range clause is equivalent to the same clause with only the first variable present.
2010-09-28 15:44:19 -06:00
< / p >
2011-01-05 12:39:57 -07:00
< p >
2013-02-15 12:39:28 -07:00
The range expression is evaluated once before beginning the loop,
with one exception. If the range expression is an array or a pointer to an array
and only the first iteration value is present, only the range expression's
length is evaluated; if that length is constant by definition
(see §< a href = "#Length_and_capacity" > Length and capacity< / a > ),
the range expression itself will not be evaluated.
< / p >
< p >
2010-09-28 15:44:19 -06:00
Function calls on the left are evaluated once per iteration.
For each iteration, iteration values are produced as follows:
< / p >
< pre class = "grammar" >
Range expression 1st value 2nd value (if 2nd variable is present)
array or slice a [n]E, *[n]E, or []E index i int a[i] E
2011-10-31 23:09:22 -06:00
string s string type index i int see below rune
2010-09-28 15:44:19 -06:00
map m map[K]V key k K m[k] V
2013-01-17 08:11:25 -07:00
channel c chan E, < -chan E element e E
2010-09-28 15:44:19 -06:00
< / pre >
< ol >
< li >
2011-05-12 10:15:59 -06:00
For an array, pointer to array, or slice value < code > a< / code > , the index iteration
2013-02-15 12:39:28 -07:00
values are produced in increasing order, starting at element index 0.
If only the first iteration variable is present, the range loop produces
2011-05-12 10:15:59 -06:00
iteration values from 0 up to < code > len(a)< / code > and does not index into the array
or slice itself. For a < code > nil< / code > slice, the number of iterations is 0.
2010-09-28 15:44:19 -06:00
< / li >
< li >
For a string value, the "range" clause iterates over the Unicode code points
in the string starting at byte index 0. On successive iterations, the index value will be the
index of the first byte of successive UTF-8-encoded code points in the string,
2011-10-31 23:09:22 -06:00
and the second value, of type < code > rune< / code > , will be the value of
2009-04-15 21:28:25 -06:00
the corresponding code point. If the iteration encounters an invalid
2010-09-28 15:44:19 -06:00
UTF-8 sequence, the second value will be < code > 0xFFFD< / code > ,
2009-04-15 21:28:25 -06:00
the Unicode replacement character, and the next iteration will advance
a single byte in the string.
2010-09-28 15:44:19 -06:00
< / li >
< li >
2011-10-17 16:49:02 -06:00
The iteration order over maps is not specified
and is not guaranteed to be the same from one iteration to the next.
2013-01-17 08:11:25 -07:00
If map entries that have not yet been reached are removed during iteration,
2010-09-28 15:44:19 -06:00
the corresponding iteration values will not be produced. If map entries are
2013-01-17 08:11:25 -07:00
created during iteration, that entry may be produced during the iteration or
may be skipped. The choice may vary for each entry created and from one
iteration to the next.
If the map is < code > nil< / code > , the number of iterations is 0.
2010-09-28 15:44:19 -06:00
< / li >
< li >
For channels, the iteration values produced are the successive values sent on
2011-05-12 10:15:59 -06:00
the channel until the channel is < a href = "#Close" > closed< / a > . If the channel
is < code > nil< / code > , the range expression blocks forever.
2010-09-28 15:44:19 -06:00
< / li >
2011-02-08 15:51:15 -07:00
< / ol >
2010-09-28 15:44:19 -06:00
2009-04-15 21:28:25 -06:00
< p >
2010-09-28 15:44:19 -06:00
The iteration values are assigned to the respective
iteration variables as in an < a href = "#Assignments" > assignment statement< / a > .
2009-03-24 18:40:47 -06:00
< / p >
2010-09-28 15:44:19 -06:00
2009-03-24 18:40:47 -06:00
< p >
2012-02-29 10:06:05 -07:00
The iteration variables may be declared by the "range" clause using a form of
2012-02-28 18:44:24 -07:00
< a href = "#Short_variable_declarations" > short variable declaration< / a >
(< code > :=< / code > ).
2010-09-28 15:44:19 -06:00
In this case their types are set to the types of the respective iteration values
and their < a href = "#Declarations_and_scope" > scope< / a > ends at the end of the "for"
statement; they are re-used in each iteration.
2009-02-27 17:47:48 -07:00
If the iteration variables are declared outside the "for" statement,
after execution their values will be those of the last iteration.
< / p >
2008-12-16 12:38:56 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2011-05-12 10:15:59 -06:00
var testdata *struct {
a *[7]int
}
for i, _ := range testdata.a {
// testdata.a is never evaluated; len(testdata.a) is constant
// i ranges from 0 to 6
f(i)
}
2009-12-10 17:43:01 -07:00
var a [10]string
m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
2009-02-19 17:49:10 -07:00
for i, s := range a {
// type of i is int
// type of s is string
// s == a[i]
g(i, s)
}
2009-12-10 17:43:01 -07:00
var key string
2010-06-07 18:40:21 -06:00
var val interface {} // value type of m is assignable to val
2009-09-15 10:54:22 -06:00
for key, val = range m {
h(key, val)
2009-02-19 17:49:10 -07:00
}
// key == last map key encountered in iteration
// val == map[key]
2011-05-12 10:15:59 -06:00
var ch chan Work = producer()
for w := range ch {
doWork(w)
}
2009-02-19 17:49:10 -07:00
< / pre >
2008-12-16 12:38:56 -07:00
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Go_statements" > Go statements< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
2012-11-29 12:46:25 -07:00
A "go" statement starts the execution of a function call
2009-02-27 17:47:48 -07:00
as an independent concurrent thread of control, or < i > goroutine< / i > ,
within the same address space.
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-24 18:45:53 -06:00
GoStmt = "go" Expression .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
2012-11-29 12:46:25 -07:00
The expression must be a function or method call; it cannot be parenthesized.
Calls of built-in functions are restricted as for
< a href = "#Expression_statements" > expression statements< / a > .
< / p >
< p >
2012-01-23 09:40:13 -07:00
The function value and parameters are
< a href = "#Calls" > evaluated as usual< / a >
in the calling goroutine, but
2009-02-27 17:47:48 -07:00
unlike with a regular call, program execution does not wait
2008-09-26 14:38:38 -06:00
for the invoked function to complete.
2012-01-23 09:40:13 -07:00
Instead, the function begins executing independently
in a new goroutine.
When the function terminates, its goroutine also terminates.
If the function has any return values, they are discarded when the
function completes.
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
go Server()
2009-09-25 15:11:03 -06:00
go func(ch chan< - bool) { for { sleep(10); ch < - true; }} (c)
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Select_statements" > Select statements< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
A "select" statement chooses which of a set of possible communications
will proceed. It looks similar to a "switch" statement but with the
2008-08-28 18:47:53 -06:00
cases all referring to communication operations.
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-24 18:45:53 -06:00
SelectStmt = "select" "{" { CommClause } "}" .
2009-12-10 17:43:01 -07:00
CommClause = CommCase ":" { Statement ";" } .
2011-02-01 13:02:49 -07:00
CommCase = "case" ( SendStmt | RecvStmt ) | "default" .
2013-01-18 14:59:25 -07:00
RecvStmt = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
2011-04-29 13:20:31 -06:00
RecvExpr = Expression .
2011-01-31 15:42:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2011-04-29 13:20:31 -06:00
RecvExpr must be a < a href = "#Receive_operator" > receive operation< / a > .
2011-02-01 13:02:49 -07:00
For all the cases in the "select"
2010-07-13 17:23:54 -06:00
statement, the channel expressions are evaluated in top-to-bottom order, along with
2011-02-01 13:02:49 -07:00
any expressions that appear on the right hand side of send statements.
2010-08-15 14:42:41 -06:00
A channel may be < code > nil< / code > ,
2009-02-27 17:47:48 -07:00
which is equivalent to that case not
being present in the select statement
except, if a send, its expression is still evaluated.
2010-07-13 17:23:54 -06:00
If any of the resulting operations can proceed, one of those is
chosen and the corresponding communication and statements are
evaluated. Otherwise, if there is a default case, that executes;
if there is no default case, the statement blocks until one of the communications can
2012-12-06 10:17:20 -07:00
complete. There can be at most one default case and it may appear anywhere in the
"select" statement.
2010-07-13 17:23:54 -06:00
If there are no cases with non-< code > nil< / code > channels,
the statement blocks forever.
Even if the statement blocks,
the channel and send expressions are evaluated only once,
upon entering the select statement.
2009-02-27 17:47:48 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2008-10-03 12:18:45 -06:00
Since all the channels and send expressions are evaluated, any side
effects in that evaluation will occur for all the communications
2009-02-27 17:47:48 -07:00
in the "select" statement.
< / p >
2009-02-19 17:49:10 -07:00
< p >
2012-01-13 14:38:36 -07:00
If multiple cases can proceed, a uniform pseudo-random choice is made to decide
2008-08-28 18:47:53 -06:00
which single communication will execute.
2009-02-19 17:49:10 -07:00
< p >
2011-03-11 12:47:02 -07:00
The receive case may declare one or two new variables using a
2009-08-27 17:45:42 -06:00
< a href = "#Short_variable_declarations" > short variable declaration< / a > .
2009-02-27 17:47:48 -07:00
< / p >
2008-09-17 14:57:11 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-03-11 12:47:02 -07:00
var c, c1, c2, c3 chan int
2009-12-10 17:43:01 -07:00
var i1, i2 int
2009-02-19 17:49:10 -07:00
select {
case i1 = < -c1:
2009-12-10 17:43:01 -07:00
print("received ", i1, " from c1\n")
2009-02-19 17:49:10 -07:00
case c2 < - i2:
2009-12-10 17:43:01 -07:00
print("sent ", i2, " to c2\n")
2011-05-02 10:16:31 -06:00
case i3, ok := (< -c3): // same as: i3, ok := < -c3
2011-01-27 13:34:28 -07:00
if ok {
print("received ", i3, " from c3\n")
} else {
print("c3 is closed\n")
}
2009-02-19 17:49:10 -07:00
default:
2009-12-10 17:43:01 -07:00
print("no communication\n")
2009-02-19 17:49:10 -07:00
}
for { // send random sequence of bits to c
2008-08-28 18:47:53 -06:00
select {
2009-02-19 17:49:10 -07:00
case c < - 0: // note: no statement, no fallthrough, no folding of cases
case c < - 1:
2008-08-28 18:47:53 -06:00
}
2009-02-19 17:49:10 -07:00
}
2010-07-13 17:23:54 -06:00
2011-11-29 16:47:36 -07:00
select {} // block forever
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Return_statements" > Return statements< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
spec: clarify returns, defer statements, and panics
This is an attempt at making the interaction between
these three constructs clearer. Specifically:
- return statements terminate a function, execute deferred
functions, return to the caller, and then execution
continues after the call
- panic calls terminate a function, execute deferred
functions, return to the caller, and then re-panic
- deferred functions are executed before a function _returns_
to its caller
The hope is that with this change it becomes clear when a
deferred function is executed (when a function returns),
and when it is not (when a program exits).
R=r, rsc, iant, ken, iant
CC=golang-dev
https://golang.org/cl/6736071
2012-11-01 11:13:48 -06:00
A "return" statement in a function < code > F< / code > terminates the execution
of < code > F< / code > , and optionally provides one or more result values.
Any functions < a href = "#Defer_statements" > deferred< / a > by < code > F< / code >
are executed before < code > F< / code > returns to its caller.
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-24 18:45:53 -06:00
ReturnStmt = "return" [ ExpressionList ] .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-08-07 18:05:41 -06:00
< p >
In a function without a result type, a "return" statement must not
specify any result values.
< / p >
2009-02-27 17:47:48 -07:00
< pre >
2012-02-21 20:04:30 -07:00
func noResult() {
2009-02-27 17:47:48 -07:00
return
}
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
2009-08-07 18:05:41 -06:00
There are three ways to return values from a function with a result
type:
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-08-07 18:05:41 -06:00
< ol >
< li > The return value or values may be explicitly listed
in the "return" statement. Each expression must be single-valued
2010-06-07 18:40:21 -06:00
and < a href = "#Assignability" > assignable< / a >
to the corresponding element of the function's result type.
2009-02-19 17:49:10 -07:00
< pre >
2012-02-21 20:04:30 -07:00
func simpleF() int {
2009-02-27 17:47:48 -07:00
return 2
}
2012-02-21 20:04:30 -07:00
func complexF1() (re float64, im float64) {
2009-02-27 17:47:48 -07:00
return -7.0, -4.0
2009-02-19 17:49:10 -07:00
}
< / pre >
2009-08-07 18:05:41 -06:00
< / li >
< li > The expression list in the "return" statement may be a single
call to a multi-valued function. The effect is as if each value
returned from that function were assigned to a temporary
variable with the type of the respective value, followed by a
"return" statement listing these variables, at which point the
rules of the previous case apply.
2009-02-19 17:49:10 -07:00
< pre >
2012-02-21 20:04:30 -07:00
func complexF2() (re float64, im float64) {
return complexF1()
2009-02-19 17:49:10 -07:00
}
< / pre >
2009-08-07 18:05:41 -06:00
< / li >
2010-11-09 11:10:57 -07:00
< li > The expression list may be empty if the function's result
2012-11-29 15:47:47 -07:00
type specifies names for its result parameters (§< a href = "#Function_types" > Function types< / a > ).
2010-06-11 22:30:03 -06:00
The result parameters act as ordinary local variables
2009-08-07 18:05:41 -06:00
and the function may assign values to them as necessary.
The "return" statement returns the values of these variables.
2009-02-19 17:49:10 -07:00
< pre >
2012-02-21 20:04:30 -07:00
func complexF3() (re float64, im float64) {
2009-12-10 17:43:01 -07:00
re = 7.0
im = 4.0
return
2009-02-19 17:49:10 -07:00
}
2011-03-07 17:29:07 -07:00
2011-11-01 19:45:02 -06:00
func (devnull) Write(p []byte) (n int, _ error) {
2011-03-07 17:29:07 -07:00
n = len(p)
return
2011-11-01 00:13:33 -06:00
}
2009-02-19 17:49:10 -07:00
< / pre >
2009-08-07 18:05:41 -06:00
< / li >
< / ol >
2008-08-28 18:47:53 -06:00
2010-06-11 22:30:03 -06:00
< p >
spec: clarify returns, defer statements, and panics
This is an attempt at making the interaction between
these three constructs clearer. Specifically:
- return statements terminate a function, execute deferred
functions, return to the caller, and then execution
continues after the call
- panic calls terminate a function, execute deferred
functions, return to the caller, and then re-panic
- deferred functions are executed before a function _returns_
to its caller
The hope is that with this change it becomes clear when a
deferred function is executed (when a function returns),
and when it is not (when a program exits).
R=r, rsc, iant, ken, iant
CC=golang-dev
https://golang.org/cl/6736071
2012-11-01 11:13:48 -06:00
Regardless of how they are declared, all the result values are initialized to the zero
values for their type (§< a href = "#The_zero_value" > The zero value< / a > ) upon entry to the
function. A "return" statement that specifies results sets the result parameters before
any deferred functions are executed.
2010-06-11 22:30:03 -06:00
< / p >
2011-05-12 10:15:59 -06:00
<!--
2009-03-04 18:19:21 -07:00
< p >
2009-10-22 10:41:38 -06:00
< span class = "alert" >
2009-08-07 18:05:41 -06:00
TODO: Define when return is required.< br / >
2009-10-22 10:41:38 -06:00
< / span >
2009-03-04 18:19:21 -07:00
< / p >
2011-05-08 15:05:18 -06:00
-->
2009-03-04 18:19:21 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Break_statements" > Break statements< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
A "break" statement terminates execution of the innermost
"for", "switch" or "select" statement.
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-12-10 17:43:01 -07:00
BreakStmt = "break" [ Label ] .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
If there is a label, it must be that of an enclosing
"for", "switch" or "select" statement, and that is the one whose execution
terminates
spec: clarify returns, defer statements, and panics
This is an attempt at making the interaction between
these three constructs clearer. Specifically:
- return statements terminate a function, execute deferred
functions, return to the caller, and then execution
continues after the call
- panic calls terminate a function, execute deferred
functions, return to the caller, and then re-panic
- deferred functions are executed before a function _returns_
to its caller
The hope is that with this change it becomes clear when a
deferred function is executed (when a function returns),
and when it is not (when a program exits).
R=r, rsc, iant, ken, iant
CC=golang-dev
https://golang.org/cl/6736071
2012-11-01 11:13:48 -06:00
(§< a href = "#For_statements" > For statements< / a > , §< a href = "#Switch_statements" > Switch statements< / a > ,
§< a href = "#Select_statements" > Select statements< / a > ).
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-03-15 11:51:24 -06:00
L:
for i < n {
switch i {
case 5:
break L
}
2008-08-28 18:47:53 -06:00
}
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Continue_statements" > Continue statements< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
A "continue" statement begins the next iteration of the
2009-09-15 10:54:22 -06:00
innermost "for" loop at its post statement (§< a href = "#For_statements" > For statements< / a > ).
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-12-10 17:43:01 -07:00
ContinueStmt = "continue" [ Label ] .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
2010-04-28 14:18:40 -06:00
If there is a label, it must be that of an enclosing
"for" statement, and that is the one whose execution
advances
(§< a href = "#For_statements" > For statements< / a > ).
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Goto_statements" > Goto statements< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
A "goto" statement transfers control to the statement with the corresponding label.
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-24 18:45:53 -06:00
GotoStmt = "goto" Label .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
goto Error
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
Executing the "goto" statement must not cause any variables to come into
2011-06-17 10:49:04 -06:00
< a href = "#Declarations_and_scope" > scope< / a > that were not already in scope at the point of the goto.
For instance, this example:
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-03-15 11:51:24 -06:00
goto L // BAD
v := 3
2009-02-19 17:49:10 -07:00
L:
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
is erroneous because the jump to label < code > L< / code > skips
the creation of < code > v< / code > .
2011-06-17 10:49:04 -06:00
< / p >
< p >
A "goto" statement outside a < a href = "#Blocks" > block< / a > cannot jump to a label inside that block.
For instance, this example:
< / p >
< pre >
if n%2 == 1 {
goto L1
}
for n > 0 {
f()
n--
L1:
f()
n--
}
< / pre >
< p >
2011-11-01 00:13:33 -06:00
is erroneous because the label < code > L1< / code > is inside
2011-06-17 10:49:04 -06:00
the "for" statement's block but the < code > goto< / code > is not.
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Fallthrough_statements" > Fallthrough statements< / h3 >
2008-10-08 18:05:30 -06:00
2009-02-27 17:47:48 -07:00
< p >
A "fallthrough" statement transfers control to the first statement of the
2009-08-20 12:11:03 -06:00
next case clause in a expression "switch" statement (§< a href = "#Expression_switches" > Expression switches< / a > ). It may
2009-03-19 09:39:40 -06:00
be used only as the final non-empty statement in a case or default clause in an
expression "switch" statement.
2009-02-27 17:47:48 -07:00
< / p >
2008-10-08 18:05:30 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-24 18:45:53 -06:00
FallthroughStmt = "fallthrough" .
2009-02-19 17:49:10 -07:00
< / pre >
2008-10-08 18:05:30 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Defer_statements" > Defer statements< / h3 >
2009-01-27 10:29:40 -07:00
2009-02-27 17:47:48 -07:00
< p >
spec: clarify returns, defer statements, and panics
This is an attempt at making the interaction between
these three constructs clearer. Specifically:
- return statements terminate a function, execute deferred
functions, return to the caller, and then execution
continues after the call
- panic calls terminate a function, execute deferred
functions, return to the caller, and then re-panic
- deferred functions are executed before a function _returns_
to its caller
The hope is that with this change it becomes clear when a
deferred function is executed (when a function returns),
and when it is not (when a program exits).
R=r, rsc, iant, ken, iant
CC=golang-dev
https://golang.org/cl/6736071
2012-11-01 11:13:48 -06:00
A "defer" statement invokes a function whose execution is deferred
to the moment the surrounding function returns, either because the
surrounding function executed a < a href = "#Return_statements" > return statement< / a > ,
reached the end of its < a href = "#Function_declarations" > function body< / a > ,
or because the corresponding goroutine is < a href = "#Handling_panics" > panicking< / a > .
2009-02-27 17:47:48 -07:00
< / p >
2009-01-27 10:29:40 -07:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-03-24 18:45:53 -06:00
DeferStmt = "defer" Expression .
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-27 10:29:40 -07:00
2009-02-27 17:47:48 -07:00
< p >
2012-11-29 12:46:25 -07:00
The expression must be a function or method call; it cannot be parenthesized.
Calls of built-in functions are restricted as for
< a href = "#Expression_statements" > expression statements< / a > .
< / p >
< p >
2009-02-27 17:47:48 -07:00
Each time the "defer" statement
2012-01-23 09:40:13 -07:00
executes, the function value and parameters to the call are
< a href = "#Calls" > evaluated as usual< / a >
spec: clarify returns, defer statements, and panics
This is an attempt at making the interaction between
these three constructs clearer. Specifically:
- return statements terminate a function, execute deferred
functions, return to the caller, and then execution
continues after the call
- panic calls terminate a function, execute deferred
functions, return to the caller, and then re-panic
- deferred functions are executed before a function _returns_
to its caller
The hope is that with this change it becomes clear when a
deferred function is executed (when a function returns),
and when it is not (when a program exits).
R=r, rsc, iant, ken, iant
CC=golang-dev
https://golang.org/cl/6736071
2012-11-01 11:13:48 -06:00
and saved anew but the actual function body is not executed.
Instead, deferred functions are executed immediately before
the surrounding function returns, in the reverse order
they were deferred.
< / p >
< p >
For instance, if the deferred function is
2010-03-25 18:59:59 -06:00
a < a href = "#Function_literals" > function literal< / a > and the surrounding
2010-03-23 18:30:14 -06:00
function has < a href = "#Function_types" > named result parameters< / a > that
are in scope within the literal, the deferred function may access and modify
the result parameters before they are returned.
2012-01-23 09:40:13 -07:00
If the deferred function has any return values, they are discarded when
the function completes.
2012-10-15 18:27:20 -06:00
(See also the section on < a href = "#Handling_panics" > handling panics< / a > .)
< / p >
2009-02-19 17:49:10 -07:00
< pre >
2009-12-10 17:43:01 -07:00
lock(l)
defer unlock(l) // unlocking happens before surrounding function returns
2009-01-27 10:29:40 -07:00
2009-02-19 17:49:10 -07:00
// prints 3 2 1 0 before surrounding function returns
for i := 0; i < = 3; i++ {
2009-12-10 17:43:01 -07:00
defer fmt.Print(i)
2009-02-19 17:49:10 -07:00
}
2010-03-23 18:30:14 -06:00
// f returns 1
func f() (result int) {
defer func() {
result++
}()
return 0
}
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-27 10:29:40 -07:00
2009-09-30 13:00:25 -06:00
< h2 id = "Built-in_functions" > Built-in functions< / h2 >
2009-02-19 17:49:10 -07:00
< p >
2010-03-04 13:35:16 -07:00
Built-in functions are
2009-09-30 13:00:25 -06:00
< a href = "#Predeclared_identifiers" > predeclared< / a > .
They are called like any other function but some of them
accept a type instead of an expression as the first argument.
< / p >
2009-01-06 14:23:20 -07:00
2009-12-04 11:23:12 -07:00
< p >
The built-in functions do not have standard Go types,
so they can only appear in < a href = "#Calls" > call expressions< / a > ;
they cannot be used as function values.
< / p >
2009-09-30 13:00:25 -06:00
< pre class = "ebnf" >
2010-09-24 15:08:28 -06:00
BuiltinCall = identifier "(" [ BuiltinArgs [ "," ] ] ")" .
2012-12-04 14:09:02 -07:00
BuiltinArgs = Type [ "," ArgumentList ] | ArgumentList .
2009-02-19 17:49:10 -07:00
< / pre >
2008-09-10 14:00:32 -06:00
2011-03-11 12:47:02 -07:00
< h3 id = "Close" > Close< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
2010-07-14 17:09:22 -06:00
For a channel < code > c< / code > , the built-in function < code > close(c)< / code >
2011-10-13 14:58:04 -06:00
records that no more values will be sent on the channel.
It is an error if < code > c< / code > is a receive-only channel.
Sending to or closing a closed channel causes a < a href = "#Run_time_panics" > run-time panic< / a > .
Closing the nil channel also causes a < a href = "#Run_time_panics" > run-time panic< / a > .
2010-07-14 17:09:22 -06:00
After calling < code > close< / code > , and after any previously
2009-09-30 13:00:25 -06:00
sent values have been received, receive operations will return
2010-07-14 17:09:22 -06:00
the zero value for the channel's type without blocking.
2011-03-11 12:47:02 -07:00
The multi-valued < a href = "#Receive_operator" > receive operation< / a >
returns a received value along with an indication of whether the channel is closed.
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2010-07-14 17:09:22 -06:00
2009-09-30 13:00:25 -06:00
< h3 id = "Length_and_capacity" > Length and capacity< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
2009-09-30 13:00:25 -06:00
The built-in functions < code > len< / code > and < code > cap< / code > take arguments
of various types and return a result of type < code > int< / code > .
The implementation guarantees that the result always fits into an < code > int< / code > .
2009-09-16 12:05:14 -06:00
< / p >
2009-09-30 13:00:25 -06:00
< pre class = "grammar" >
2011-05-12 10:15:59 -06:00
Call Argument type Result
2009-09-16 12:05:14 -06:00
2011-05-12 10:15:59 -06:00
len(s) string type string length in bytes
[n]T, *[n]T array length (== n)
[]T slice length
map[K]T map length (number of defined keys)
chan T number of elements queued in channel buffer
2008-08-28 18:47:53 -06:00
2011-05-12 10:15:59 -06:00
cap(s) [n]T, *[n]T array length (== n)
[]T slice capacity
chan T channel buffer capacity
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-09-30 13:00:25 -06:00
< p >
The capacity of a slice is the number of elements for which there is
space allocated in the underlying array.
At any time the following relationship holds:
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-02-08 15:51:15 -07:00
0 < = len(s) < = cap(s)
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2010-07-13 12:54:57 -06:00
< p >
2013-01-21 12:18:20 -07:00
The length of a < code > nil< / code > slice, map or channel is 0.
The capacity of a < code > nil< / code > slice and channel is 0.
2010-07-13 12:54:57 -06:00
< / p >
2010-07-01 18:49:47 -06:00
< p >
2011-05-12 10:15:59 -06:00
The expression < code > len(s)< / code > is < a href = "#Constants" > constant< / a > if
< code > s< / code > is a string constant. The expressions < code > len(s)< / code > and
< code > cap(s)< / code > are constants if the type of < code > s< / code > is an array
or pointer to an array and the expression < code > s< / code > does not contain
< a href = "#Receive_operator" > channel receives< / a > or
< a href = "#Calls" > function calls< / a > ; in this case < code > s< / code > is not evaluated.
Otherwise, invocations of < code > len< / code > and < code > cap< / code > are not
constant and < code > s< / code > is evaluated.
2010-07-01 18:49:47 -06:00
< / p >
2008-08-28 18:47:53 -06:00
2011-05-12 10:15:59 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Allocation" > Allocation< / h3 >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
The built-in function < code > new< / code > takes a type < code > T< / code > and
returns a value of type < code > *T< / code > .
2009-01-05 12:17:26 -07:00
The memory is initialized as described in the section on initial values
2009-08-20 12:11:03 -06:00
(§< a href = "#The_zero_value" > The zero value< / a > ).
2009-02-27 17:47:48 -07:00
< / p >
2008-09-09 11:37:19 -06:00
2009-11-18 20:15:25 -07:00
< pre class = "grammar" >
2009-02-19 17:49:10 -07:00
new(T)
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
2008-09-09 11:37:19 -06:00
For instance
2009-02-27 17:47:48 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-01-19 21:07:21 -07:00
type S struct { a int; b float64 }
2009-02-19 17:49:10 -07:00
new(S)
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-27 17:47:48 -07:00
dynamically allocates memory for a variable of type < code > S< / code > ,
initializes it (< code > a=0< / code > , < code > b=0.0< / code > ),
and returns a value of type < code > *S< / code > containing the address
of the memory.
< / p >
2009-01-06 14:23:20 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Making_slices_maps_and_channels" > Making slices, maps and channels< / h3 >
2009-01-06 14:23:20 -07:00
2009-02-27 17:47:48 -07:00
< p >
Slices, maps and channels are reference types that do not require the
extra indirection of an allocation with < code > new< / code > .
The built-in function < code > make< / code > takes a type < code > T< / code > ,
which must be a slice, map or channel type,
optionally followed by a type-specific list of expressions.
It returns a value of type < code > T< / code > (not < code > *T< / code > ).
2009-01-06 14:23:20 -07:00
The memory is initialized as described in the section on initial values
2009-08-20 12:11:03 -06:00
(§< a href = "#The_zero_value" > The zero value< / a > ).
2009-02-27 17:47:48 -07:00
< / p >
2009-01-06 14:23:20 -07:00
2009-11-18 20:15:25 -07:00
< pre class = "grammar" >
2010-05-04 18:31:40 -06:00
Call Type T Result
2009-01-06 14:23:20 -07:00
2010-05-04 18:31:40 -06:00
make(T, n) slice slice of type T with length n and capacity n
make(T, n, m) slice slice of type T with length n and capacity m
2009-01-06 14:23:20 -07:00
2010-05-04 18:31:40 -06:00
make(T) map map of type T
make(T, n) map map of type T with initial space for n elements
make(T) channel synchronous channel of type T
make(T, n) channel asynchronous channel of type T, buffer size n
2009-02-19 17:49:10 -07:00
< / pre >
2009-01-06 14:23:20 -07:00
2009-02-27 17:47:48 -07:00
< p >
2012-10-19 11:11:06 -06:00
The size arguments < code > n< / code > and < code > m< / code > must be integer values.
2012-12-12 12:06:26 -07:00
A < a href = "#Constants" > constant< / a > size argument must be non-negative and
representable by a value of type < code > int< / code > .
If both < code > n< / code > and < code > m< / code > are provided and are constant, then
2012-10-19 11:11:06 -06:00
< code > n< / code > must be no larger than < code > m< / code > .
If < code > n< / code > is negative or larger than < code > m< / code > at run time,
a < a href = "#Run_time_panics" > run-time panic< / a > occurs.
2009-02-27 17:47:48 -07:00
< / p >
2009-01-06 14:23:20 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2011-11-29 16:47:36 -07:00
s := make([]int, 10, 100) // slice with len(s) == 10, cap(s) == 100
2012-10-19 11:11:06 -06:00
s := make([]int, 1e3) // slice with len(s) == cap(s) == 1000
2012-12-12 12:06:26 -07:00
s := make([]int, 1< < 63) // illegal: len(s) is not representable by a value of type int
2013-01-24 02:46:33 -07:00
s := make([]int, 10, 0) // illegal: len(s) > cap(s)
2011-11-29 16:47:36 -07:00
c := make(chan int, 10) // channel with a buffer size of 10
m := make(map[string]int, 100) // map with initial space for 100 elements
2009-02-19 17:49:10 -07:00
< / pre >
2008-10-30 15:50:23 -06:00
2009-09-30 13:00:25 -06:00
2010-10-25 17:50:31 -06:00
< h3 id = "Appending_and_copying_slices" > Appending to and copying slices< / h3 >
2009-11-18 20:15:25 -07:00
< p >
2012-09-28 16:55:38 -06:00
The built-in functions < code > append< / code > and < code > copy< / code > assist in
common slice operations.
For both functions, the result is independent of whether the memory referenced
by the arguments overlaps.
2010-10-25 17:50:31 -06:00
< / p >
< p >
2011-06-12 13:09:50 -06:00
The < a href = "#Function_types" > variadic< / a > function < code > append< / code >
appends zero or more values < code > x< / code >
2011-04-19 15:38:49 -06:00
to < code > s< / code > of type < code > S< / code > , which must be a slice type, and
returns the resulting slice, also of type < code > S< / code > .
2011-06-12 13:09:50 -06:00
The values < code > x< / code > are passed to a parameter of type < code > ...T< / code >
where < code > T< / code > is the < a href = "#Slice_types" > element type< / a > of
< code > S< / code > and the respective
< a href = "#Passing_arguments_to_..._parameters" > parameter passing rules< / a > apply.
2011-10-12 07:59:23 -06:00
As a special case, < code > append< / code > also accepts a first argument
assignable to type < code > []byte< / code > with a second argument of
string type followed by < code > ...< / code > . This form appends the
bytes of the string.
2010-10-25 17:50:31 -06:00
< / p >
< pre class = "grammar" >
2011-04-19 15:38:49 -06:00
append(s S, x ...T) S // T is the element type of S
2010-10-25 17:50:31 -06:00
< / pre >
< p >
If the capacity of < code > s< / code > is not large enough to fit the additional
values, < code > append< / code > allocates a new, sufficiently large slice that fits
both the existing slice elements and the additional values. Thus, the returned
2011-10-12 07:59:23 -06:00
slice may refer to a different underlying array.
2010-10-25 17:50:31 -06:00
< / p >
< pre >
s0 := []int{0, 0}
2012-09-28 16:55:38 -06:00
s1 := append(s0, 2) // append a single element s1 == []int{0, 0, 2}
s2 := append(s1, 3, 5, 7) // append multiple elements s2 == []int{0, 0, 2, 3, 5, 7}
s3 := append(s2, s0...) // append a slice s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
s4 := append(s3[3:6], s3[2:]...) // append overlapping slice s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0}
2011-04-19 15:38:49 -06:00
var t []interface{}
2012-09-28 16:55:38 -06:00
t = append(t, 42, 3.1415, "foo") t == []interface{}{42, 3.1415, "foo"}
2011-10-12 07:59:23 -06:00
var b []byte
2012-09-28 16:55:38 -06:00
b = append(b, "bar"...) // append string contents b == []byte{'b', 'a', 'r' }
2010-10-25 17:50:31 -06:00
< / pre >
< p >
The function < code > copy< / code > copies slice elements from
2009-11-18 20:15:25 -07:00
a source < code > src< / code > to a destination < code > dst< / code > and returns the
2012-09-28 16:55:38 -06:00
number of elements copied.
2010-06-07 16:49:39 -06:00
Both arguments must have < a href = "#Type_identity" > identical< / a > element type < code > T< / code > and must be
2010-10-25 17:41:06 -06:00
< a href = "#Assignability" > assignable< / a > to a slice of type < code > []T< / code > .
2011-05-15 17:04:37 -06:00
The number of elements copied is the minimum of
2009-11-18 20:15:25 -07:00
< code > len(src)< / code > and < code > len(dst)< / code > .
2010-10-25 17:41:06 -06:00
As a special case, < code > copy< / code > also accepts a destination argument assignable
to type < code > []byte< / code > with a source argument of a string type.
This form copies the bytes from the string into the byte slice.
2009-11-18 20:15:25 -07:00
< / p >
< pre class = "grammar" >
copy(dst, src []T) int
2010-10-25 17:41:06 -06:00
copy(dst []byte, src string) int
2009-11-18 20:15:25 -07:00
< / pre >
< p >
Examples:
< / p >
< pre >
2009-12-10 17:43:01 -07:00
var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
var s = make([]int, 6)
2010-10-25 17:41:06 -06:00
var b = make([]byte, 5)
n1 := copy(s, a[0:]) // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
n2 := copy(s, s[2:]) // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
n3 := copy(b, "Hello, World!") // n3 == 5, b == []byte("Hello")
2009-11-18 20:15:25 -07:00
< / pre >
2011-10-17 13:53:10 -06:00
< h3 id = "Deletion_of_map_elements" > Deletion of map elements< / h3 >
< p >
The built-in function < code > delete< / code > removes the element with key
< code > k< / code > from a < a href = "#Map_types" > map< / a > < code > m< / code > . The
type of < code > k< / code > must be < a href = "#Assignability" > assignable< / a >
to the key type of < code > m< / code > .
< / p >
< pre class = "grammar" >
delete(m, k) // remove element m[k] from map m
< / pre >
< p >
2012-12-12 14:08:35 -07:00
If the map < code > m< / code > is < code > nil< / code > or the element < code > m[k]< / code >
does not exist, < code > delete< / code > is a no-op.
2011-10-17 13:53:10 -06:00
< / p >
2012-02-29 13:20:11 -07:00
< h3 id = "Complex_numbers" > Manipulating complex numbers< / h3 >
2010-03-04 13:35:16 -07:00
< p >
Three functions assemble and disassemble complex numbers.
2011-01-19 21:07:21 -07:00
The built-in function < code > complex< / code > constructs a complex
2010-03-04 13:35:16 -07:00
value from a floating-point real and imaginary part, while
< code > real< / code > and < code > imag< / code >
extract the real and imaginary parts of a complex value.
< / p >
< pre class = "grammar" >
2011-01-19 21:07:21 -07:00
complex(realPart, imaginaryPart floatT) complexT
2010-03-04 13:35:16 -07:00
real(complexT) floatT
imag(complexT) floatT
< / pre >
< p >
The type of the arguments and return value correspond.
2011-01-19 21:07:21 -07:00
For < code > complex< / code > , the two arguments must be of the same
2010-03-04 13:35:16 -07:00
floating-point type and the return type is the complex type
with the corresponding floating-point constituents:
< code > complex64< / code > for < code > float32< / code > ,
< code > complex128< / code > for < code > float64< / code > .
The < code > real< / code > and < code > imag< / code > functions
together form the inverse, so for a complex value < code > z< / code > ,
2011-01-19 21:07:21 -07:00
< code > z< / code > < code > ==< / code > < code > complex(real(z),< / code > < code > imag(z))< / code > .
2010-03-04 13:35:16 -07:00
< / p >
< p >
If the operands of these functions are all constants, the return
value is a constant.
< / p >
< pre >
2011-01-19 21:07:21 -07:00
var a = complex(2, -2) // complex128
var b = complex(1.0, -1.4) // complex128
x := float32(math.Cos(math.Pi/2)) // float32
var c64 = complex(5, -x) // complex64
var im = imag(b) // float64
var rl = real(c64) // float32
2010-03-04 13:35:16 -07:00
< / pre >
2010-03-25 18:59:59 -06:00
< h3 id = "Handling_panics" > Handling panics< / h3 >
< p > Two built-in functions, < code > panic< / code > and < code > recover< / code > ,
assist in reporting and handling < a href = "#Run_time_panics" > run-time panics< / a >
2011-11-01 00:13:33 -06:00
and program-defined error conditions.
2010-03-25 18:59:59 -06:00
< / p >
< pre class = "grammar" >
func panic(interface{})
func recover() interface{}
< / pre >
< p >
spec: clarify returns, defer statements, and panics
This is an attempt at making the interaction between
these three constructs clearer. Specifically:
- return statements terminate a function, execute deferred
functions, return to the caller, and then execution
continues after the call
- panic calls terminate a function, execute deferred
functions, return to the caller, and then re-panic
- deferred functions are executed before a function _returns_
to its caller
The hope is that with this change it becomes clear when a
deferred function is executed (when a function returns),
and when it is not (when a program exits).
R=r, rsc, iant, ken, iant
CC=golang-dev
https://golang.org/cl/6736071
2012-11-01 11:13:48 -06:00
A < code > panic< / code > call in a function < code > F< / code > terminates the execution
of < code > F< / code > .
Any functions < a href = "#Defer_statements" > deferred< / a > by < code > F< / code >
are executed before < code > F< / code > returns to its caller. To the caller,
the call of < code > F< / code > then behaves itself like a call to < code > panic< / code > ,
terminating its own execution and running deferred functions in the same manner.
This continues until all functions in the goroutine have ceased execution,
in reverse order. At that point, the program is terminated and the error
condition is reported, including the value of the argument to < code > panic< / code > .
This termination sequence is called < i > panicking< / i > .
2010-03-25 18:59:59 -06:00
< / p >
2011-02-04 09:43:21 -07:00
< pre >
panic(42)
panic("unreachable")
panic(Error("cannot parse"))
< / pre >
2010-03-25 18:59:59 -06:00
< p >
The < code > recover< / code > function allows a program to manage behavior
of a panicking goroutine. Executing a < code > recover< / code > call
2011-02-04 09:43:21 -07:00
< i > inside< / i > a deferred function (but not any function called by it) stops
2010-03-25 18:59:59 -06:00
the panicking sequence by restoring normal execution, and retrieves
the error value passed to the call of < code > panic< / code > . If
< code > recover< / code > is called outside the deferred function it will
2011-02-04 09:43:21 -07:00
not stop a panicking sequence. In this case, or when the goroutine
is not panicking, or if the argument supplied to < code > panic< / code >
was < code > nil< / code > , < code > recover< / code > returns < code > nil< / code > .
2010-03-25 18:59:59 -06:00
< / p >
< p >
2011-02-04 09:43:21 -07:00
The < code > protect< / code > function in the example below invokes
the function argument < code > g< / code > and protects callers from
run-time panics raised by < code > g< / code > .
2010-03-25 18:59:59 -06:00
< / p >
< pre >
2011-02-04 09:43:21 -07:00
func protect(g func()) {
2010-03-25 18:59:59 -06:00
defer func() {
2011-11-01 00:13:33 -06:00
log.Println("done") // Println executes normally even if there is a panic
2010-03-25 18:59:59 -06:00
if x := recover(); x != nil {
2011-03-01 14:54:22 -07:00
log.Printf("run time panic: %v", x)
2010-03-25 18:59:59 -06:00
}
2011-04-05 12:01:25 -06:00
}()
2011-02-04 09:43:21 -07:00
log.Println("start")
g()
2010-03-25 18:59:59 -06:00
}
< / pre >
2009-11-18 20:15:25 -07:00
2009-09-30 13:00:25 -06:00
< h3 id = "Bootstrapping" > Bootstrapping< / h3 >
2009-09-16 12:05:14 -06:00
< p >
2009-09-30 13:00:25 -06:00
Current implementations provide several built-in functions useful during
bootstrapping. These functions are documented for completeness but are not
guaranteed to stay in the language. They do not return a result.
2009-09-16 12:05:14 -06:00
< / p >
2009-09-30 13:00:25 -06:00
< pre class = "grammar" >
2009-10-19 14:13:59 -06:00
Function Behavior
2009-09-30 13:00:25 -06:00
print prints all arguments; formatting of arguments is implementation-specific
println like print but prints spaces between arguments and a newline at the end
< / pre >
2009-08-20 12:11:03 -06:00
< h2 id = "Packages" > Packages< / h2 >
2008-08-28 18:47:53 -06:00
2009-03-02 17:17:29 -07:00
< p >
Go programs are constructed by linking together < i > packages< / i > .
2009-09-28 20:21:15 -06:00
A package in turn is constructed from one or more source files
that together declare constants, types, variables and functions
belonging to the package and which are accessible in all files
of the same package. Those elements may be
< a href = "#Exported_identifiers" > exported< / a > and used in another package.
2009-03-02 17:17:29 -07:00
< / p >
2009-08-20 12:11:03 -06:00
< h3 id = "Source_file_organization" > Source file organization< / h3 >
2009-03-02 17:17:29 -07:00
< p >
Each source file consists of a package clause defining the package
to which it belongs, followed by a possibly empty set of import
declarations that declare packages whose contents it wishes to use,
followed by a possibly empty set of declarations of functions,
2009-08-19 17:44:04 -06:00
types, variables, and constants.
2009-03-02 17:17:29 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-12-10 17:43:01 -07:00
SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Package_clause" > Package clause< / h3 >
2009-03-02 17:17:29 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-03-02 17:17:29 -07:00
A package clause begins each source file and defines the package
to which the file belongs.
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-09-10 11:14:00 -06:00
PackageClause = "package" PackageName .
PackageName = identifier .
2009-03-02 17:17:29 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-09-10 11:14:00 -06:00
< p >
The PackageName must not be the < a href = "#Blank_identifier" > blank identifier< / a > .
< / p >
2009-03-02 17:17:29 -07:00
< pre >
package math
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-03-02 17:17:29 -07:00
< p >
A set of files sharing the same PackageName form the implementation of a package.
An implementation may require that all source files for a package inhabit the same directory.
< / p >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "Import_declarations" > Import declarations< / h3 >
2009-03-02 17:17:29 -07:00
< p >
2012-03-01 14:57:49 -07:00
An import declaration states that the source file containing the declaration
depends on functionality of the < i > imported< / i > package
(< a href = "#Program_initialization_and_execution" > §Program initialization and execution< / a > )
2012-09-22 13:03:43 -06:00
and enables access to < a href = "#Exported_identifiers" > exported< / a > identifiers
2012-03-01 14:57:49 -07:00
of that package.
The import names an identifier (PackageName) to be used for access and an ImportPath
2009-09-25 18:00:22 -06:00
that specifies the package to be imported.
2009-03-02 17:17:29 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-07-10 17:06:40 -06:00
< pre class = "ebnf" >
2009-12-10 17:43:01 -07:00
ImportDecl = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
2009-09-25 16:36:25 -06:00
ImportSpec = [ "." | PackageName ] ImportPath .
2009-12-10 17:43:01 -07:00
ImportPath = string_lit .
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< p >
2009-09-25 18:00:22 -06:00
The PackageName is used in < a href = "#Qualified_identifiers" > qualified identifiers< / a >
2012-03-01 14:57:49 -07:00
to access exported identifiers of the package within the importing source file.
2009-09-25 18:00:22 -06:00
It is declared in the < a href = "#Blocks" > file block< / a > .
If the PackageName is omitted, it defaults to the identifier specified in the
2011-02-22 10:34:13 -07:00
< a href = "#Package_clause" > package clause< / a > of the imported package.
2009-09-25 18:00:22 -06:00
If an explicit period (< code > .< / code > ) appears instead of a name, all the
2012-03-01 14:57:49 -07:00
package's exported identifiers declared in that package's
< a href = "#Blocks" > package block< / a > will be declared in the importing source
file's file block and can be accessed without a qualifier.
2009-09-25 18:00:22 -06:00
< / p >
< p >
The interpretation of the ImportPath is implementation-dependent but
it is typically a substring of the full file name of the compiled
package and may be relative to a repository of installed packages.
2009-03-02 17:17:29 -07:00
< / p >
2009-08-20 11:22:52 -06:00
2012-02-23 00:51:25 -07:00
< p >
Implementation restriction: A compiler may restrict ImportPaths to
non-empty strings using only characters belonging to
2012-11-01 23:57:01 -06:00
< a href = "http://www.unicode.org/versions/Unicode6.2.0/" > Unicode's< / a >
2012-02-23 00:51:25 -07:00
L, M, N, P, and S general categories (the Graphic characters without
2012-02-23 20:46:04 -07:00
spaces) and may also exclude the characters
< code > !"#$%& '()*,:;< => ?[\]^`{|}< / code >
and the Unicode replacement character U+FFFD.
2012-02-23 00:51:25 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2009-09-25 18:00:22 -06:00
Assume we have compiled a package containing the package clause
< code > package math< / code > , which exports function < code > Sin< / code > , and
installed the compiled package in the file identified by
2009-03-02 17:17:29 -07:00
< code > "lib/math"< / code > .
2009-09-25 18:00:22 -06:00
This table illustrates how < code > Sin< / code > may be accessed in files
that import the package after the
various types of import declaration.
2009-03-02 17:17:29 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-03-02 17:17:29 -07:00
< pre class = "grammar" >
2009-09-25 16:36:25 -06:00
Import declaration Local name of Sin
2009-03-02 17:17:29 -07:00
import "lib/math" math.Sin
2012-09-22 13:03:43 -06:00
import m "lib/math" m.Sin
2009-03-02 17:17:29 -07:00
import . "lib/math" Sin
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-09-25 16:36:25 -06:00
< p >
2009-09-25 18:00:22 -06:00
An import declaration declares a dependency relation between
the importing and imported package.
2009-09-25 16:36:25 -06:00
It is illegal for a package to import itself or to import a package without
referring to any of its exported identifiers. To import a package solely for
its side-effects (initialization), use the < a href = "#Blank_identifier" > blank< / a >
identifier as explicit package name:
< / p >
< pre >
import _ "lib/math"
< / pre >
2009-08-20 12:11:03 -06:00
< h3 id = "An_example_package" > An example package< / h3 >
2009-03-02 17:17:29 -07:00
< p >
Here is a complete Go package that implements a concurrent prime sieve.
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
package main
2009-03-02 17:17:29 -07:00
import "fmt"
2011-05-24 15:18:44 -06:00
// Send the sequence 2, 3, 4, … to channel 'ch'.
2009-09-25 15:11:03 -06:00
func generate(ch chan< - int) {
2009-02-19 17:49:10 -07:00
for i := 2; ; i++ {
2009-12-10 17:43:01 -07:00
ch < - i // Send 'i' to channel 'ch'.
2008-08-28 18:47:53 -06:00
}
2009-02-19 17:49:10 -07:00
}
2009-11-30 22:23:58 -07:00
// Copy the values from channel 'src' to channel 'dst',
2009-02-19 17:49:10 -07:00
// removing those divisible by 'prime'.
2009-09-25 15:11:03 -06:00
func filter(src < -chan int, dst chan< - int, prime int) {
2011-11-29 16:47:36 -07:00
for i := range src { // Loop over values received from 'src'.
2009-09-25 15:11:03 -06:00
if i%prime != 0 {
2009-12-10 17:43:01 -07:00
dst < - i // Send 'i' to channel 'dst'.
2008-08-28 18:47:53 -06:00
}
}
2009-02-19 17:49:10 -07:00
}
// The prime sieve: Daisy-chain filter processes together.
func sieve() {
2009-12-10 17:43:01 -07:00
ch := make(chan int) // Create a new channel.
go generate(ch) // Start generate() as a subprocess.
2009-02-19 17:49:10 -07:00
for {
2009-12-10 17:43:01 -07:00
prime := < -ch
fmt.Print(prime, "\n")
ch1 := make(chan int)
go filter(ch, ch1, prime)
ch = ch1
2008-08-28 18:47:53 -06:00
}
2009-02-19 17:49:10 -07:00
}
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
func main() {
2009-12-10 17:43:01 -07:00
sieve()
2009-02-19 17:49:10 -07:00
}
< / pre >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h2 id = "Program_initialization_and_execution" > Program initialization and execution< / h2 >
2008-08-28 18:47:53 -06:00
2009-08-20 12:11:03 -06:00
< h3 id = "The_zero_value" > The zero value< / h3 >
2009-02-25 17:20:44 -07:00
< p >
2008-08-28 18:47:53 -06:00
When memory is allocated to store a value, either through a declaration
2011-05-24 14:44:09 -06:00
or a call of < code > make< / code > or < code > new< / code > ,
2009-09-15 10:54:22 -06:00
and no explicit initialization is provided, the memory is
2008-08-28 18:47:53 -06:00
given a default initialization. Each element of such a value is
2009-08-21 12:25:00 -06:00
set to the < i > zero value< / i > for its type: < code > false< / code > for booleans,
2009-02-25 17:20:44 -07:00
< code > 0< / code > for integers, < code > 0.0< / code > for floats, < code > ""< / code >
2009-09-24 20:36:48 -06:00
for strings, and < code > nil< / code > for pointers, functions, interfaces, slices, channels, and maps.
2009-02-20 14:36:14 -07:00
This initialization is done recursively, so for instance each element of an
2009-02-25 17:20:44 -07:00
array of structs will have its fields zeroed if no value is specified.
< / p >
2009-02-19 17:49:10 -07:00
< p >
2008-08-28 18:47:53 -06:00
These two simple declarations are equivalent:
2009-02-25 17:20:44 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2009-12-10 17:43:01 -07:00
var i int
var i int = 0
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-25 17:20:44 -07:00
< p >
2008-08-28 18:47:53 -06:00
After
2009-02-25 17:20:44 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-01-19 21:07:21 -07:00
type T struct { i int; f float64; next *T }
2009-12-10 17:43:01 -07:00
t := new(T)
2009-02-19 17:49:10 -07:00
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-25 17:20:44 -07:00
< p >
2008-08-28 18:47:53 -06:00
the following holds:
2009-02-25 17:20:44 -07:00
< / p >
2008-08-28 18:47:53 -06:00
2009-02-19 17:49:10 -07:00
< pre >
t.i == 0
t.f == 0.0
t.next == nil
< / pre >
2008-08-28 18:47:53 -06:00
2009-02-27 17:47:48 -07:00
< p >
The same would also be true after
< / p >
< pre >
var t T
< / pre >
2009-08-20 12:11:03 -06:00
< h3 id = "Program_execution" > Program execution< / h3 >
2009-02-25 17:20:44 -07:00
< p >
2008-08-28 18:47:53 -06:00
A package with no imports is initialized by assigning initial values to
2009-09-15 12:56:39 -06:00
all its package-level variables
2009-09-15 10:54:22 -06:00
and then calling any
2009-02-27 17:47:48 -07:00
package-level function with the name and signature of
< / p >
< pre >
func init()
< / pre >
< p >
2009-11-07 23:00:59 -07:00
defined in its source.
2013-02-11 05:46:39 -07:00
A package-scope or file-scope identifier
with name < code > init< / code > may only be
declared to be a function with this signature.
Multiple such functions may be defined, even
2009-11-07 23:00:59 -07:00
within a single source file; they execute
in unspecified order.
2009-02-25 17:20:44 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2009-09-15 12:56:39 -06:00
Within a package, package-level variables are initialized,
and constant values are determined, in
data-dependent order: if the initializer of < code > A< / code >
depends on the value of < code > B< / code > , < code > A< / code >
will be set after < code > B< / code > .
It is an error if such dependencies form a cycle.
Dependency analysis is done lexically: < code > A< / code >
depends on < code > B< / code > if the value of < code > A< / code >
contains a mention of < code > B< / code > , contains a value
whose initializer
mentions < code > B< / code > , or mentions a function that
mentions < code > B< / code > , recursively.
If two items are not interdependent, they will be initialized
in the order they appear in the source.
2009-09-15 16:56:44 -06:00
Since the dependency analysis is done per package, it can produce
unspecified results if < code > A< / code > 's initializer calls a function defined
2009-09-15 12:56:39 -06:00
in another package that refers to < code > B< / code > .
< / p >
< p >
2011-05-24 14:44:09 -06:00
An < code > init< / code > function cannot be referred to from anywhere
in a program. In particular, < code > init< / code > cannot be called explicitly,
2009-02-27 17:47:48 -07:00
nor can a pointer to < code > init< / code > be assigned to a function variable.
2009-02-25 17:20:44 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2008-08-28 18:47:53 -06:00
If a package has imports, the imported packages are initialized
2008-09-26 17:41:50 -06:00
before initializing the package itself. If multiple packages import
2009-02-27 17:47:48 -07:00
a package < code > P< / code > , < code > P< / code > will be initialized only once.
2009-02-25 17:20:44 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2008-08-28 18:47:53 -06:00
The importing of packages, by construction, guarantees that there can
be no cyclic dependencies in initialization.
2009-02-25 17:20:44 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2011-02-03 11:40:51 -07:00
A complete program is created by linking a single, unimported package
called the < i > main package< / i > with all the packages it imports, transitively.
The main package must
have package name < code > main< / code > and
2011-11-01 00:13:33 -06:00
declare a function < code > main< / code > that takes no
2011-02-03 11:40:51 -07:00
arguments and returns no value.
2009-02-25 17:20:44 -07:00
< / p >
2008-09-09 11:37:19 -06:00
2009-02-19 17:49:10 -07:00
< pre >
2011-05-24 15:18:44 -06:00
func main() { … }
2009-02-19 17:49:10 -07:00
< / pre >
2008-09-09 11:37:19 -06:00
2009-02-25 17:20:44 -07:00
< p >
2011-02-03 11:40:51 -07:00
Program execution begins by initializing the main package and then
invoking the function < code > main< / code > .
When the function < code > main< / code > returns, the program exits.
It does not wait for other (non-< code > main< / code > ) goroutines to complete.
2009-03-04 21:39:39 -07:00
< / p >
2009-02-11 14:46:30 -07:00
2011-10-27 13:22:45 -06:00
< p >
2011-11-01 00:13:33 -06:00
Package initialization— variable initialization and the invocation of
2011-10-27 13:22:45 -06:00
< code > init< / code > functions— happens in a single goroutine,
sequentially, one package at a time.
An < code > init< / code > function may launch other goroutines, which can run
concurrently with the initialization code. However, initialization
always sequences
the < code > init< / code > functions: it will not start the next
< code > init< / code > until
the previous one has returned.
< / p >
2011-11-01 19:45:02 -06:00
< h2 id = "Errors" > Errors< / h2 >
< p >
The predeclared type < code > error< / code > is defined as
< / p >
< pre >
type error interface {
Error() string
}
< / pre >
< p >
It is the conventional interface for representing an error condition,
with the nil value representing no error.
For instance, a function to read data from a file might be defined:
< / p >
< pre >
func Read(f *File, b []byte) (n int, err error)
< / pre >
2010-04-22 11:14:53 -06:00
< h2 id = "Run_time_panics" > Run-time panics< / h2 >
2010-03-25 18:59:59 -06:00
< p >
Execution errors such as attempting to index an array out
of bounds trigger a < i > run-time panic< / i > equivalent to a call of
the built-in function < a href = "#Handling_panics" > < code > panic< / code > < / a >
with a value of the implementation-defined interface type < code > runtime.Error< / code > .
2011-12-08 20:27:14 -07:00
That type satisfies the predeclared interface type
2011-11-01 19:45:02 -06:00
< a href = "#Errors" > < code > error< / code > < / a > .
The exact error values that
represent distinct run-time error conditions are unspecified.
2010-03-25 18:59:59 -06:00
< / p >
< pre >
package runtime
type Error interface {
2011-11-01 19:45:02 -06:00
error
// and perhaps other methods
2010-03-25 18:59:59 -06:00
}
< / pre >
2009-08-20 12:11:03 -06:00
< h2 id = "System_considerations" > System considerations< / h2 >
2009-02-11 14:46:30 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Package_unsafe" > Package < code > unsafe< / code > < / h3 >
2009-02-11 14:46:30 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-27 17:47:48 -07:00
The built-in package < code > unsafe< / code > , known to the compiler,
provides facilities for low-level programming including operations
that violate the type system. A package using < code > unsafe< / code >
must be vetted manually for type safety. The package provides the
following interface:
2009-02-23 20:22:05 -07:00
< / p >
2009-02-11 14:46:30 -07:00
2009-02-20 14:36:14 -07:00
< pre class = "grammar" >
2009-02-19 17:49:10 -07:00
package unsafe
2009-02-11 14:46:30 -07:00
2009-05-12 22:37:46 -06:00
type ArbitraryType int // shorthand for an arbitrary Go type; it is not a real type
type Pointer *ArbitraryType
2009-02-11 14:46:30 -07:00
2011-06-13 17:46:42 -06:00
func Alignof(variable ArbitraryType) uintptr
2012-04-05 06:37:07 -06:00
func Offsetof(selector ArbitraryType) uintptr
2011-06-13 17:46:42 -06:00
func Sizeof(variable ArbitraryType) uintptr
2009-02-19 17:49:10 -07:00
< / pre >
2009-02-11 14:46:30 -07:00
2009-02-19 17:49:10 -07:00
< p >
2013-02-09 15:36:31 -07:00
Any pointer or value of < a href = "#Types" > underlying type< / a > < code > uintptr< / code > can be converted to
a < code > Pointer< / code > type and vice versa.
2009-02-23 20:22:05 -07:00
< / p >
2013-02-09 15:36:31 -07:00
< pre >
var f float64
bits = *(*uint64)(unsafe.Pointer(& f))
type ptr unsafe.Pointer
bits = *(*uint64)(ptr(& f))
< / pre >
2009-02-19 17:49:10 -07:00
< p >
2012-09-17 13:23:41 -06:00
The functions < code > Alignof< / code > and < code > Sizeof< / code > take an expression < code > x< / code >
of any type and return the alignment or size, respectively, of a hypothetical variable < code > v< / code >
as if < code > v< / code > was declared via < code > var v = x< / code > .
2009-02-23 20:22:05 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< p >
2012-09-18 12:25:53 -06:00
The function < code > Offsetof< / code > takes a (possibly parenthesized) < a href = "#Selectors" > selector< / a >
denoting a struct field of any type and returns the field offset in bytes relative to the
2009-09-15 10:54:22 -06:00
struct's address.
For a struct < code > s< / code > with field < code > f< / code > :
2009-02-23 20:22:05 -07:00
< / p >
2009-02-11 14:46:30 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2011-06-13 17:46:42 -06:00
uintptr(unsafe.Pointer(& s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(& s.f))
2009-02-19 17:49:10 -07:00
< / pre >
2009-02-11 14:46:30 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-23 20:22:05 -07:00
Computer architectures may require memory addresses to be < i > aligned< / i > ;
that is, for addresses of a variable to be a multiple of a factor,
the variable's type's < i > alignment< / i > . The function < code > Alignof< / code >
takes an expression denoting a variable of any type and returns the
alignment of the (type of the) variable in bytes. For a variable
< code > x< / code > :
< / p >
2009-02-11 14:46:30 -07:00
2009-02-19 17:49:10 -07:00
< pre >
2011-06-13 17:46:42 -06:00
uintptr(unsafe.Pointer(& x)) % unsafe.Alignof(x) == 0
2009-02-19 17:49:10 -07:00
< / pre >
2009-05-13 17:56:00 -06:00
2009-02-23 20:22:05 -07:00
< p >
Calls to < code > Alignof< / code > , < code > Offsetof< / code > , and
2011-06-13 17:46:42 -06:00
< code > Sizeof< / code > are compile-time constant expressions of type < code > uintptr< / code > .
2009-09-15 10:54:22 -06:00
< / p >
2009-02-11 14:46:30 -07:00
2009-08-20 12:11:03 -06:00
< h3 id = "Size_and_alignment_guarantees" > Size and alignment guarantees< / h3 >
2009-02-11 14:46:30 -07:00
2009-09-25 16:36:25 -06:00
< p >
2009-08-20 12:11:03 -06:00
For the numeric types (§< a href = "#Numeric_types" > Numeric types< / a > ), the following sizes are guaranteed:
2009-09-25 16:36:25 -06:00
< / p >
2009-02-11 14:46:30 -07:00
2009-02-20 14:36:14 -07:00
< pre class = "grammar" >
2010-12-02 13:32:14 -07:00
type size in bytes
2009-02-11 14:46:30 -07:00
2010-12-02 13:32:14 -07:00
byte, uint8, int8 1
uint16, int16 2
uint32, int32, float32 4
uint64, int64, float64, complex64 8
complex128 16
2009-02-19 17:49:10 -07:00
< / pre >
2009-02-11 14:46:30 -07:00
2009-02-19 17:49:10 -07:00
< p >
2009-02-23 20:22:05 -07:00
The following minimal alignment properties are guaranteed:
2009-02-19 18:31:36 -07:00
< / p >
2009-02-19 17:49:10 -07:00
< ol >
2011-01-10 15:25:17 -07:00
< li > For a variable < code > x< / code > of any type: < code > unsafe.Alignof(x)< / code > is at least 1.
2010-05-14 14:11:48 -06:00
< / li >
2009-02-11 14:46:30 -07:00
2009-02-23 20:22:05 -07:00
< li > For a variable < code > x< / code > of struct type: < code > unsafe.Alignof(x)< / code > is the largest of
2011-01-10 15:25:17 -07:00
all the values < code > unsafe.Alignof(x.f)< / code > for each field < code > f< / code > of < code > x< / code > , but at least 1.
2010-05-14 14:11:48 -06:00
< / li >
2009-02-11 14:46:30 -07:00
2009-02-23 20:22:05 -07:00
< li > For a variable < code > x< / code > of array type: < code > unsafe.Alignof(x)< / code > is the same as
< code > unsafe.Alignof(x[0])< / code > , but at least 1.
2010-05-14 14:11:48 -06:00
< / li >
2009-02-19 17:49:10 -07:00
< / ol >
2009-02-11 14:46:30 -07:00
2012-01-09 17:54:24 -07:00
< p >
A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
< / p >