1
0
mirror of https://github.com/golang/go synced 2024-10-04 06:31:22 -06:00
go/src/pkg/runtime/proc.c

2600 lines
62 KiB
C
Raw Normal View History

2008-07-14 15:34:27 -06:00
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "arch_GOARCH.h"
#include "malloc.h"
ld: detect stack overflow due to NOSPLIT Fix problems found. On amd64, various library routines had bigger stack frames than expected, because large function calls had been added. runtime.assertI2T: nosplit stack overflow 120 assumed on entry to runtime.assertI2T 8 after runtime.assertI2T uses 112 0 on entry to runtime.newTypeAssertionError -8 on entry to runtime.morestack01 runtime.assertE2E: nosplit stack overflow 120 assumed on entry to runtime.assertE2E 16 after runtime.assertE2E uses 104 8 on entry to runtime.panic 0 on entry to runtime.morestack16 -8 after runtime.morestack16 uses 8 runtime.assertE2T: nosplit stack overflow 120 assumed on entry to runtime.assertE2T 16 after runtime.assertE2T uses 104 8 on entry to runtime.panic 0 on entry to runtime.morestack16 -8 after runtime.morestack16 uses 8 runtime.newselect: nosplit stack overflow 120 assumed on entry to runtime.newselect 56 after runtime.newselect uses 64 48 on entry to runtime.printf 8 after runtime.printf uses 40 0 on entry to vprintf -8 on entry to runtime.morestack16 runtime.selectdefault: nosplit stack overflow 120 assumed on entry to runtime.selectdefault 56 after runtime.selectdefault uses 64 48 on entry to runtime.printf 8 after runtime.printf uses 40 0 on entry to vprintf -8 on entry to runtime.morestack16 runtime.selectgo: nosplit stack overflow 120 assumed on entry to runtime.selectgo 0 after runtime.selectgo uses 120 -8 on entry to runtime.gosched On arm, 5c was tagging functions NOSPLIT that should not have been, like the recursive function printpanics: printpanics: nosplit stack overflow 124 assumed on entry to printpanics 112 after printpanics uses 12 108 on entry to printpanics 96 after printpanics uses 12 92 on entry to printpanics 80 after printpanics uses 12 76 on entry to printpanics 64 after printpanics uses 12 60 on entry to printpanics 48 after printpanics uses 12 44 on entry to printpanics 32 after printpanics uses 12 28 on entry to printpanics 16 after printpanics uses 12 12 on entry to printpanics 0 after printpanics uses 12 -4 on entry to printpanics R=r, r2 CC=golang-dev https://golang.org/cl/4188061
2011-02-22 15:40:40 -07:00
#include "stack.h"
#include "race.h"
#include "type.h"
2008-07-14 15:34:27 -06:00
// Goroutine scheduler
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
//
// The main concepts are:
// G - goroutine.
// M - worker thread, or machine.
// P - processor, a resource that is required to execute Go code.
// M must have an associated P to execute Go code, however it can be
// blocked or in a syscall w/o an associated P.
//
// Design doc at http://golang.org/s/go11sched.
typedef struct Sched Sched;
struct Sched {
Lock;
uint64 goidgen;
M* midle; // idle m's waiting for work
int32 nmidle; // number of idle m's waiting for work
int32 mlocked; // number of locked m's waiting for work
int32 mcount; // number of m's that have been created
P* pidle; // idle P's
uint32 npidle;
uint32 nmspinning;
// Global runnable queue.
G* runqhead;
G* runqtail;
int32 runqsize;
// Global cache of dead G's.
Lock gflock;
G* gfree;
int32 stopwait;
Note stopnote;
uint32 sysmonwait;
Note sysmonnote;
uint64 lastpoll;
int32 profilehz; // cpu profiling rate
};
// The max value of GOMAXPROCS.
// There are no fundamental restrictions on the value.
enum { MaxGomaxprocs = 1<<8 };
Sched runtime·sched;
int32 runtime·gomaxprocs;
uint32 runtime·needextram;
bool runtime·singleproc;
bool runtime·iscgo;
uint32 runtime·gcwaiting;
M runtime·m0;
G runtime·g0; // idle goroutine for m0
G* runtime·allg;
G* runtime·lastg;
M* runtime·allm;
M* runtime·extram;
int8* runtime·goos;
int32 runtime·ncpu;
static int32 newprocs;
void runtime·mstart(void);
static void runqput(P*, G*);
static G* runqget(P*);
static void runqgrow(P*);
static G* runqsteal(P*, P*);
static void mput(M*);
static M* mget(void);
static void mcommoninit(M*);
static void schedule(void);
static void procresize(int32);
static void acquirep(P*);
static P* releasep(void);
static void newm(void(*)(void), P*);
static void stopm(void);
static void startm(P*, bool);
static void handoffp(P*);
static void wakep(void);
static void stoplockedm(void);
static void startlockedm(G*);
static void sysmon(void);
static uint32 retake(int64);
static void inclocked(int32);
static void checkdead(void);
static void exitsyscall0(G*);
static void park0(G*);
static void goexit0(G*);
static void gfput(P*, G*);
static G* gfget(P*);
static void gfpurge(P*);
static void globrunqput(G*);
static G* globrunqget(P*, int32);
static P* pidleget(void);
static void pidleput(P*);
static void injectglist(G*);
static void preemptall(void);
static void preemptone(P*);
static bool exitsyscallfast(void);
// The bootstrap sequence is:
//
// call osinit
// call schedinit
// make & queue new G
// call runtime·mstart
//
// The new G calls runtime·main.
void
runtime·schedinit(void)
{
int32 n, procs;
byte *p;
m->nomemprof++;
runtime·mprofinit();
runtime·mallocinit();
mcommoninit(m);
runtime·goargs();
runtime·goenvs();
runtime·parsedebugvars();
// Allocate internal symbol table representation now, we need it for GC anyway.
runtime·symtabinit();
runtime·sched.lastpoll = runtime·nanotime();
procs = 1;
p = runtime·getenv("GOMAXPROCS");
if(p != nil && (n = runtime·atoi(p)) > 0) {
if(n > MaxGomaxprocs)
n = MaxGomaxprocs;
procs = n;
}
runtime·allp = runtime·malloc((MaxGomaxprocs+1)*sizeof(runtime·allp[0]));
procresize(procs);
mstats.enablegc = 1;
m->nomemprof--;
if(raceenabled)
g->racectx = runtime·raceinit();
}
extern void main·init(void);
extern void main·main(void);
static FuncVal scavenger = {runtime·MHeap_Scavenger};
static FuncVal initDone = { runtime·unlockOSThread };
// The main goroutine.
void
runtime·main(void)
{
Defer d;
newm(sysmon, nil);
// Lock the main goroutine onto this, the main OS thread,
// during initialization. Most programs won't care, but a few
// do require certain calls to be made by the main thread.
// Those can arrange for main.main to run in the main thread
// by calling runtime.LockOSThread during initialization
// to preserve the lock.
runtime·lockOSThread();
// Defer unlock so that runtime.Goexit during init does the unlock too.
d.fn = &initDone;
d.siz = 0;
d.link = g->defer;
d.argp = (void*)-1;
d.special = true;
d.free = false;
g->defer = &d;
if(m != &runtime·m0)
runtime·throw("runtime·main not on m0");
runtime·newproc1(&scavenger, nil, 0, 0, runtime·main);
main·init();
if(g->defer != &d || d.fn != &initDone)
runtime·throw("runtime: bad defer entry after init");
g->defer = d.link;
runtime·unlockOSThread();
main·main();
if(raceenabled)
runtime·racefini();
// Make racy client program work: if panicking on
// another goroutine at the same time as main returns,
// let the other goroutine finish printing the panic trace.
// Once it does, it will exit. See issue 3934.
if(runtime·panicking)
runtime·park(nil, nil, "panicwait");
runtime·exit(0);
for(;;)
*(int32*)runtime·main = 0;
}
runtime: simplify stack traces Make the stack traces more readable for new Go programmers while preserving their utility for old hands. - Change status number [4] to string. - Elide frames in runtime package (internal details). - Swap file:line and arguments. - Drop 'created by' for main goroutine. - Show goroutines in order of allocation: implies main goroutine first if nothing else. There is no option to get the extra frames back. Uncomment 'return 1' at the bottom of symtab.c. $ 6.out throw: all goroutines are asleep - deadlock! goroutine 1 [chan send]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:22 +0x8a goroutine 2 [select (no cases)]: main.sel() /Users/rsc/g/go/src/pkg/runtime/x.go:11 +0x18 created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:19 +0x23 goroutine 3 [chan receive]: main.recv(0xf8400010a0, 0x0) /Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:20 +0x50 goroutine 4 [chan receive (nil chan)]: main.recv(0x0, 0x0) /Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:21 +0x66 $ $ 6.out index panic: runtime error: index out of range goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:25 +0xb9 $ $ 6.out nil panic: runtime error: invalid memory address or nil pointer dereference [signal 0xb code=0x1 addr=0x0 pc=0x22ca] goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:28 +0x211 $ $ 6.out panic panic: panic goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:30 +0x101 $ R=golang-dev, qyzhai, n13m3y3r, r CC=golang-dev https://golang.org/cl/4907048
2011-08-22 21:26:39 -06:00
void
runtime·goroutineheader(G *gp)
runtime: simplify stack traces Make the stack traces more readable for new Go programmers while preserving their utility for old hands. - Change status number [4] to string. - Elide frames in runtime package (internal details). - Swap file:line and arguments. - Drop 'created by' for main goroutine. - Show goroutines in order of allocation: implies main goroutine first if nothing else. There is no option to get the extra frames back. Uncomment 'return 1' at the bottom of symtab.c. $ 6.out throw: all goroutines are asleep - deadlock! goroutine 1 [chan send]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:22 +0x8a goroutine 2 [select (no cases)]: main.sel() /Users/rsc/g/go/src/pkg/runtime/x.go:11 +0x18 created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:19 +0x23 goroutine 3 [chan receive]: main.recv(0xf8400010a0, 0x0) /Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:20 +0x50 goroutine 4 [chan receive (nil chan)]: main.recv(0x0, 0x0) /Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:21 +0x66 $ $ 6.out index panic: runtime error: index out of range goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:25 +0xb9 $ $ 6.out nil panic: runtime error: invalid memory address or nil pointer dereference [signal 0xb code=0x1 addr=0x0 pc=0x22ca] goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:28 +0x211 $ $ 6.out panic panic: panic goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:30 +0x101 $ R=golang-dev, qyzhai, n13m3y3r, r CC=golang-dev https://golang.org/cl/4907048
2011-08-22 21:26:39 -06:00
{
int8 *status;
switch(gp->status) {
runtime: simplify stack traces Make the stack traces more readable for new Go programmers while preserving their utility for old hands. - Change status number [4] to string. - Elide frames in runtime package (internal details). - Swap file:line and arguments. - Drop 'created by' for main goroutine. - Show goroutines in order of allocation: implies main goroutine first if nothing else. There is no option to get the extra frames back. Uncomment 'return 1' at the bottom of symtab.c. $ 6.out throw: all goroutines are asleep - deadlock! goroutine 1 [chan send]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:22 +0x8a goroutine 2 [select (no cases)]: main.sel() /Users/rsc/g/go/src/pkg/runtime/x.go:11 +0x18 created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:19 +0x23 goroutine 3 [chan receive]: main.recv(0xf8400010a0, 0x0) /Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:20 +0x50 goroutine 4 [chan receive (nil chan)]: main.recv(0x0, 0x0) /Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:21 +0x66 $ $ 6.out index panic: runtime error: index out of range goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:25 +0xb9 $ $ 6.out nil panic: runtime error: invalid memory address or nil pointer dereference [signal 0xb code=0x1 addr=0x0 pc=0x22ca] goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:28 +0x211 $ $ 6.out panic panic: panic goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:30 +0x101 $ R=golang-dev, qyzhai, n13m3y3r, r CC=golang-dev https://golang.org/cl/4907048
2011-08-22 21:26:39 -06:00
case Gidle:
status = "idle";
break;
case Grunnable:
status = "runnable";
break;
case Grunning:
status = "running";
break;
case Gsyscall:
status = "syscall";
break;
case Gwaiting:
if(gp->waitreason)
status = gp->waitreason;
runtime: simplify stack traces Make the stack traces more readable for new Go programmers while preserving their utility for old hands. - Change status number [4] to string. - Elide frames in runtime package (internal details). - Swap file:line and arguments. - Drop 'created by' for main goroutine. - Show goroutines in order of allocation: implies main goroutine first if nothing else. There is no option to get the extra frames back. Uncomment 'return 1' at the bottom of symtab.c. $ 6.out throw: all goroutines are asleep - deadlock! goroutine 1 [chan send]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:22 +0x8a goroutine 2 [select (no cases)]: main.sel() /Users/rsc/g/go/src/pkg/runtime/x.go:11 +0x18 created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:19 +0x23 goroutine 3 [chan receive]: main.recv(0xf8400010a0, 0x0) /Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:20 +0x50 goroutine 4 [chan receive (nil chan)]: main.recv(0x0, 0x0) /Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:21 +0x66 $ $ 6.out index panic: runtime error: index out of range goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:25 +0xb9 $ $ 6.out nil panic: runtime error: invalid memory address or nil pointer dereference [signal 0xb code=0x1 addr=0x0 pc=0x22ca] goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:28 +0x211 $ $ 6.out panic panic: panic goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:30 +0x101 $ R=golang-dev, qyzhai, n13m3y3r, r CC=golang-dev https://golang.org/cl/4907048
2011-08-22 21:26:39 -06:00
else
status = "waiting";
break;
default:
status = "???";
break;
}
runtime·printf("goroutine %D [%s]:\n", gp->goid, status);
runtime: simplify stack traces Make the stack traces more readable for new Go programmers while preserving their utility for old hands. - Change status number [4] to string. - Elide frames in runtime package (internal details). - Swap file:line and arguments. - Drop 'created by' for main goroutine. - Show goroutines in order of allocation: implies main goroutine first if nothing else. There is no option to get the extra frames back. Uncomment 'return 1' at the bottom of symtab.c. $ 6.out throw: all goroutines are asleep - deadlock! goroutine 1 [chan send]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:22 +0x8a goroutine 2 [select (no cases)]: main.sel() /Users/rsc/g/go/src/pkg/runtime/x.go:11 +0x18 created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:19 +0x23 goroutine 3 [chan receive]: main.recv(0xf8400010a0, 0x0) /Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:20 +0x50 goroutine 4 [chan receive (nil chan)]: main.recv(0x0, 0x0) /Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:21 +0x66 $ $ 6.out index panic: runtime error: index out of range goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:25 +0xb9 $ $ 6.out nil panic: runtime error: invalid memory address or nil pointer dereference [signal 0xb code=0x1 addr=0x0 pc=0x22ca] goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:28 +0x211 $ $ 6.out panic panic: panic goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:30 +0x101 $ R=golang-dev, qyzhai, n13m3y3r, r CC=golang-dev https://golang.org/cl/4907048
2011-08-22 21:26:39 -06:00
}
void
runtime·tracebackothers(G *me)
{
G *gp;
int32 traceback;
traceback = runtime·gotraceback(nil);
runtime: record proper goroutine state during stack split Until now, the goroutine state has been scattered during the execution of newstack and oldstack. It's all there, and those routines know how to get back to a working goroutine, but other pieces of the system, like stack traces, do not. If something does interrupt the newstack or oldstack execution, the rest of the system can't understand the goroutine. For example, if newstack decides there is an overflow and calls throw, the stack tracer wouldn't dump the goroutine correctly. For newstack to save a useful state snapshot, it needs to be able to rewind the PC in the function that triggered the split back to the beginning of the function. (The PC is a few instructions in, just after the call to morestack.) To make that possible, we change the prologues to insert a jmp back to the beginning of the function after the call to morestack. That is, the prologue used to be roughly: TEXT myfunc check for split jmpcond nosplit call morestack nosplit: sub $xxx, sp Now an extra instruction is inserted after the call: TEXT myfunc start: check for split jmpcond nosplit call morestack jmp start nosplit: sub $xxx, sp The jmp is not executed directly. It is decoded and simulated by runtime.rewindmorestack to discover the beginning of the function, and then the call to morestack returns directly to the start label instead of to the jump instruction. So logically the jmp is still executed, just not by the cpu. The prologue thus repeats in the case of a function that needs a stack split, but against the cost of the split itself, the extra few instructions are noise. The repeated prologue has the nice effect of making a stack split double-check that the new stack is big enough: if morestack happens to return on a too-small stack, we'll now notice before corruption happens. The ability for newstack to rewind to the beginning of the function should help preemption too. If newstack decides that it was called for preemption instead of a stack split, it now has the goroutine state correctly paused if rescheduling is needed, and when the goroutine can run again, it can return to the start label on its original stack and re-execute the split check. Here is an example of a split stack overflow showing the full trace, without any special cases in the stack printer. (This one was triggered by making the split check incorrect.) runtime: newstack framesize=0x0 argsize=0x18 sp=0x6aebd0 stack=[0x6b0000, 0x6b0fa0] morebuf={pc:0x69f5b sp:0x6aebd8 lr:0x0} sched={pc:0x68880 sp:0x6aebd0 lr:0x0 ctxt:0x34e700} runtime: split stack overflow: 0x6aebd0 < 0x6b0000 fatal error: runtime: split stack overflow goroutine 1 [stack split]: runtime.mallocgc(0x290, 0x100000000, 0x1) /Users/rsc/g/go/src/pkg/runtime/zmalloc_darwin_amd64.c:21 fp=0x6aebd8 runtime.new() /Users/rsc/g/go/src/pkg/runtime/zmalloc_darwin_amd64.c:682 +0x5b fp=0x6aec08 go/build.(*Context).Import(0x5ae340, 0xc210030c71, 0xa, 0xc2100b4380, 0x1b, ...) /Users/rsc/g/go/src/pkg/go/build/build.go:424 +0x3a fp=0x6b00a0 main.loadImport(0xc210030c71, 0xa, 0xc2100b4380, 0x1b, 0xc2100b42c0, ...) /Users/rsc/g/go/src/cmd/go/pkg.go:249 +0x371 fp=0x6b01a8 main.(*Package).load(0xc21017c800, 0xc2100b42c0, 0xc2101828c0, 0x0, 0x0, ...) /Users/rsc/g/go/src/cmd/go/pkg.go:431 +0x2801 fp=0x6b0c98 main.loadPackage(0x369040, 0x7, 0xc2100b42c0, 0x0) /Users/rsc/g/go/src/cmd/go/pkg.go:709 +0x857 fp=0x6b0f80 ----- stack segment boundary ----- main.(*builder).action(0xc2100902a0, 0x0, 0x0, 0xc2100e6c00, 0xc2100e5750, ...) /Users/rsc/g/go/src/cmd/go/build.go:539 +0x437 fp=0x6b14a0 main.(*builder).action(0xc2100902a0, 0x0, 0x0, 0xc21015b400, 0x2, ...) /Users/rsc/g/go/src/cmd/go/build.go:528 +0x1d2 fp=0x6b1658 main.(*builder).test(0xc2100902a0, 0xc210092000, 0x0, 0x0, 0xc21008ff60, ...) /Users/rsc/g/go/src/cmd/go/test.go:622 +0x1b53 fp=0x6b1f68 ----- stack segment boundary ----- main.runTest(0x5a6b20, 0xc21000a020, 0x2, 0x2) /Users/rsc/g/go/src/cmd/go/test.go:366 +0xd09 fp=0x6a5cf0 main.main() /Users/rsc/g/go/src/cmd/go/main.go:161 +0x4f9 fp=0x6a5f78 runtime.main() /Users/rsc/g/go/src/pkg/runtime/proc.c:183 +0x92 fp=0x6a5fa0 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1266 fp=0x6a5fa8 And here is a seg fault during oldstack: SIGSEGV: segmentation violation PC=0x1b2a6 runtime.oldstack() /Users/rsc/g/go/src/pkg/runtime/stack.c:159 +0x76 runtime.lessstack() /Users/rsc/g/go/src/pkg/runtime/asm_amd64.s:270 +0x22 goroutine 1 [stack unsplit]: fmt.(*pp).printArg(0x2102e64e0, 0xe5c80, 0x2102c9220, 0x73, 0x0, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:818 +0x3d3 fp=0x221031e6f8 fmt.(*pp).doPrintf(0x2102e64e0, 0x12fb20, 0x2, 0x221031eb98, 0x1, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:1183 +0x15cb fp=0x221031eaf0 fmt.Sprintf(0x12fb20, 0x2, 0x221031eb98, 0x1, 0x1, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:234 +0x67 fp=0x221031eb40 flag.(*stringValue).String(0x2102c9210, 0x1, 0x0) /Users/rsc/g/go/src/pkg/flag/flag.go:180 +0xb3 fp=0x221031ebb0 flag.(*FlagSet).Var(0x2102f6000, 0x293d38, 0x2102c9210, 0x143490, 0xa, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:633 +0x40 fp=0x221031eca0 flag.(*FlagSet).StringVar(0x2102f6000, 0x2102c9210, 0x143490, 0xa, 0x12fa60, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:550 +0x91 fp=0x221031ece8 flag.(*FlagSet).String(0x2102f6000, 0x143490, 0xa, 0x12fa60, 0x0, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:563 +0x87 fp=0x221031ed38 flag.String(0x143490, 0xa, 0x12fa60, 0x0, 0x161950, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:570 +0x6b fp=0x221031ed80 testing.init() /Users/rsc/g/go/src/pkg/testing/testing.go:-531 +0xbb fp=0x221031edc0 strings_test.init() /Users/rsc/g/go/src/pkg/strings/strings_test.go:1115 +0x62 fp=0x221031ef70 main.init() strings/_test/_testmain.go:90 +0x3d fp=0x221031ef78 runtime.main() /Users/rsc/g/go/src/pkg/runtime/proc.c:180 +0x8a fp=0x221031efa0 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1269 fp=0x221031efa8 goroutine 2 [runnable]: runtime.MHeap_Scavenger() /Users/rsc/g/go/src/pkg/runtime/mheap.c:438 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1269 created by runtime.main /Users/rsc/g/go/src/pkg/runtime/proc.c:166 rax 0x23ccc0 rbx 0x23ccc0 rcx 0x0 rdx 0x38 rdi 0x2102c0170 rsi 0x221032cfe0 rbp 0x221032cfa0 rsp 0x7fff5fbff5b0 r8 0x2102c0120 r9 0x221032cfa0 r10 0x221032c000 r11 0x104ce8 r12 0xe5c80 r13 0x1be82baac718 r14 0x13091135f7d69200 r15 0x0 rip 0x1b2a6 rflags 0x10246 cs 0x2b fs 0x0 gs 0x0 Fixes #5723. R=r, dvyukov, go.peter.90, dave, iant CC=golang-dev https://golang.org/cl/10360048
2013-06-27 09:32:01 -06:00
// Show the current goroutine first, if we haven't already.
if((gp = m->curg) != nil && gp != me) {
runtime·printf("\n");
runtime·goroutineheader(gp);
runtime·traceback(gp->sched.pc, gp->sched.sp, gp->sched.lr, gp);
}
for(gp = runtime·allg; gp != nil; gp = gp->alllink) {
runtime: record proper goroutine state during stack split Until now, the goroutine state has been scattered during the execution of newstack and oldstack. It's all there, and those routines know how to get back to a working goroutine, but other pieces of the system, like stack traces, do not. If something does interrupt the newstack or oldstack execution, the rest of the system can't understand the goroutine. For example, if newstack decides there is an overflow and calls throw, the stack tracer wouldn't dump the goroutine correctly. For newstack to save a useful state snapshot, it needs to be able to rewind the PC in the function that triggered the split back to the beginning of the function. (The PC is a few instructions in, just after the call to morestack.) To make that possible, we change the prologues to insert a jmp back to the beginning of the function after the call to morestack. That is, the prologue used to be roughly: TEXT myfunc check for split jmpcond nosplit call morestack nosplit: sub $xxx, sp Now an extra instruction is inserted after the call: TEXT myfunc start: check for split jmpcond nosplit call morestack jmp start nosplit: sub $xxx, sp The jmp is not executed directly. It is decoded and simulated by runtime.rewindmorestack to discover the beginning of the function, and then the call to morestack returns directly to the start label instead of to the jump instruction. So logically the jmp is still executed, just not by the cpu. The prologue thus repeats in the case of a function that needs a stack split, but against the cost of the split itself, the extra few instructions are noise. The repeated prologue has the nice effect of making a stack split double-check that the new stack is big enough: if morestack happens to return on a too-small stack, we'll now notice before corruption happens. The ability for newstack to rewind to the beginning of the function should help preemption too. If newstack decides that it was called for preemption instead of a stack split, it now has the goroutine state correctly paused if rescheduling is needed, and when the goroutine can run again, it can return to the start label on its original stack and re-execute the split check. Here is an example of a split stack overflow showing the full trace, without any special cases in the stack printer. (This one was triggered by making the split check incorrect.) runtime: newstack framesize=0x0 argsize=0x18 sp=0x6aebd0 stack=[0x6b0000, 0x6b0fa0] morebuf={pc:0x69f5b sp:0x6aebd8 lr:0x0} sched={pc:0x68880 sp:0x6aebd0 lr:0x0 ctxt:0x34e700} runtime: split stack overflow: 0x6aebd0 < 0x6b0000 fatal error: runtime: split stack overflow goroutine 1 [stack split]: runtime.mallocgc(0x290, 0x100000000, 0x1) /Users/rsc/g/go/src/pkg/runtime/zmalloc_darwin_amd64.c:21 fp=0x6aebd8 runtime.new() /Users/rsc/g/go/src/pkg/runtime/zmalloc_darwin_amd64.c:682 +0x5b fp=0x6aec08 go/build.(*Context).Import(0x5ae340, 0xc210030c71, 0xa, 0xc2100b4380, 0x1b, ...) /Users/rsc/g/go/src/pkg/go/build/build.go:424 +0x3a fp=0x6b00a0 main.loadImport(0xc210030c71, 0xa, 0xc2100b4380, 0x1b, 0xc2100b42c0, ...) /Users/rsc/g/go/src/cmd/go/pkg.go:249 +0x371 fp=0x6b01a8 main.(*Package).load(0xc21017c800, 0xc2100b42c0, 0xc2101828c0, 0x0, 0x0, ...) /Users/rsc/g/go/src/cmd/go/pkg.go:431 +0x2801 fp=0x6b0c98 main.loadPackage(0x369040, 0x7, 0xc2100b42c0, 0x0) /Users/rsc/g/go/src/cmd/go/pkg.go:709 +0x857 fp=0x6b0f80 ----- stack segment boundary ----- main.(*builder).action(0xc2100902a0, 0x0, 0x0, 0xc2100e6c00, 0xc2100e5750, ...) /Users/rsc/g/go/src/cmd/go/build.go:539 +0x437 fp=0x6b14a0 main.(*builder).action(0xc2100902a0, 0x0, 0x0, 0xc21015b400, 0x2, ...) /Users/rsc/g/go/src/cmd/go/build.go:528 +0x1d2 fp=0x6b1658 main.(*builder).test(0xc2100902a0, 0xc210092000, 0x0, 0x0, 0xc21008ff60, ...) /Users/rsc/g/go/src/cmd/go/test.go:622 +0x1b53 fp=0x6b1f68 ----- stack segment boundary ----- main.runTest(0x5a6b20, 0xc21000a020, 0x2, 0x2) /Users/rsc/g/go/src/cmd/go/test.go:366 +0xd09 fp=0x6a5cf0 main.main() /Users/rsc/g/go/src/cmd/go/main.go:161 +0x4f9 fp=0x6a5f78 runtime.main() /Users/rsc/g/go/src/pkg/runtime/proc.c:183 +0x92 fp=0x6a5fa0 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1266 fp=0x6a5fa8 And here is a seg fault during oldstack: SIGSEGV: segmentation violation PC=0x1b2a6 runtime.oldstack() /Users/rsc/g/go/src/pkg/runtime/stack.c:159 +0x76 runtime.lessstack() /Users/rsc/g/go/src/pkg/runtime/asm_amd64.s:270 +0x22 goroutine 1 [stack unsplit]: fmt.(*pp).printArg(0x2102e64e0, 0xe5c80, 0x2102c9220, 0x73, 0x0, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:818 +0x3d3 fp=0x221031e6f8 fmt.(*pp).doPrintf(0x2102e64e0, 0x12fb20, 0x2, 0x221031eb98, 0x1, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:1183 +0x15cb fp=0x221031eaf0 fmt.Sprintf(0x12fb20, 0x2, 0x221031eb98, 0x1, 0x1, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:234 +0x67 fp=0x221031eb40 flag.(*stringValue).String(0x2102c9210, 0x1, 0x0) /Users/rsc/g/go/src/pkg/flag/flag.go:180 +0xb3 fp=0x221031ebb0 flag.(*FlagSet).Var(0x2102f6000, 0x293d38, 0x2102c9210, 0x143490, 0xa, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:633 +0x40 fp=0x221031eca0 flag.(*FlagSet).StringVar(0x2102f6000, 0x2102c9210, 0x143490, 0xa, 0x12fa60, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:550 +0x91 fp=0x221031ece8 flag.(*FlagSet).String(0x2102f6000, 0x143490, 0xa, 0x12fa60, 0x0, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:563 +0x87 fp=0x221031ed38 flag.String(0x143490, 0xa, 0x12fa60, 0x0, 0x161950, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:570 +0x6b fp=0x221031ed80 testing.init() /Users/rsc/g/go/src/pkg/testing/testing.go:-531 +0xbb fp=0x221031edc0 strings_test.init() /Users/rsc/g/go/src/pkg/strings/strings_test.go:1115 +0x62 fp=0x221031ef70 main.init() strings/_test/_testmain.go:90 +0x3d fp=0x221031ef78 runtime.main() /Users/rsc/g/go/src/pkg/runtime/proc.c:180 +0x8a fp=0x221031efa0 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1269 fp=0x221031efa8 goroutine 2 [runnable]: runtime.MHeap_Scavenger() /Users/rsc/g/go/src/pkg/runtime/mheap.c:438 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1269 created by runtime.main /Users/rsc/g/go/src/pkg/runtime/proc.c:166 rax 0x23ccc0 rbx 0x23ccc0 rcx 0x0 rdx 0x38 rdi 0x2102c0170 rsi 0x221032cfe0 rbp 0x221032cfa0 rsp 0x7fff5fbff5b0 r8 0x2102c0120 r9 0x221032cfa0 r10 0x221032c000 r11 0x104ce8 r12 0xe5c80 r13 0x1be82baac718 r14 0x13091135f7d69200 r15 0x0 rip 0x1b2a6 rflags 0x10246 cs 0x2b fs 0x0 gs 0x0 Fixes #5723. R=r, dvyukov, go.peter.90, dave, iant CC=golang-dev https://golang.org/cl/10360048
2013-06-27 09:32:01 -06:00
if(gp == me || gp == m->curg || gp->status == Gdead)
continue;
if(gp->issystem && traceback < 2)
continue;
runtime: simplify stack traces Make the stack traces more readable for new Go programmers while preserving their utility for old hands. - Change status number [4] to string. - Elide frames in runtime package (internal details). - Swap file:line and arguments. - Drop 'created by' for main goroutine. - Show goroutines in order of allocation: implies main goroutine first if nothing else. There is no option to get the extra frames back. Uncomment 'return 1' at the bottom of symtab.c. $ 6.out throw: all goroutines are asleep - deadlock! goroutine 1 [chan send]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:22 +0x8a goroutine 2 [select (no cases)]: main.sel() /Users/rsc/g/go/src/pkg/runtime/x.go:11 +0x18 created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:19 +0x23 goroutine 3 [chan receive]: main.recv(0xf8400010a0, 0x0) /Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:20 +0x50 goroutine 4 [chan receive (nil chan)]: main.recv(0x0, 0x0) /Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:21 +0x66 $ $ 6.out index panic: runtime error: index out of range goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:25 +0xb9 $ $ 6.out nil panic: runtime error: invalid memory address or nil pointer dereference [signal 0xb code=0x1 addr=0x0 pc=0x22ca] goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:28 +0x211 $ $ 6.out panic panic: panic goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:30 +0x101 $ R=golang-dev, qyzhai, n13m3y3r, r CC=golang-dev https://golang.org/cl/4907048
2011-08-22 21:26:39 -06:00
runtime·printf("\n");
runtime·goroutineheader(gp);
runtime: record proper goroutine state during stack split Until now, the goroutine state has been scattered during the execution of newstack and oldstack. It's all there, and those routines know how to get back to a working goroutine, but other pieces of the system, like stack traces, do not. If something does interrupt the newstack or oldstack execution, the rest of the system can't understand the goroutine. For example, if newstack decides there is an overflow and calls throw, the stack tracer wouldn't dump the goroutine correctly. For newstack to save a useful state snapshot, it needs to be able to rewind the PC in the function that triggered the split back to the beginning of the function. (The PC is a few instructions in, just after the call to morestack.) To make that possible, we change the prologues to insert a jmp back to the beginning of the function after the call to morestack. That is, the prologue used to be roughly: TEXT myfunc check for split jmpcond nosplit call morestack nosplit: sub $xxx, sp Now an extra instruction is inserted after the call: TEXT myfunc start: check for split jmpcond nosplit call morestack jmp start nosplit: sub $xxx, sp The jmp is not executed directly. It is decoded and simulated by runtime.rewindmorestack to discover the beginning of the function, and then the call to morestack returns directly to the start label instead of to the jump instruction. So logically the jmp is still executed, just not by the cpu. The prologue thus repeats in the case of a function that needs a stack split, but against the cost of the split itself, the extra few instructions are noise. The repeated prologue has the nice effect of making a stack split double-check that the new stack is big enough: if morestack happens to return on a too-small stack, we'll now notice before corruption happens. The ability for newstack to rewind to the beginning of the function should help preemption too. If newstack decides that it was called for preemption instead of a stack split, it now has the goroutine state correctly paused if rescheduling is needed, and when the goroutine can run again, it can return to the start label on its original stack and re-execute the split check. Here is an example of a split stack overflow showing the full trace, without any special cases in the stack printer. (This one was triggered by making the split check incorrect.) runtime: newstack framesize=0x0 argsize=0x18 sp=0x6aebd0 stack=[0x6b0000, 0x6b0fa0] morebuf={pc:0x69f5b sp:0x6aebd8 lr:0x0} sched={pc:0x68880 sp:0x6aebd0 lr:0x0 ctxt:0x34e700} runtime: split stack overflow: 0x6aebd0 < 0x6b0000 fatal error: runtime: split stack overflow goroutine 1 [stack split]: runtime.mallocgc(0x290, 0x100000000, 0x1) /Users/rsc/g/go/src/pkg/runtime/zmalloc_darwin_amd64.c:21 fp=0x6aebd8 runtime.new() /Users/rsc/g/go/src/pkg/runtime/zmalloc_darwin_amd64.c:682 +0x5b fp=0x6aec08 go/build.(*Context).Import(0x5ae340, 0xc210030c71, 0xa, 0xc2100b4380, 0x1b, ...) /Users/rsc/g/go/src/pkg/go/build/build.go:424 +0x3a fp=0x6b00a0 main.loadImport(0xc210030c71, 0xa, 0xc2100b4380, 0x1b, 0xc2100b42c0, ...) /Users/rsc/g/go/src/cmd/go/pkg.go:249 +0x371 fp=0x6b01a8 main.(*Package).load(0xc21017c800, 0xc2100b42c0, 0xc2101828c0, 0x0, 0x0, ...) /Users/rsc/g/go/src/cmd/go/pkg.go:431 +0x2801 fp=0x6b0c98 main.loadPackage(0x369040, 0x7, 0xc2100b42c0, 0x0) /Users/rsc/g/go/src/cmd/go/pkg.go:709 +0x857 fp=0x6b0f80 ----- stack segment boundary ----- main.(*builder).action(0xc2100902a0, 0x0, 0x0, 0xc2100e6c00, 0xc2100e5750, ...) /Users/rsc/g/go/src/cmd/go/build.go:539 +0x437 fp=0x6b14a0 main.(*builder).action(0xc2100902a0, 0x0, 0x0, 0xc21015b400, 0x2, ...) /Users/rsc/g/go/src/cmd/go/build.go:528 +0x1d2 fp=0x6b1658 main.(*builder).test(0xc2100902a0, 0xc210092000, 0x0, 0x0, 0xc21008ff60, ...) /Users/rsc/g/go/src/cmd/go/test.go:622 +0x1b53 fp=0x6b1f68 ----- stack segment boundary ----- main.runTest(0x5a6b20, 0xc21000a020, 0x2, 0x2) /Users/rsc/g/go/src/cmd/go/test.go:366 +0xd09 fp=0x6a5cf0 main.main() /Users/rsc/g/go/src/cmd/go/main.go:161 +0x4f9 fp=0x6a5f78 runtime.main() /Users/rsc/g/go/src/pkg/runtime/proc.c:183 +0x92 fp=0x6a5fa0 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1266 fp=0x6a5fa8 And here is a seg fault during oldstack: SIGSEGV: segmentation violation PC=0x1b2a6 runtime.oldstack() /Users/rsc/g/go/src/pkg/runtime/stack.c:159 +0x76 runtime.lessstack() /Users/rsc/g/go/src/pkg/runtime/asm_amd64.s:270 +0x22 goroutine 1 [stack unsplit]: fmt.(*pp).printArg(0x2102e64e0, 0xe5c80, 0x2102c9220, 0x73, 0x0, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:818 +0x3d3 fp=0x221031e6f8 fmt.(*pp).doPrintf(0x2102e64e0, 0x12fb20, 0x2, 0x221031eb98, 0x1, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:1183 +0x15cb fp=0x221031eaf0 fmt.Sprintf(0x12fb20, 0x2, 0x221031eb98, 0x1, 0x1, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:234 +0x67 fp=0x221031eb40 flag.(*stringValue).String(0x2102c9210, 0x1, 0x0) /Users/rsc/g/go/src/pkg/flag/flag.go:180 +0xb3 fp=0x221031ebb0 flag.(*FlagSet).Var(0x2102f6000, 0x293d38, 0x2102c9210, 0x143490, 0xa, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:633 +0x40 fp=0x221031eca0 flag.(*FlagSet).StringVar(0x2102f6000, 0x2102c9210, 0x143490, 0xa, 0x12fa60, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:550 +0x91 fp=0x221031ece8 flag.(*FlagSet).String(0x2102f6000, 0x143490, 0xa, 0x12fa60, 0x0, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:563 +0x87 fp=0x221031ed38 flag.String(0x143490, 0xa, 0x12fa60, 0x0, 0x161950, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:570 +0x6b fp=0x221031ed80 testing.init() /Users/rsc/g/go/src/pkg/testing/testing.go:-531 +0xbb fp=0x221031edc0 strings_test.init() /Users/rsc/g/go/src/pkg/strings/strings_test.go:1115 +0x62 fp=0x221031ef70 main.init() strings/_test/_testmain.go:90 +0x3d fp=0x221031ef78 runtime.main() /Users/rsc/g/go/src/pkg/runtime/proc.c:180 +0x8a fp=0x221031efa0 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1269 fp=0x221031efa8 goroutine 2 [runnable]: runtime.MHeap_Scavenger() /Users/rsc/g/go/src/pkg/runtime/mheap.c:438 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1269 created by runtime.main /Users/rsc/g/go/src/pkg/runtime/proc.c:166 rax 0x23ccc0 rbx 0x23ccc0 rcx 0x0 rdx 0x38 rdi 0x2102c0170 rsi 0x221032cfe0 rbp 0x221032cfa0 rsp 0x7fff5fbff5b0 r8 0x2102c0120 r9 0x221032cfa0 r10 0x221032c000 r11 0x104ce8 r12 0xe5c80 r13 0x1be82baac718 r14 0x13091135f7d69200 r15 0x0 rip 0x1b2a6 rflags 0x10246 cs 0x2b fs 0x0 gs 0x0 Fixes #5723. R=r, dvyukov, go.peter.90, dave, iant CC=golang-dev https://golang.org/cl/10360048
2013-06-27 09:32:01 -06:00
if(gp->status == Grunning)
runtime·printf("\tgoroutine running on other thread; stack unavailable\n");
else
runtime·traceback(gp->sched.pc, gp->sched.sp, gp->sched.lr, gp);
}
}
static void
mcommoninit(M *mp)
{
// If there is no mcache runtime·callers() will crash,
// and we are most likely in sysmon thread so the stack is senseless anyway.
if(m->mcache)
runtime·callers(1, mp->createstack, nelem(mp->createstack));
mp->fastrand = 0x49f6428aUL + mp->id + runtime·cputicks();
runtime·lock(&runtime·sched);
mp->id = runtime·sched.mcount++;
runtime·mpreinit(mp);
// Add to runtime·allm so garbage collector doesn't free m
// when it is just in a register or thread-local storage.
mp->alllink = runtime·allm;
// runtime·NumCgoCall() iterates over allm w/o schedlock,
// so we need to publish it safely.
runtime·atomicstorep(&runtime·allm, mp);
runtime·unlock(&runtime·sched);
}
// Mark gp ready to run.
void
runtime·ready(G *gp)
{
// Mark runnable.
m->locks++; // disable preemption because it can be holding p in a local var
if(gp->status != Gwaiting) {
runtime·printf("goroutine %D has status %d\n", gp->goid, gp->status);
runtime·throw("bad g->status in ready");
runtime: always run stackalloc on scheduler stack Avoids deadlocks like the one below, in which a stack split happened in order to call lock(&stacks), but then the stack unsplit cannot run because stacks is now locked. The only code calling stackalloc that wasn't on a scheduler stack already was malg, which creates a new goroutine. runtime.futex+0x23 /home/rsc/g/go/src/pkg/runtime/linux/amd64/sys.s:139 runtime.futex() futexsleep+0x50 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:51 futexsleep(0x5b0188, 0x300000003, 0x100020000, 0x4159e2) futexlock+0x85 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:119 futexlock(0x5b0188, 0x5b0188) runtime.lock+0x56 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:158 runtime.lock(0x5b0188, 0x7f0d27b4a000) runtime.stackfree+0x4d /home/rsc/g/go/src/pkg/runtime/malloc.goc:336 runtime.stackfree(0x7f0d27b4a000, 0x1000, 0x8, 0x7fff37e1e218) runtime.oldstack+0xa6 /home/rsc/g/go/src/pkg/runtime/proc.c:705 runtime.oldstack() runtime.lessstack+0x22 /home/rsc/g/go/src/pkg/runtime/amd64/asm.s:224 runtime.lessstack() ----- lessstack called from goroutine 2 ----- runtime.lock+0x56 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:158 runtime.lock(0x5b0188, 0x40a5e2) runtime.stackalloc+0x55 /home/rsc/g/go/src/pkg/runtime/malloc.c:316 runtime.stackalloc(0x1000, 0x4055b0) runtime.malg+0x3d /home/rsc/g/go/src/pkg/runtime/proc.c:803 runtime.malg(0x1000, 0x40add9) runtime.newproc1+0x12b /home/rsc/g/go/src/pkg/runtime/proc.c:854 runtime.newproc1(0xf840027440, 0x7f0d27b49230, 0x0, 0x49f238, 0x40, ...) runtime.newproc+0x2f /home/rsc/g/go/src/pkg/runtime/proc.c:831 runtime.newproc(0x0, 0xf840027440, 0xf800000010, 0x44b059) ... R=r, r2 CC=golang-dev https://golang.org/cl/4216045
2011-02-23 13:51:20 -07:00
}
gp->status = Grunnable;
runqput(m->p, gp);
if(runtime·atomicload(&runtime·sched.npidle) != 0 && runtime·atomicload(&runtime·sched.nmspinning) == 0) // TODO: fast atomic
wakep();
m->locks--;
if(m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack
g->stackguard0 = StackPreempt;
2008-07-14 15:34:27 -06:00
}
int32
runtime·gcprocs(void)
{
int32 n;
// Figure out how many CPUs to use during GC.
// Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
runtime·lock(&runtime·sched);
n = runtime·gomaxprocs;
if(n > runtime·ncpu)
n = runtime·ncpu;
if(n > MaxGcproc)
n = MaxGcproc;
if(n > runtime·sched.nmidle+1) // one M is currently running
n = runtime·sched.nmidle+1;
runtime·unlock(&runtime·sched);
return n;
}
static bool
needaddgcproc(void)
{
int32 n;
runtime·lock(&runtime·sched);
n = runtime·gomaxprocs;
if(n > runtime·ncpu)
n = runtime·ncpu;
if(n > MaxGcproc)
n = MaxGcproc;
n -= runtime·sched.nmidle+1; // one M is currently running
runtime·unlock(&runtime·sched);
return n > 0;
}
void
runtime·helpgc(int32 nproc)
{
M *mp;
int32 n, pos;
runtime·lock(&runtime·sched);
pos = 0;
for(n = 1; n < nproc; n++) { // one M is currently running
if(runtime·allp[pos]->mcache == m->mcache)
pos++;
mp = mget();
if(mp == nil)
runtime·throw("runtime·gcprocs inconsistency");
mp->helpgc = n;
mp->mcache = runtime·allp[pos]->mcache;
pos++;
runtime·notewakeup(&mp->park);
}
runtime·unlock(&runtime·sched);
}
void
runtime·stoptheworld(void)
{
int32 i;
uint32 s;
P *p;
bool wait;
runtime·lock(&runtime·sched);
runtime·sched.stopwait = runtime·gomaxprocs;
runtime·atomicstore((uint32*)&runtime·gcwaiting, 1);
preemptall();
// stop current P
m->p->status = Pgcstop;
runtime·sched.stopwait--;
// try to retake all P's in Psyscall status
for(i = 0; i < runtime·gomaxprocs; i++) {
p = runtime·allp[i];
s = p->status;
if(s == Psyscall && runtime·cas(&p->status, s, Pgcstop))
runtime·sched.stopwait--;
}
// stop idle P's
while(p = pidleget()) {
p->status = Pgcstop;
runtime·sched.stopwait--;
}
wait = runtime·sched.stopwait > 0;
runtime·unlock(&runtime·sched);
// wait for remaining P's to stop voluntarily
if(wait) {
for(;;) {
// wait for 100us, then try to re-preempt in case of any races
if(runtime·notetsleep(&runtime·sched.stopnote, 100*1000)) {
runtime·noteclear(&runtime·sched.stopnote);
break;
}
preemptall();
}
}
if(runtime·sched.stopwait)
runtime·throw("stoptheworld: not stopped");
for(i = 0; i < runtime·gomaxprocs; i++) {
p = runtime·allp[i];
if(p->status != Pgcstop)
runtime·throw("stoptheworld: not stopped");
}
}
static void
mhelpgc(void)
{
m->helpgc = -1;
}
void
runtime·starttheworld(void)
{
P *p, *p1;
M *mp;
G *gp;
bool add;
m->locks++; // disable preemption because it can be holding p in a local var
gp = runtime·netpoll(false); // non-blocking
injectglist(gp);
add = needaddgcproc();
runtime·lock(&runtime·sched);
if(newprocs) {
procresize(newprocs);
newprocs = 0;
} else
procresize(runtime·gomaxprocs);
runtime·gcwaiting = 0;
p1 = nil;
while(p = pidleget()) {
// procresize() puts p's with work at the beginning of the list.
// Once we reach a p without a run queue, the rest don't have one either.
if(p->runqhead == p->runqtail) {
pidleput(p);
break;
}
p->m = mget();
p->link = p1;
p1 = p;
}
if(runtime·sched.sysmonwait) {
runtime·sched.sysmonwait = false;
runtime·notewakeup(&runtime·sched.sysmonnote);
}
runtime·unlock(&runtime·sched);
while(p1) {
p = p1;
p1 = p1->link;
if(p->m) {
mp = p->m;
p->m = nil;
if(mp->nextp)
runtime·throw("starttheworld: inconsistent mp->nextp");
mp->nextp = p;
runtime·notewakeup(&mp->park);
} else {
// Start M to run P. Do not start another M below.
newm(nil, p);
add = false;
}
}
if(add) {
// If GC could have used another helper proc, start one now,
// in the hope that it will be available next time.
// It would have been even better to start it before the collection,
// but doing so requires allocating memory, so it's tricky to
// coordinate. This lazy approach works out in practice:
// we don't mind if the first couple gc rounds don't have quite
// the maximum number of procs.
newm(mhelpgc, nil);
}
m->locks--;
if(m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack
g->stackguard0 = StackPreempt;
}
// Called to start an M.
void
runtime·mstart(void)
{
#ifdef GOOS_windows
#ifdef GOARCH_386
// It is used by windows-386 only. Unfortunately, seh needs
// to be located on os stack, and mstart runs on os stack
// for both m0 and m.
SEH seh;
#endif
#endif
if(g != m->g0)
runtime·throw("bad runtime·mstart");
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// Record top of stack for use by mcall.
// Once we call schedule we're never coming back,
// so other calls can reuse this stack space.
runtime·gosave(&m->g0->sched);
m->g0->sched.pc = (uintptr)-1; // make sure it is never used
m->g0->stackguard = m->g0->stackguard0; // cgo sets only stackguard0, copy it to stackguard
#ifdef GOOS_windows
#ifdef GOARCH_386
m->seh = &seh;
#endif
#endif
runtime·asminit();
runtime·minit();
// Install signal handlers; after minit so that minit can
// prepare the thread to be able to handle the signals.
if(m == &runtime·m0)
runtime·initsig();
if(m->mstartfn)
m->mstartfn();
if(m->helpgc) {
m->helpgc = 0;
stopm();
} else if(m != &runtime·m0) {
acquirep(m->nextp);
m->nextp = nil;
}
schedule();
// TODO(brainman): This point is never reached, because scheduler
// does not release os threads at the moment. But once this path
// is enabled, we must remove our seh here.
}
// When running with cgo, we call _cgo_thread_start
// to start threads for us so that we can play nicely with
// foreign code.
void (*_cgo_thread_start)(void*);
typedef struct CgoThreadStart CgoThreadStart;
struct CgoThreadStart
{
M *m;
G *g;
void (*fn)(void);
};
// Allocate a new m unassociated with any thread.
// Can use p for allocation context if needed.
M*
runtime·allocm(P *p)
{
M *mp;
static Type *mtype; // The Go type M
m->locks++; // disable GC because it can be called from sysmon
if(m->p == nil)
acquirep(p); // temporarily borrow p for mallocs in this function
if(mtype == nil) {
Eface e;
runtime·gc_m_ptr(&e);
mtype = ((PtrType*)e.type)->elem;
}
mp = runtime·cnew(mtype);
mcommoninit(mp);
// In case of cgo, pthread_create will make us a stack.
// Windows will layout sched stack on OS stack.
if(runtime·iscgo || Windows)
mp->g0 = runtime·malg(-1);
else
mp->g0 = runtime·malg(8192);
if(p == m->p)
releasep();
m->locks--;
if(m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack
g->stackguard0 = StackPreempt;
return mp;
}
static M* lockextra(bool nilokay);
static void unlockextra(M*);
// needm is called when a cgo callback happens on a
// thread without an m (a thread not created by Go).
// In this case, needm is expected to find an m to use
// and return with m, g initialized correctly.
// Since m and g are not set now (likely nil, but see below)
// needm is limited in what routines it can call. In particular
// it can only call nosplit functions (textflag 7) and cannot
// do any scheduling that requires an m.
//
// In order to avoid needing heavy lifting here, we adopt
// the following strategy: there is a stack of available m's
// that can be stolen. Using compare-and-swap
// to pop from the stack has ABA races, so we simulate
// a lock by doing an exchange (via casp) to steal the stack
// head and replace the top pointer with MLOCKED (1).
// This serves as a simple spin lock that we can use even
// without an m. The thread that locks the stack in this way
// unlocks the stack by storing a valid stack head pointer.
//
// In order to make sure that there is always an m structure
// available to be stolen, we maintain the invariant that there
// is always one more than needed. At the beginning of the
// program (if cgo is in use) the list is seeded with a single m.
// If needm finds that it has taken the last m off the list, its job
// is - once it has installed its own m so that it can do things like
// allocate memory - to create a spare m and put it on the list.
//
// Each of these extra m's also has a g0 and a curg that are
// pressed into service as the scheduling stack and current
// goroutine for the duration of the cgo callback.
//
// When the callback is done with the m, it calls dropm to
// put the m back on the list.
#pragma textflag 7
void
runtime·needm(byte x)
{
M *mp;
if(runtime·needextram) {
// Can happen if C/C++ code calls Go from a global ctor.
// Can not throw, because scheduler is not initialized yet.
runtime·write(2, "fatal error: cgo callback before cgo call\n",
sizeof("fatal error: cgo callback before cgo call\n")-1);
runtime·exit(1);
}
// Lock extra list, take head, unlock popped list.
// nilokay=false is safe here because of the invariant above,
// that the extra list always contains or will soon contain
// at least one m.
mp = lockextra(false);
// Set needextram when we've just emptied the list,
// so that the eventual call into cgocallbackg will
// allocate a new m for the extra list. We delay the
// allocation until then so that it can be done
// after exitsyscall makes sure it is okay to be
// running at all (that is, there's no garbage collection
// running right now).
mp->needextram = mp->schedlink == nil;
unlockextra(mp->schedlink);
// Install m and g (= m->g0) and set the stack bounds
// to match the current stack. We don't actually know
// how big the stack is, like we don't know how big any
// scheduling stack is, but we assume there's at least 32 kB,
// which is more than enough for us.
runtime·setmg(mp, mp->g0);
g->stackbase = (uintptr)(&x + 1024);
g->stackguard = (uintptr)(&x - 32*1024);
g->stackguard0 = g->stackguard;
#ifdef GOOS_windows
#ifdef GOARCH_386
// On windows/386, we need to put an SEH frame (two words)
// somewhere on the current stack. We are called from cgocallback_gofunc
// and we know that it will leave two unused words below m->curg->sched.sp.
// Use those.
m->seh = (SEH*)((uintptr*)&x + 1);
#endif
#endif
// Initialize this thread to use the m.
runtime·asminit();
runtime·minit();
}
// newextram allocates an m and puts it on the extra list.
// It is called with a working local m, so that it can do things
// like call schedlock and allocate.
void
runtime·newextram(void)
{
M *mp, *mnext;
G *gp;
// Create extra goroutine locked to extra m.
// The goroutine is the context in which the cgo callback will run.
// The sched.pc will never be returned to, but setting it to
// runtime.goexit makes clear to the traceback routines where
// the goroutine stack ends.
mp = runtime·allocm(nil);
gp = runtime·malg(4096);
gp->sched.pc = (uintptr)runtime·goexit;
gp->sched.sp = gp->stackbase;
runtime: record proper goroutine state during stack split Until now, the goroutine state has been scattered during the execution of newstack and oldstack. It's all there, and those routines know how to get back to a working goroutine, but other pieces of the system, like stack traces, do not. If something does interrupt the newstack or oldstack execution, the rest of the system can't understand the goroutine. For example, if newstack decides there is an overflow and calls throw, the stack tracer wouldn't dump the goroutine correctly. For newstack to save a useful state snapshot, it needs to be able to rewind the PC in the function that triggered the split back to the beginning of the function. (The PC is a few instructions in, just after the call to morestack.) To make that possible, we change the prologues to insert a jmp back to the beginning of the function after the call to morestack. That is, the prologue used to be roughly: TEXT myfunc check for split jmpcond nosplit call morestack nosplit: sub $xxx, sp Now an extra instruction is inserted after the call: TEXT myfunc start: check for split jmpcond nosplit call morestack jmp start nosplit: sub $xxx, sp The jmp is not executed directly. It is decoded and simulated by runtime.rewindmorestack to discover the beginning of the function, and then the call to morestack returns directly to the start label instead of to the jump instruction. So logically the jmp is still executed, just not by the cpu. The prologue thus repeats in the case of a function that needs a stack split, but against the cost of the split itself, the extra few instructions are noise. The repeated prologue has the nice effect of making a stack split double-check that the new stack is big enough: if morestack happens to return on a too-small stack, we'll now notice before corruption happens. The ability for newstack to rewind to the beginning of the function should help preemption too. If newstack decides that it was called for preemption instead of a stack split, it now has the goroutine state correctly paused if rescheduling is needed, and when the goroutine can run again, it can return to the start label on its original stack and re-execute the split check. Here is an example of a split stack overflow showing the full trace, without any special cases in the stack printer. (This one was triggered by making the split check incorrect.) runtime: newstack framesize=0x0 argsize=0x18 sp=0x6aebd0 stack=[0x6b0000, 0x6b0fa0] morebuf={pc:0x69f5b sp:0x6aebd8 lr:0x0} sched={pc:0x68880 sp:0x6aebd0 lr:0x0 ctxt:0x34e700} runtime: split stack overflow: 0x6aebd0 < 0x6b0000 fatal error: runtime: split stack overflow goroutine 1 [stack split]: runtime.mallocgc(0x290, 0x100000000, 0x1) /Users/rsc/g/go/src/pkg/runtime/zmalloc_darwin_amd64.c:21 fp=0x6aebd8 runtime.new() /Users/rsc/g/go/src/pkg/runtime/zmalloc_darwin_amd64.c:682 +0x5b fp=0x6aec08 go/build.(*Context).Import(0x5ae340, 0xc210030c71, 0xa, 0xc2100b4380, 0x1b, ...) /Users/rsc/g/go/src/pkg/go/build/build.go:424 +0x3a fp=0x6b00a0 main.loadImport(0xc210030c71, 0xa, 0xc2100b4380, 0x1b, 0xc2100b42c0, ...) /Users/rsc/g/go/src/cmd/go/pkg.go:249 +0x371 fp=0x6b01a8 main.(*Package).load(0xc21017c800, 0xc2100b42c0, 0xc2101828c0, 0x0, 0x0, ...) /Users/rsc/g/go/src/cmd/go/pkg.go:431 +0x2801 fp=0x6b0c98 main.loadPackage(0x369040, 0x7, 0xc2100b42c0, 0x0) /Users/rsc/g/go/src/cmd/go/pkg.go:709 +0x857 fp=0x6b0f80 ----- stack segment boundary ----- main.(*builder).action(0xc2100902a0, 0x0, 0x0, 0xc2100e6c00, 0xc2100e5750, ...) /Users/rsc/g/go/src/cmd/go/build.go:539 +0x437 fp=0x6b14a0 main.(*builder).action(0xc2100902a0, 0x0, 0x0, 0xc21015b400, 0x2, ...) /Users/rsc/g/go/src/cmd/go/build.go:528 +0x1d2 fp=0x6b1658 main.(*builder).test(0xc2100902a0, 0xc210092000, 0x0, 0x0, 0xc21008ff60, ...) /Users/rsc/g/go/src/cmd/go/test.go:622 +0x1b53 fp=0x6b1f68 ----- stack segment boundary ----- main.runTest(0x5a6b20, 0xc21000a020, 0x2, 0x2) /Users/rsc/g/go/src/cmd/go/test.go:366 +0xd09 fp=0x6a5cf0 main.main() /Users/rsc/g/go/src/cmd/go/main.go:161 +0x4f9 fp=0x6a5f78 runtime.main() /Users/rsc/g/go/src/pkg/runtime/proc.c:183 +0x92 fp=0x6a5fa0 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1266 fp=0x6a5fa8 And here is a seg fault during oldstack: SIGSEGV: segmentation violation PC=0x1b2a6 runtime.oldstack() /Users/rsc/g/go/src/pkg/runtime/stack.c:159 +0x76 runtime.lessstack() /Users/rsc/g/go/src/pkg/runtime/asm_amd64.s:270 +0x22 goroutine 1 [stack unsplit]: fmt.(*pp).printArg(0x2102e64e0, 0xe5c80, 0x2102c9220, 0x73, 0x0, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:818 +0x3d3 fp=0x221031e6f8 fmt.(*pp).doPrintf(0x2102e64e0, 0x12fb20, 0x2, 0x221031eb98, 0x1, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:1183 +0x15cb fp=0x221031eaf0 fmt.Sprintf(0x12fb20, 0x2, 0x221031eb98, 0x1, 0x1, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:234 +0x67 fp=0x221031eb40 flag.(*stringValue).String(0x2102c9210, 0x1, 0x0) /Users/rsc/g/go/src/pkg/flag/flag.go:180 +0xb3 fp=0x221031ebb0 flag.(*FlagSet).Var(0x2102f6000, 0x293d38, 0x2102c9210, 0x143490, 0xa, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:633 +0x40 fp=0x221031eca0 flag.(*FlagSet).StringVar(0x2102f6000, 0x2102c9210, 0x143490, 0xa, 0x12fa60, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:550 +0x91 fp=0x221031ece8 flag.(*FlagSet).String(0x2102f6000, 0x143490, 0xa, 0x12fa60, 0x0, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:563 +0x87 fp=0x221031ed38 flag.String(0x143490, 0xa, 0x12fa60, 0x0, 0x161950, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:570 +0x6b fp=0x221031ed80 testing.init() /Users/rsc/g/go/src/pkg/testing/testing.go:-531 +0xbb fp=0x221031edc0 strings_test.init() /Users/rsc/g/go/src/pkg/strings/strings_test.go:1115 +0x62 fp=0x221031ef70 main.init() strings/_test/_testmain.go:90 +0x3d fp=0x221031ef78 runtime.main() /Users/rsc/g/go/src/pkg/runtime/proc.c:180 +0x8a fp=0x221031efa0 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1269 fp=0x221031efa8 goroutine 2 [runnable]: runtime.MHeap_Scavenger() /Users/rsc/g/go/src/pkg/runtime/mheap.c:438 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1269 created by runtime.main /Users/rsc/g/go/src/pkg/runtime/proc.c:166 rax 0x23ccc0 rbx 0x23ccc0 rcx 0x0 rdx 0x38 rdi 0x2102c0170 rsi 0x221032cfe0 rbp 0x221032cfa0 rsp 0x7fff5fbff5b0 r8 0x2102c0120 r9 0x221032cfa0 r10 0x221032c000 r11 0x104ce8 r12 0xe5c80 r13 0x1be82baac718 r14 0x13091135f7d69200 r15 0x0 rip 0x1b2a6 rflags 0x10246 cs 0x2b fs 0x0 gs 0x0 Fixes #5723. R=r, dvyukov, go.peter.90, dave, iant CC=golang-dev https://golang.org/cl/10360048
2013-06-27 09:32:01 -06:00
gp->sched.lr = 0;
gp->sched.g = gp;
gp->status = Gsyscall;
mp->curg = gp;
mp->locked = LockInternal;
mp->lockedg = gp;
gp->lockedm = mp;
// put on allg for garbage collector
runtime·lock(&runtime·sched);
if(runtime·lastg == nil)
runtime·allg = gp;
else
runtime·lastg->alllink = gp;
runtime·lastg = gp;
runtime·unlock(&runtime·sched);
gp->goid = runtime·xadd64(&runtime·sched.goidgen, 1);
if(raceenabled)
gp->racectx = runtime·racegostart(runtime·newextram);
// Add m to the extra list.
mnext = lockextra(true);
mp->schedlink = mnext;
unlockextra(mp);
}
// dropm is called when a cgo callback has called needm but is now
// done with the callback and returning back into the non-Go thread.
// It puts the current m back onto the extra list.
//
// The main expense here is the call to signalstack to release the
// m's signal stack, and then the call to needm on the next callback
// from this thread. It is tempting to try to save the m for next time,
// which would eliminate both these costs, but there might not be
// a next time: the current thread (which Go does not control) might exit.
// If we saved the m for that thread, there would be an m leak each time
// such a thread exited. Instead, we acquire and release an m on each
// call. These should typically not be scheduling operations, just a few
// atomics, so the cost should be small.
//
// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
// variable using pthread_key_create. Unlike the pthread keys we already use
// on OS X, this dummy key would never be read by Go code. It would exist
// only so that we could register at thread-exit-time destructor.
// That destructor would put the m back onto the extra list.
// This is purely a performance optimization. The current version,
// in which dropm happens on each cgo call, is still correct too.
// We may have to keep the current version on systems with cgo
// but without pthreads, like Windows.
void
runtime·dropm(void)
{
M *mp, *mnext;
// Undo whatever initialization minit did during needm.
runtime·unminit();
#ifdef GOOS_windows
#ifdef GOARCH_386
m->seh = nil; // reset dangling typed pointer
#endif
#endif
// Clear m and g, and return m to the extra list.
// After the call to setmg we can only call nosplit functions.
mp = m;
runtime·setmg(nil, nil);
mnext = lockextra(true);
mp->schedlink = mnext;
unlockextra(mp);
}
#define MLOCKED ((M*)1)
// lockextra locks the extra list and returns the list head.
// The caller must unlock the list by storing a new list head
// to runtime.extram. If nilokay is true, then lockextra will
// return a nil list head if that's what it finds. If nilokay is false,
// lockextra will keep waiting until the list head is no longer nil.
#pragma textflag 7
static M*
lockextra(bool nilokay)
{
M *mp;
void (*yield)(void);
for(;;) {
mp = runtime·atomicloadp(&runtime·extram);
if(mp == MLOCKED) {
yield = runtime·osyield;
yield();
continue;
}
if(mp == nil && !nilokay) {
runtime·usleep(1);
continue;
}
if(!runtime·casp(&runtime·extram, mp, MLOCKED)) {
yield = runtime·osyield;
yield();
continue;
}
break;
}
return mp;
}
#pragma textflag 7
static void
unlockextra(M *mp)
{
runtime·atomicstorep(&runtime·extram, mp);
}
// Create a new m. It will start off with a call to fn, or else the scheduler.
static void
newm(void(*fn)(void), P *p)
{
M *mp;
mp = runtime·allocm(p);
mp->nextp = p;
mp->mstartfn = fn;
if(runtime·iscgo) {
CgoThreadStart ts;
if(_cgo_thread_start == nil)
runtime·throw("_cgo_thread_start missing");
ts.m = mp;
ts.g = mp->g0;
ts.fn = runtime·mstart;
runtime·asmcgocall(_cgo_thread_start, &ts);
return;
}
runtime·newosproc(mp, (byte*)mp->g0->stackbase);
}
// Stops execution of the current m until new work is available.
// Returns with acquired P.
static void
stopm(void)
{
if(m->locks)
runtime·throw("stopm holding locks");
if(m->p)
runtime·throw("stopm holding p");
if(m->spinning) {
m->spinning = false;
runtime·xadd(&runtime·sched.nmspinning, -1);
}
retry:
runtime·lock(&runtime·sched);
mput(m);
runtime·unlock(&runtime·sched);
runtime·notesleep(&m->park);
runtime·noteclear(&m->park);
if(m->helpgc) {
runtime·gchelper();
m->helpgc = 0;
m->mcache = nil;
goto retry;
}
acquirep(m->nextp);
m->nextp = nil;
}
static void
mspinning(void)
{
m->spinning = true;
}
// Schedules some M to run the p (creates an M if necessary).
// If p==nil, tries to get an idle P, if no idle P's returns false.
static void
startm(P *p, bool spinning)
{
M *mp;
void (*fn)(void);
runtime·lock(&runtime·sched);
if(p == nil) {
p = pidleget();
if(p == nil) {
runtime·unlock(&runtime·sched);
if(spinning)
runtime·xadd(&runtime·sched.nmspinning, -1);
return;
}
}
mp = mget();
runtime·unlock(&runtime·sched);
if(mp == nil) {
fn = nil;
if(spinning)
fn = mspinning;
newm(fn, p);
return;
}
if(mp->spinning)
runtime·throw("startm: m is spinning");
if(mp->nextp)
runtime·throw("startm: m has p");
mp->spinning = spinning;
mp->nextp = p;
runtime·notewakeup(&mp->park);
}
// Hands off P from syscall or locked M.
static void
handoffp(P *p)
{
// if it has local work, start it straight away
if(p->runqhead != p->runqtail || runtime·sched.runqsize) {
startm(p, false);
return;
}
// no local work, check that there are no spinning/idle M's,
// otherwise our help is not required
if(runtime·atomicload(&runtime·sched.nmspinning) + runtime·atomicload(&runtime·sched.npidle) == 0 && // TODO: fast atomic
runtime·cas(&runtime·sched.nmspinning, 0, 1)) {
startm(p, true);
return;
}
runtime·lock(&runtime·sched);
if(runtime·gcwaiting) {
p->status = Pgcstop;
if(--runtime·sched.stopwait == 0)
runtime·notewakeup(&runtime·sched.stopnote);
runtime·unlock(&runtime·sched);
return;
}
if(runtime·sched.runqsize) {
runtime·unlock(&runtime·sched);
startm(p, false);
return;
}
// If this is the last running P and nobody is polling network,
// need to wakeup another M to poll network.
if(runtime·sched.npidle == runtime·gomaxprocs-1 && runtime·atomicload64(&runtime·sched.lastpoll) != 0) {
runtime·unlock(&runtime·sched);
startm(p, false);
return;
}
pidleput(p);
runtime·unlock(&runtime·sched);
}
// Tries to add one more P to execute G's.
// Called when a G is made runnable (newproc, ready).
static void
wakep(void)
{
// be conservative about spinning threads
if(!runtime·cas(&runtime·sched.nmspinning, 0, 1))
return;
startm(nil, true);
}
// Stops execution of the current m that is locked to a g until the g is runnable again.
// Returns with acquired P.
static void
stoplockedm(void)
{
P *p;
if(m->lockedg == nil || m->lockedg->lockedm != m)
runtime·throw("stoplockedm: inconsistent locking");
if(m->p) {
// Schedule another M to run this p.
p = releasep();
handoffp(p);
}
inclocked(1);
// Wait until another thread schedules lockedg again.
runtime·notesleep(&m->park);
runtime·noteclear(&m->park);
if(m->lockedg->status != Grunnable)
runtime·throw("stoplockedm: not runnable");
acquirep(m->nextp);
m->nextp = nil;
}
// Schedules the locked m to run the locked gp.
static void
startlockedm(G *gp)
{
M *mp;
P *p;
mp = gp->lockedm;
if(mp == m)
runtime·throw("startlockedm: locked to me");
if(mp->nextp)
runtime·throw("startlockedm: m has p");
// directly handoff current P to the locked m
inclocked(-1);
p = releasep();
mp->nextp = p;
runtime·notewakeup(&mp->park);
stopm();
}
// Stops the current m for stoptheworld.
// Returns when the world is restarted.
static void
gcstopm(void)
{
P *p;
if(!runtime·gcwaiting)
runtime·throw("gcstopm: not waiting for gc");
if(m->spinning) {
m->spinning = false;
runtime·xadd(&runtime·sched.nmspinning, -1);
}
p = releasep();
runtime·lock(&runtime·sched);
p->status = Pgcstop;
if(--runtime·sched.stopwait == 0)
runtime·notewakeup(&runtime·sched.stopnote);
runtime·unlock(&runtime·sched);
stopm();
}
// Schedules gp to run on the current M.
// Never returns.
static void
execute(G *gp)
{
int32 hz;
if(gp->status != Grunnable) {
runtime·printf("execute: bad g status %d\n", gp->status);
runtime·throw("execute: bad g status");
}
gp->status = Grunning;
gp->preempt = false;
gp->stackguard0 = gp->stackguard;
m->p->tick++;
m->curg = gp;
gp->m = m;
// Check whether the profiler needs to be turned on or off.
hz = runtime·sched.profilehz;
if(m->profilehz != hz)
runtime·resetcpuprofiler(hz);
runtime·gogo(&gp->sched);
2008-07-14 15:34:27 -06:00
}
// Finds a runnable goroutine to execute.
// Tries to steal from other P's, get g from global queue, poll network.
static G*
findrunnable(void)
{
G *gp;
P *p;
int32 i;
top:
if(runtime·gcwaiting) {
gcstopm();
goto top;
}
// local runq
gp = runqget(m->p);
if(gp)
return gp;
// global runq
if(runtime·sched.runqsize) {
runtime·lock(&runtime·sched);
gp = globrunqget(m->p, 0);
runtime·unlock(&runtime·sched);
if(gp)
return gp;
}
// poll network
gp = runtime·netpoll(false); // non-blocking
if(gp) {
injectglist(gp->schedlink);
gp->status = Grunnable;
return gp;
}
// If number of spinning M's >= number of busy P's, block.
// This is necessary to prevent excessive CPU consumption
// when GOMAXPROCS>>1 but the program parallelism is low.
if(!m->spinning && 2 * runtime·atomicload(&runtime·sched.nmspinning) >= runtime·gomaxprocs - runtime·atomicload(&runtime·sched.npidle)) // TODO: fast atomic
goto stop;
if(!m->spinning) {
m->spinning = true;
runtime·xadd(&runtime·sched.nmspinning, 1);
}
// random steal from other P's
for(i = 0; i < 2*runtime·gomaxprocs; i++) {
if(runtime·gcwaiting)
goto top;
p = runtime·allp[runtime·fastrand1()%runtime·gomaxprocs];
if(p == m->p)
gp = runqget(p);
else
gp = runqsteal(m->p, p);
if(gp)
return gp;
}
stop:
// return P and block
runtime·lock(&runtime·sched);
if(runtime·gcwaiting) {
runtime·unlock(&runtime·sched);
goto top;
}
if(runtime·sched.runqsize) {
gp = globrunqget(m->p, 0);
runtime·unlock(&runtime·sched);
return gp;
}
p = releasep();
pidleput(p);
runtime·unlock(&runtime·sched);
if(m->spinning) {
m->spinning = false;
runtime·xadd(&runtime·sched.nmspinning, -1);
}
// check all runqueues once again
for(i = 0; i < runtime·gomaxprocs; i++) {
p = runtime·allp[i];
if(p && p->runqhead != p->runqtail) {
runtime·lock(&runtime·sched);
p = pidleget();
runtime·unlock(&runtime·sched);
if(p) {
acquirep(p);
goto top;
}
break;
}
}
// poll network
if(runtime·xchg64(&runtime·sched.lastpoll, 0) != 0) {
if(m->p)
runtime·throw("findrunnable: netpoll with p");
if(m->spinning)
runtime·throw("findrunnable: netpoll with spinning");
gp = runtime·netpoll(true); // block until new work is available
runtime·atomicstore64(&runtime·sched.lastpoll, runtime·nanotime());
if(gp) {
runtime·lock(&runtime·sched);
p = pidleget();
runtime·unlock(&runtime·sched);
if(p) {
acquirep(p);
injectglist(gp->schedlink);
gp->status = Grunnable;
return gp;
}
injectglist(gp);
}
}
stopm();
goto top;
}
static void
resetspinning(void)
{
int32 nmspinning;
if(m->spinning) {
m->spinning = false;
nmspinning = runtime·xadd(&runtime·sched.nmspinning, -1);
if(nmspinning < 0)
runtime·throw("findrunnable: negative nmspinning");
} else
nmspinning = runtime·atomicload(&runtime·sched.nmspinning);
// M wakeup policy is deliberately somewhat conservative (see nmspinning handling),
// so see if we need to wakeup another P here.
if (nmspinning == 0 && runtime·atomicload(&runtime·sched.npidle) > 0)
wakep();
}
// Injects the list of runnable G's into the scheduler.
// Can run concurrently with GC.
static void
injectglist(G *glist)
{
int32 n;
G *gp;
if(glist == nil)
return;
runtime·lock(&runtime·sched);
for(n = 0; glist; n++) {
gp = glist;
glist = gp->schedlink;
gp->status = Grunnable;
globrunqput(gp);
}
runtime·unlock(&runtime·sched);
for(; n && runtime·sched.npidle; n--)
startm(nil, false);
}
// One round of scheduler: find a runnable goroutine and execute it.
// Never returns.
static void
schedule(void)
{
G *gp;
uint32 tick;
if(m->locks)
runtime·throw("schedule: holding locks");
top:
if(runtime·gcwaiting) {
gcstopm();
goto top;
}
gp = nil;
// Check the global runnable queue once in a while to ensure fairness.
// Otherwise two goroutines can completely occupy the local runqueue
// by constantly respawning each other.
tick = m->p->tick;
// This is a fancy way to say tick%61==0,
// it uses 2 MUL instructions instead of a single DIV and so is faster on modern processors.
if(tick - (((uint64)tick*0x4325c53fu)>>36)*61 == 0 && runtime·sched.runqsize > 0) {
runtime·lock(&runtime·sched);
gp = globrunqget(m->p, 1);
runtime·unlock(&runtime·sched);
if(gp)
resetspinning();
}
if(gp == nil) {
gp = runqget(m->p);
if(gp && m->spinning)
runtime·throw("schedule: spinning with local work");
}
if(gp == nil) {
gp = findrunnable(); // blocks until work is available
resetspinning();
}
if(gp->lockedm) {
// Hands off own p to the locked m,
// then blocks waiting for a new p.
startlockedm(gp);
goto top;
}
execute(gp);
}
// Puts the current goroutine into a waiting state and unlocks the lock.
// The goroutine can be made runnable again by calling runtime·ready(gp).
void
runtime·park(void(*unlockf)(Lock*), Lock *lock, int8 *reason)
{
m->waitlock = lock;
m->waitunlockf = unlockf;
g->waitreason = reason;
runtime·mcall(park0);
}
// runtime·park continuation on g0.
static void
park0(G *gp)
{
gp->status = Gwaiting;
gp->m = nil;
m->curg = nil;
if(m->waitunlockf) {
m->waitunlockf(m->waitlock);
m->waitunlockf = nil;
m->waitlock = nil;
}
if(m->lockedg) {
stoplockedm();
execute(gp); // Never returns.
}
schedule();
}
// Scheduler yield.
void
runtime·gosched(void)
{
runtime·mcall(runtime·gosched0);
}
// runtime·gosched continuation on g0.
void
runtime·gosched0(G *gp)
{
gp->status = Grunnable;
gp->m = nil;
m->curg = nil;
runtime·lock(&runtime·sched);
globrunqput(gp);
runtime·unlock(&runtime·sched);
if(m->lockedg) {
stoplockedm();
execute(gp); // Never returns.
}
schedule();
}
// Finishes execution of the current goroutine.
// Need to mark it as nosplit, because it runs with sp > stackbase (as runtime·lessstack).
// Since it does not return it does not matter. But if it is preempted
// at the split stack check, GC will complain about inconsistent sp.
#pragma textflag 7
void
runtime·goexit(void)
{
if(raceenabled)
runtime·racegoend();
runtime·mcall(goexit0);
}
// runtime·goexit continuation on g0.
static void
goexit0(G *gp)
{
gp->status = Gdead;
gp->m = nil;
gp->lockedm = nil;
m->curg = nil;
m->lockedg = nil;
if(m->locked & ~LockExternal) {
runtime·printf("invalid m->locked = %d\n", m->locked);
runtime·throw("internal lockOSThread error");
}
m->locked = 0;
runtime·unwindstack(gp, nil);
gfput(m->p, gp);
schedule();
}
static void
save(void *pc, uintptr sp)
{
g->gcpc = (uintptr)pc;
g->gcsp = sp;
g->sched.pc = (uintptr)pc;
g->sched.sp = sp;
g->sched.lr = 0;
g->sched.ret = 0;
g->sched.ctxt = 0;
g->sched.g = g;
}
// The goroutine g is about to enter a system call.
// Record that it's not using the cpu anymore.
// This is called only from the go syscall library and cgocall,
// not from the low-level system calls used by the runtime.
runtime: stack split + garbage collection bug The g->sched.sp saved stack pointer and the g->stackbase and g->stackguard stack bounds can change even while "the world is stopped", because a goroutine has to call functions (and therefore might split its stack) when exiting a system call to check whether the world is stopped (and if so, wait until the world continues). That means the garbage collector cannot access those values safely (without a race) for goroutines executing system calls. Instead, save a consistent triple in g->gcsp, g->gcstack, g->gcguard during entersyscall and have the garbage collector refer to those. The old code was occasionally seeing (because of the race) an sp and stk that did not correspond to each other, so that stk - sp was not the number of stack bytes following sp. In that case, if sp < stk then the call scanblock(sp, stk - sp) scanned too many bytes (anything between the two pointers, which pointed into different allocation blocks). If sp > stk then stk - sp wrapped around. On 32-bit, stk - sp is a uintptr (uint32) converted to int64 in the call to scanblock, so a large (~4G) but positive number. Scanblock would try to scan that many bytes and eventually fault accessing unmapped memory. On 64-bit, stk - sp is a uintptr (uint64) promoted to int64 in the call to scanblock, so a negative number. Scanblock would not scan anything, possibly causing in-use blocks to be freed. In short, 32-bit platforms would have seen either ineffective garbage collection or crashes during garbage collection, while 64-bit platforms would have seen either ineffective or incorrect garbage collection. You can see the invalid arguments to scanblock in the stack traces in issue 1620. Fixes #1620. Fixes #1746. R=iant, r CC=golang-dev https://golang.org/cl/4437075
2011-04-27 21:21:12 -06:00
//
// Entersyscall cannot split the stack: the runtime·gosave must
runtime: stack split + garbage collection bug The g->sched.sp saved stack pointer and the g->stackbase and g->stackguard stack bounds can change even while "the world is stopped", because a goroutine has to call functions (and therefore might split its stack) when exiting a system call to check whether the world is stopped (and if so, wait until the world continues). That means the garbage collector cannot access those values safely (without a race) for goroutines executing system calls. Instead, save a consistent triple in g->gcsp, g->gcstack, g->gcguard during entersyscall and have the garbage collector refer to those. The old code was occasionally seeing (because of the race) an sp and stk that did not correspond to each other, so that stk - sp was not the number of stack bytes following sp. In that case, if sp < stk then the call scanblock(sp, stk - sp) scanned too many bytes (anything between the two pointers, which pointed into different allocation blocks). If sp > stk then stk - sp wrapped around. On 32-bit, stk - sp is a uintptr (uint32) converted to int64 in the call to scanblock, so a large (~4G) but positive number. Scanblock would try to scan that many bytes and eventually fault accessing unmapped memory. On 64-bit, stk - sp is a uintptr (uint64) promoted to int64 in the call to scanblock, so a negative number. Scanblock would not scan anything, possibly causing in-use blocks to be freed. In short, 32-bit platforms would have seen either ineffective garbage collection or crashes during garbage collection, while 64-bit platforms would have seen either ineffective or incorrect garbage collection. You can see the invalid arguments to scanblock in the stack traces in issue 1620. Fixes #1620. Fixes #1746. R=iant, r CC=golang-dev https://golang.org/cl/4437075
2011-04-27 21:21:12 -06:00
// make g->sched refer to the caller's stack segment, because
// entersyscall is going to return immediately after.
#pragma textflag 7
void
·entersyscall(int32 dummy)
{
// Disable preemption because during this function g is in Gsyscall status,
// but can have inconsistent g->sched, do not let GC observe it.
m->locks++;
if(m->profilehz > 0)
runtime·setprof(false);
runtime: stack split + garbage collection bug The g->sched.sp saved stack pointer and the g->stackbase and g->stackguard stack bounds can change even while "the world is stopped", because a goroutine has to call functions (and therefore might split its stack) when exiting a system call to check whether the world is stopped (and if so, wait until the world continues). That means the garbage collector cannot access those values safely (without a race) for goroutines executing system calls. Instead, save a consistent triple in g->gcsp, g->gcstack, g->gcguard during entersyscall and have the garbage collector refer to those. The old code was occasionally seeing (because of the race) an sp and stk that did not correspond to each other, so that stk - sp was not the number of stack bytes following sp. In that case, if sp < stk then the call scanblock(sp, stk - sp) scanned too many bytes (anything between the two pointers, which pointed into different allocation blocks). If sp > stk then stk - sp wrapped around. On 32-bit, stk - sp is a uintptr (uint32) converted to int64 in the call to scanblock, so a large (~4G) but positive number. Scanblock would try to scan that many bytes and eventually fault accessing unmapped memory. On 64-bit, stk - sp is a uintptr (uint64) promoted to int64 in the call to scanblock, so a negative number. Scanblock would not scan anything, possibly causing in-use blocks to be freed. In short, 32-bit platforms would have seen either ineffective garbage collection or crashes during garbage collection, while 64-bit platforms would have seen either ineffective or incorrect garbage collection. You can see the invalid arguments to scanblock in the stack traces in issue 1620. Fixes #1620. Fixes #1746. R=iant, r CC=golang-dev https://golang.org/cl/4437075
2011-04-27 21:21:12 -06:00
// Leave SP around for gc and traceback.
save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
runtime: stack split + garbage collection bug The g->sched.sp saved stack pointer and the g->stackbase and g->stackguard stack bounds can change even while "the world is stopped", because a goroutine has to call functions (and therefore might split its stack) when exiting a system call to check whether the world is stopped (and if so, wait until the world continues). That means the garbage collector cannot access those values safely (without a race) for goroutines executing system calls. Instead, save a consistent triple in g->gcsp, g->gcstack, g->gcguard during entersyscall and have the garbage collector refer to those. The old code was occasionally seeing (because of the race) an sp and stk that did not correspond to each other, so that stk - sp was not the number of stack bytes following sp. In that case, if sp < stk then the call scanblock(sp, stk - sp) scanned too many bytes (anything between the two pointers, which pointed into different allocation blocks). If sp > stk then stk - sp wrapped around. On 32-bit, stk - sp is a uintptr (uint32) converted to int64 in the call to scanblock, so a large (~4G) but positive number. Scanblock would try to scan that many bytes and eventually fault accessing unmapped memory. On 64-bit, stk - sp is a uintptr (uint64) promoted to int64 in the call to scanblock, so a negative number. Scanblock would not scan anything, possibly causing in-use blocks to be freed. In short, 32-bit platforms would have seen either ineffective garbage collection or crashes during garbage collection, while 64-bit platforms would have seen either ineffective or incorrect garbage collection. You can see the invalid arguments to scanblock in the stack traces in issue 1620. Fixes #1620. Fixes #1746. R=iant, r CC=golang-dev https://golang.org/cl/4437075
2011-04-27 21:21:12 -06:00
g->gcstack = g->stackbase;
g->gcguard = g->stackguard;
g->status = Gsyscall;
if(g->gcsp < g->gcguard-StackGuard || g->gcstack < g->gcsp) {
// runtime·printf("entersyscall inconsistent %p [%p,%p]\n",
// g->gcsp, g->gcguard-StackGuard, g->gcstack);
runtime·throw("entersyscall");
}
if(runtime·atomicload(&runtime·sched.sysmonwait)) { // TODO: fast atomic
runtime·lock(&runtime·sched);
if(runtime·atomicload(&runtime·sched.sysmonwait)) {
runtime·atomicstore(&runtime·sched.sysmonwait, 0);
runtime·notewakeup(&runtime·sched.sysmonnote);
}
runtime·unlock(&runtime·sched);
save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
}
m->mcache = nil;
m->p->tick++;
m->p->m = nil;
runtime·atomicstore(&m->p->status, Psyscall);
if(runtime·gcwaiting) {
runtime·lock(&runtime·sched);
if (runtime·sched.stopwait > 0 && runtime·cas(&m->p->status, Psyscall, Pgcstop)) {
if(--runtime·sched.stopwait == 0)
runtime·notewakeup(&runtime·sched.stopnote);
}
runtime·unlock(&runtime·sched);
save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
}
// Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched).
// We set stackguard to StackPreempt so that first split stack check calls morestack.
// Morestack detects this case and throws.
g->stackguard0 = StackPreempt;
m->locks--;
}
// The same as runtime·entersyscall(), but with a hint that the syscall is blocking.
#pragma textflag 7
void
·entersyscallblock(int32 dummy)
{
P *p;
m->locks++; // see comment in entersyscall
if(m->profilehz > 0)
runtime·setprof(false);
// Leave SP around for gc and traceback.
save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
g->gcsp = g->sched.sp;
g->gcpc = g->sched.pc;
g->gcstack = g->stackbase;
runtime: stack split + garbage collection bug The g->sched.sp saved stack pointer and the g->stackbase and g->stackguard stack bounds can change even while "the world is stopped", because a goroutine has to call functions (and therefore might split its stack) when exiting a system call to check whether the world is stopped (and if so, wait until the world continues). That means the garbage collector cannot access those values safely (without a race) for goroutines executing system calls. Instead, save a consistent triple in g->gcsp, g->gcstack, g->gcguard during entersyscall and have the garbage collector refer to those. The old code was occasionally seeing (because of the race) an sp and stk that did not correspond to each other, so that stk - sp was not the number of stack bytes following sp. In that case, if sp < stk then the call scanblock(sp, stk - sp) scanned too many bytes (anything between the two pointers, which pointed into different allocation blocks). If sp > stk then stk - sp wrapped around. On 32-bit, stk - sp is a uintptr (uint32) converted to int64 in the call to scanblock, so a large (~4G) but positive number. Scanblock would try to scan that many bytes and eventually fault accessing unmapped memory. On 64-bit, stk - sp is a uintptr (uint64) promoted to int64 in the call to scanblock, so a negative number. Scanblock would not scan anything, possibly causing in-use blocks to be freed. In short, 32-bit platforms would have seen either ineffective garbage collection or crashes during garbage collection, while 64-bit platforms would have seen either ineffective or incorrect garbage collection. You can see the invalid arguments to scanblock in the stack traces in issue 1620. Fixes #1620. Fixes #1746. R=iant, r CC=golang-dev https://golang.org/cl/4437075
2011-04-27 21:21:12 -06:00
g->gcguard = g->stackguard;
g->status = Gsyscall;
runtime: stack split + garbage collection bug The g->sched.sp saved stack pointer and the g->stackbase and g->stackguard stack bounds can change even while "the world is stopped", because a goroutine has to call functions (and therefore might split its stack) when exiting a system call to check whether the world is stopped (and if so, wait until the world continues). That means the garbage collector cannot access those values safely (without a race) for goroutines executing system calls. Instead, save a consistent triple in g->gcsp, g->gcstack, g->gcguard during entersyscall and have the garbage collector refer to those. The old code was occasionally seeing (because of the race) an sp and stk that did not correspond to each other, so that stk - sp was not the number of stack bytes following sp. In that case, if sp < stk then the call scanblock(sp, stk - sp) scanned too many bytes (anything between the two pointers, which pointed into different allocation blocks). If sp > stk then stk - sp wrapped around. On 32-bit, stk - sp is a uintptr (uint32) converted to int64 in the call to scanblock, so a large (~4G) but positive number. Scanblock would try to scan that many bytes and eventually fault accessing unmapped memory. On 64-bit, stk - sp is a uintptr (uint64) promoted to int64 in the call to scanblock, so a negative number. Scanblock would not scan anything, possibly causing in-use blocks to be freed. In short, 32-bit platforms would have seen either ineffective garbage collection or crashes during garbage collection, while 64-bit platforms would have seen either ineffective or incorrect garbage collection. You can see the invalid arguments to scanblock in the stack traces in issue 1620. Fixes #1620. Fixes #1746. R=iant, r CC=golang-dev https://golang.org/cl/4437075
2011-04-27 21:21:12 -06:00
if(g->gcsp < g->gcguard-StackGuard || g->gcstack < g->gcsp) {
// runtime·printf("entersyscallblock inconsistent %p [%p,%p]\n",
// g->gcsp, g->gcguard-StackGuard, g->gcstack);
runtime·throw("entersyscallblock");
}
p = releasep();
handoffp(p);
if(g->isbackground) // do not consider blocked scavenger for deadlock detection
inclocked(1);
// Resave for traceback during blocked call.
save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
g->stackguard0 = StackPreempt; // see comment in entersyscall
m->locks--;
}
// The goroutine g exited its system call.
// Arrange for it to run on a cpu again.
// This is called only from the go syscall library, not
// from the low-level system calls used by the runtime.
#pragma textflag 7
void
runtime·exitsyscall(void)
{
m->locks++; // see comment in entersyscall
// Check whether the profiler needs to be turned on.
if(m->profilehz > 0)
runtime·setprof(true);
if(g->isbackground) // do not consider blocked scavenger for deadlock detection
inclocked(-1);
if(exitsyscallfast()) {
// There's a cpu for us, so we can run.
m->p->tick++;
g->status = Grunning;
// Garbage collector isn't running (since we are),
// so okay to clear gcstack and gcsp.
g->gcstack = (uintptr)nil;
g->gcsp = (uintptr)nil;
m->locks--;
if(g->preempt) {
// restore the preemption request in case we've cleared it in newstack
g->stackguard0 = StackPreempt;
} else {
// otherwise restore the real stackguard, we've spoiled it in entersyscall/entersyscallblock
g->stackguard0 = g->stackguard;
}
return;
}
m->locks--;
// Call the scheduler.
runtime·mcall(exitsyscall0);
// Scheduler returned, so we're allowed to run now.
runtime: stack split + garbage collection bug The g->sched.sp saved stack pointer and the g->stackbase and g->stackguard stack bounds can change even while "the world is stopped", because a goroutine has to call functions (and therefore might split its stack) when exiting a system call to check whether the world is stopped (and if so, wait until the world continues). That means the garbage collector cannot access those values safely (without a race) for goroutines executing system calls. Instead, save a consistent triple in g->gcsp, g->gcstack, g->gcguard during entersyscall and have the garbage collector refer to those. The old code was occasionally seeing (because of the race) an sp and stk that did not correspond to each other, so that stk - sp was not the number of stack bytes following sp. In that case, if sp < stk then the call scanblock(sp, stk - sp) scanned too many bytes (anything between the two pointers, which pointed into different allocation blocks). If sp > stk then stk - sp wrapped around. On 32-bit, stk - sp is a uintptr (uint32) converted to int64 in the call to scanblock, so a large (~4G) but positive number. Scanblock would try to scan that many bytes and eventually fault accessing unmapped memory. On 64-bit, stk - sp is a uintptr (uint64) promoted to int64 in the call to scanblock, so a negative number. Scanblock would not scan anything, possibly causing in-use blocks to be freed. In short, 32-bit platforms would have seen either ineffective garbage collection or crashes during garbage collection, while 64-bit platforms would have seen either ineffective or incorrect garbage collection. You can see the invalid arguments to scanblock in the stack traces in issue 1620. Fixes #1620. Fixes #1746. R=iant, r CC=golang-dev https://golang.org/cl/4437075
2011-04-27 21:21:12 -06:00
// Delete the gcstack information that we left for
// the garbage collector during the system call.
// Must wait until now because until gosched returns
// we don't know for sure that the garbage collector
// is not running.
g->gcstack = (uintptr)nil;
g->gcsp = (uintptr)nil;
}
#pragma textflag 7
static bool
exitsyscallfast(void)
{
P *p;
// Try to re-acquire the last P.
if(m->p && m->p->status == Psyscall && runtime·cas(&m->p->status, Psyscall, Prunning)) {
// There's a cpu for us, so we can run.
m->mcache = m->p->mcache;
m->p->m = m;
return true;
}
// Try to get any other idle P.
m->p = nil;
if(runtime·sched.pidle) {
runtime·lock(&runtime·sched);
p = pidleget();
runtime·unlock(&runtime·sched);
if(p) {
acquirep(p);
return true;
}
}
return false;
}
// runtime·exitsyscall slow path on g0.
// Failed to acquire P, enqueue gp as runnable.
static void
exitsyscall0(G *gp)
{
P *p;
gp->status = Grunnable;
gp->m = nil;
m->curg = nil;
runtime·lock(&runtime·sched);
p = pidleget();
if(p == nil)
globrunqput(gp);
runtime·unlock(&runtime·sched);
if(p) {
acquirep(p);
execute(gp); // Never returns.
}
if(m->lockedg) {
// Wait until another thread schedules gp and so m again.
stoplockedm();
execute(gp); // Never returns.
}
stopm();
schedule(); // Never returns.
}
// Hook used by runtime·malg to call runtime·stackalloc on the
// scheduler stack. This exists because runtime·stackalloc insists
// on being called on the scheduler stack, to avoid trying to grow
// the stack while allocating a new stack segment.
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
static void
mstackalloc(G *gp)
{
gp->param = runtime·stackalloc((uintptr)gp->param);
runtime·gogo(&gp->sched);
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
}
// Allocate a new g, with a stack big enough for stacksize bytes.
G*
runtime·malg(int32 stacksize)
{
runtime: always run stackalloc on scheduler stack Avoids deadlocks like the one below, in which a stack split happened in order to call lock(&stacks), but then the stack unsplit cannot run because stacks is now locked. The only code calling stackalloc that wasn't on a scheduler stack already was malg, which creates a new goroutine. runtime.futex+0x23 /home/rsc/g/go/src/pkg/runtime/linux/amd64/sys.s:139 runtime.futex() futexsleep+0x50 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:51 futexsleep(0x5b0188, 0x300000003, 0x100020000, 0x4159e2) futexlock+0x85 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:119 futexlock(0x5b0188, 0x5b0188) runtime.lock+0x56 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:158 runtime.lock(0x5b0188, 0x7f0d27b4a000) runtime.stackfree+0x4d /home/rsc/g/go/src/pkg/runtime/malloc.goc:336 runtime.stackfree(0x7f0d27b4a000, 0x1000, 0x8, 0x7fff37e1e218) runtime.oldstack+0xa6 /home/rsc/g/go/src/pkg/runtime/proc.c:705 runtime.oldstack() runtime.lessstack+0x22 /home/rsc/g/go/src/pkg/runtime/amd64/asm.s:224 runtime.lessstack() ----- lessstack called from goroutine 2 ----- runtime.lock+0x56 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:158 runtime.lock(0x5b0188, 0x40a5e2) runtime.stackalloc+0x55 /home/rsc/g/go/src/pkg/runtime/malloc.c:316 runtime.stackalloc(0x1000, 0x4055b0) runtime.malg+0x3d /home/rsc/g/go/src/pkg/runtime/proc.c:803 runtime.malg(0x1000, 0x40add9) runtime.newproc1+0x12b /home/rsc/g/go/src/pkg/runtime/proc.c:854 runtime.newproc1(0xf840027440, 0x7f0d27b49230, 0x0, 0x49f238, 0x40, ...) runtime.newproc+0x2f /home/rsc/g/go/src/pkg/runtime/proc.c:831 runtime.newproc(0x0, 0xf840027440, 0xf800000010, 0x44b059) ... R=r, r2 CC=golang-dev https://golang.org/cl/4216045
2011-02-23 13:51:20 -07:00
G *newg;
byte *stk;
if(StackTop < sizeof(Stktop)) {
runtime·printf("runtime: SizeofStktop=%d, should be >=%d\n", (int32)StackTop, (int32)sizeof(Stktop));
runtime·throw("runtime: bad stack.h");
}
runtime: always run stackalloc on scheduler stack Avoids deadlocks like the one below, in which a stack split happened in order to call lock(&stacks), but then the stack unsplit cannot run because stacks is now locked. The only code calling stackalloc that wasn't on a scheduler stack already was malg, which creates a new goroutine. runtime.futex+0x23 /home/rsc/g/go/src/pkg/runtime/linux/amd64/sys.s:139 runtime.futex() futexsleep+0x50 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:51 futexsleep(0x5b0188, 0x300000003, 0x100020000, 0x4159e2) futexlock+0x85 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:119 futexlock(0x5b0188, 0x5b0188) runtime.lock+0x56 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:158 runtime.lock(0x5b0188, 0x7f0d27b4a000) runtime.stackfree+0x4d /home/rsc/g/go/src/pkg/runtime/malloc.goc:336 runtime.stackfree(0x7f0d27b4a000, 0x1000, 0x8, 0x7fff37e1e218) runtime.oldstack+0xa6 /home/rsc/g/go/src/pkg/runtime/proc.c:705 runtime.oldstack() runtime.lessstack+0x22 /home/rsc/g/go/src/pkg/runtime/amd64/asm.s:224 runtime.lessstack() ----- lessstack called from goroutine 2 ----- runtime.lock+0x56 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:158 runtime.lock(0x5b0188, 0x40a5e2) runtime.stackalloc+0x55 /home/rsc/g/go/src/pkg/runtime/malloc.c:316 runtime.stackalloc(0x1000, 0x4055b0) runtime.malg+0x3d /home/rsc/g/go/src/pkg/runtime/proc.c:803 runtime.malg(0x1000, 0x40add9) runtime.newproc1+0x12b /home/rsc/g/go/src/pkg/runtime/proc.c:854 runtime.newproc1(0xf840027440, 0x7f0d27b49230, 0x0, 0x49f238, 0x40, ...) runtime.newproc+0x2f /home/rsc/g/go/src/pkg/runtime/proc.c:831 runtime.newproc(0x0, 0xf840027440, 0xf800000010, 0x44b059) ... R=r, r2 CC=golang-dev https://golang.org/cl/4216045
2011-02-23 13:51:20 -07:00
newg = runtime·malloc(sizeof(G));
if(stacksize >= 0) {
runtime: always run stackalloc on scheduler stack Avoids deadlocks like the one below, in which a stack split happened in order to call lock(&stacks), but then the stack unsplit cannot run because stacks is now locked. The only code calling stackalloc that wasn't on a scheduler stack already was malg, which creates a new goroutine. runtime.futex+0x23 /home/rsc/g/go/src/pkg/runtime/linux/amd64/sys.s:139 runtime.futex() futexsleep+0x50 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:51 futexsleep(0x5b0188, 0x300000003, 0x100020000, 0x4159e2) futexlock+0x85 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:119 futexlock(0x5b0188, 0x5b0188) runtime.lock+0x56 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:158 runtime.lock(0x5b0188, 0x7f0d27b4a000) runtime.stackfree+0x4d /home/rsc/g/go/src/pkg/runtime/malloc.goc:336 runtime.stackfree(0x7f0d27b4a000, 0x1000, 0x8, 0x7fff37e1e218) runtime.oldstack+0xa6 /home/rsc/g/go/src/pkg/runtime/proc.c:705 runtime.oldstack() runtime.lessstack+0x22 /home/rsc/g/go/src/pkg/runtime/amd64/asm.s:224 runtime.lessstack() ----- lessstack called from goroutine 2 ----- runtime.lock+0x56 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:158 runtime.lock(0x5b0188, 0x40a5e2) runtime.stackalloc+0x55 /home/rsc/g/go/src/pkg/runtime/malloc.c:316 runtime.stackalloc(0x1000, 0x4055b0) runtime.malg+0x3d /home/rsc/g/go/src/pkg/runtime/proc.c:803 runtime.malg(0x1000, 0x40add9) runtime.newproc1+0x12b /home/rsc/g/go/src/pkg/runtime/proc.c:854 runtime.newproc1(0xf840027440, 0x7f0d27b49230, 0x0, 0x49f238, 0x40, ...) runtime.newproc+0x2f /home/rsc/g/go/src/pkg/runtime/proc.c:831 runtime.newproc(0x0, 0xf840027440, 0xf800000010, 0x44b059) ... R=r, r2 CC=golang-dev https://golang.org/cl/4216045
2011-02-23 13:51:20 -07:00
if(g == m->g0) {
// running on scheduler stack already.
stk = runtime·stackalloc(StackSystem + stacksize);
} else {
// have to call stackalloc on scheduler stack.
g->param = (void*)(StackSystem + stacksize);
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
runtime·mcall(mstackalloc);
runtime: always run stackalloc on scheduler stack Avoids deadlocks like the one below, in which a stack split happened in order to call lock(&stacks), but then the stack unsplit cannot run because stacks is now locked. The only code calling stackalloc that wasn't on a scheduler stack already was malg, which creates a new goroutine. runtime.futex+0x23 /home/rsc/g/go/src/pkg/runtime/linux/amd64/sys.s:139 runtime.futex() futexsleep+0x50 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:51 futexsleep(0x5b0188, 0x300000003, 0x100020000, 0x4159e2) futexlock+0x85 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:119 futexlock(0x5b0188, 0x5b0188) runtime.lock+0x56 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:158 runtime.lock(0x5b0188, 0x7f0d27b4a000) runtime.stackfree+0x4d /home/rsc/g/go/src/pkg/runtime/malloc.goc:336 runtime.stackfree(0x7f0d27b4a000, 0x1000, 0x8, 0x7fff37e1e218) runtime.oldstack+0xa6 /home/rsc/g/go/src/pkg/runtime/proc.c:705 runtime.oldstack() runtime.lessstack+0x22 /home/rsc/g/go/src/pkg/runtime/amd64/asm.s:224 runtime.lessstack() ----- lessstack called from goroutine 2 ----- runtime.lock+0x56 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:158 runtime.lock(0x5b0188, 0x40a5e2) runtime.stackalloc+0x55 /home/rsc/g/go/src/pkg/runtime/malloc.c:316 runtime.stackalloc(0x1000, 0x4055b0) runtime.malg+0x3d /home/rsc/g/go/src/pkg/runtime/proc.c:803 runtime.malg(0x1000, 0x40add9) runtime.newproc1+0x12b /home/rsc/g/go/src/pkg/runtime/proc.c:854 runtime.newproc1(0xf840027440, 0x7f0d27b49230, 0x0, 0x49f238, 0x40, ...) runtime.newproc+0x2f /home/rsc/g/go/src/pkg/runtime/proc.c:831 runtime.newproc(0x0, 0xf840027440, 0xf800000010, 0x44b059) ... R=r, r2 CC=golang-dev https://golang.org/cl/4216045
2011-02-23 13:51:20 -07:00
stk = g->param;
g->param = nil;
}
newg->stack0 = (uintptr)stk;
newg->stackguard = (uintptr)stk + StackGuard;
newg->stackguard0 = newg->stackguard;
newg->stackbase = (uintptr)stk + StackSystem + stacksize - sizeof(Stktop);
runtime·memclr((byte*)newg->stackbase, sizeof(Stktop));
}
runtime: always run stackalloc on scheduler stack Avoids deadlocks like the one below, in which a stack split happened in order to call lock(&stacks), but then the stack unsplit cannot run because stacks is now locked. The only code calling stackalloc that wasn't on a scheduler stack already was malg, which creates a new goroutine. runtime.futex+0x23 /home/rsc/g/go/src/pkg/runtime/linux/amd64/sys.s:139 runtime.futex() futexsleep+0x50 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:51 futexsleep(0x5b0188, 0x300000003, 0x100020000, 0x4159e2) futexlock+0x85 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:119 futexlock(0x5b0188, 0x5b0188) runtime.lock+0x56 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:158 runtime.lock(0x5b0188, 0x7f0d27b4a000) runtime.stackfree+0x4d /home/rsc/g/go/src/pkg/runtime/malloc.goc:336 runtime.stackfree(0x7f0d27b4a000, 0x1000, 0x8, 0x7fff37e1e218) runtime.oldstack+0xa6 /home/rsc/g/go/src/pkg/runtime/proc.c:705 runtime.oldstack() runtime.lessstack+0x22 /home/rsc/g/go/src/pkg/runtime/amd64/asm.s:224 runtime.lessstack() ----- lessstack called from goroutine 2 ----- runtime.lock+0x56 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:158 runtime.lock(0x5b0188, 0x40a5e2) runtime.stackalloc+0x55 /home/rsc/g/go/src/pkg/runtime/malloc.c:316 runtime.stackalloc(0x1000, 0x4055b0) runtime.malg+0x3d /home/rsc/g/go/src/pkg/runtime/proc.c:803 runtime.malg(0x1000, 0x40add9) runtime.newproc1+0x12b /home/rsc/g/go/src/pkg/runtime/proc.c:854 runtime.newproc1(0xf840027440, 0x7f0d27b49230, 0x0, 0x49f238, 0x40, ...) runtime.newproc+0x2f /home/rsc/g/go/src/pkg/runtime/proc.c:831 runtime.newproc(0x0, 0xf840027440, 0xf800000010, 0x44b059) ... R=r, r2 CC=golang-dev https://golang.org/cl/4216045
2011-02-23 13:51:20 -07:00
return newg;
}
// Create a new g running fn with siz bytes of arguments.
// Put it on the queue of g's waiting to run.
// The compiler turns a go statement into a call to this.
// Cannot split the stack because it assumes that the arguments
// are available sequentially after &fn; they would not be
// copied if a stack split occurred. It's OK for this to call
// functions that split the stack.
#pragma textflag 7
void
runtime·newproc(int32 siz, FuncVal* fn, ...)
{
byte *argp;
if(thechar == '5')
argp = (byte*)(&fn+2); // skip caller's saved LR
else
argp = (byte*)(&fn+1);
runtime·newproc1(fn, argp, siz, 0, runtime·getcallerpc(&siz));
}
// Create a new g running fn with narg bytes of arguments starting
// at argp and returning nret bytes of results. callerpc is the
// address of the go statement that created this. The new g is put
// on the queue of g's waiting to run.
G*
runtime·newproc1(FuncVal *fn, byte *argp, int32 narg, int32 nret, void *callerpc)
{
byte *sp;
G *newg;
int32 siz;
//runtime·printf("newproc1 %p %p narg=%d nret=%d\n", fn->fn, argp, narg, nret);
m->locks++; // disable preemption because it can be holding p in a local var
siz = narg + nret;
siz = (siz+7) & ~7;
// We could instead create a secondary stack frame
// and make it look like goexit was on the original but
// the call to the actual goroutine function was split.
// Not worth it: this is almost always an error.
if(siz > StackMin - 1024)
runtime·throw("runtime.newproc: function arguments too large for new goroutine");
if((newg = gfget(m->p)) != nil) {
if(newg->stackguard - StackGuard != newg->stack0)
runtime·throw("invalid stack in newg");
} else {
ld: detect stack overflow due to NOSPLIT Fix problems found. On amd64, various library routines had bigger stack frames than expected, because large function calls had been added. runtime.assertI2T: nosplit stack overflow 120 assumed on entry to runtime.assertI2T 8 after runtime.assertI2T uses 112 0 on entry to runtime.newTypeAssertionError -8 on entry to runtime.morestack01 runtime.assertE2E: nosplit stack overflow 120 assumed on entry to runtime.assertE2E 16 after runtime.assertE2E uses 104 8 on entry to runtime.panic 0 on entry to runtime.morestack16 -8 after runtime.morestack16 uses 8 runtime.assertE2T: nosplit stack overflow 120 assumed on entry to runtime.assertE2T 16 after runtime.assertE2T uses 104 8 on entry to runtime.panic 0 on entry to runtime.morestack16 -8 after runtime.morestack16 uses 8 runtime.newselect: nosplit stack overflow 120 assumed on entry to runtime.newselect 56 after runtime.newselect uses 64 48 on entry to runtime.printf 8 after runtime.printf uses 40 0 on entry to vprintf -8 on entry to runtime.morestack16 runtime.selectdefault: nosplit stack overflow 120 assumed on entry to runtime.selectdefault 56 after runtime.selectdefault uses 64 48 on entry to runtime.printf 8 after runtime.printf uses 40 0 on entry to vprintf -8 on entry to runtime.morestack16 runtime.selectgo: nosplit stack overflow 120 assumed on entry to runtime.selectgo 0 after runtime.selectgo uses 120 -8 on entry to runtime.gosched On arm, 5c was tagging functions NOSPLIT that should not have been, like the recursive function printpanics: printpanics: nosplit stack overflow 124 assumed on entry to printpanics 112 after printpanics uses 12 108 on entry to printpanics 96 after printpanics uses 12 92 on entry to printpanics 80 after printpanics uses 12 76 on entry to printpanics 64 after printpanics uses 12 60 on entry to printpanics 48 after printpanics uses 12 44 on entry to printpanics 32 after printpanics uses 12 28 on entry to printpanics 16 after printpanics uses 12 12 on entry to printpanics 0 after printpanics uses 12 -4 on entry to printpanics R=r, r2 CC=golang-dev https://golang.org/cl/4188061
2011-02-22 15:40:40 -07:00
newg = runtime·malg(StackMin);
runtime·lock(&runtime·sched);
runtime: simplify stack traces Make the stack traces more readable for new Go programmers while preserving their utility for old hands. - Change status number [4] to string. - Elide frames in runtime package (internal details). - Swap file:line and arguments. - Drop 'created by' for main goroutine. - Show goroutines in order of allocation: implies main goroutine first if nothing else. There is no option to get the extra frames back. Uncomment 'return 1' at the bottom of symtab.c. $ 6.out throw: all goroutines are asleep - deadlock! goroutine 1 [chan send]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:22 +0x8a goroutine 2 [select (no cases)]: main.sel() /Users/rsc/g/go/src/pkg/runtime/x.go:11 +0x18 created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:19 +0x23 goroutine 3 [chan receive]: main.recv(0xf8400010a0, 0x0) /Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:20 +0x50 goroutine 4 [chan receive (nil chan)]: main.recv(0x0, 0x0) /Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e created by main.main /Users/rsc/g/go/src/pkg/runtime/x.go:21 +0x66 $ $ 6.out index panic: runtime error: index out of range goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:25 +0xb9 $ $ 6.out nil panic: runtime error: invalid memory address or nil pointer dereference [signal 0xb code=0x1 addr=0x0 pc=0x22ca] goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:28 +0x211 $ $ 6.out panic panic: panic goroutine 1 [running]: main.main() /Users/rsc/g/go/src/pkg/runtime/x.go:30 +0x101 $ R=golang-dev, qyzhai, n13m3y3r, r CC=golang-dev https://golang.org/cl/4907048
2011-08-22 21:26:39 -06:00
if(runtime·lastg == nil)
runtime·allg = newg;
else
runtime·lastg->alllink = newg;
runtime·lastg = newg;
runtime·unlock(&runtime·sched);
}
sp = (byte*)newg->stackbase;
sp -= siz;
runtime·memmove(sp, argp, narg);
if(thechar == '5') {
// caller's LR
sp -= sizeof(void*);
*(void**)sp = nil;
}
runtime·memclr((byte*)&newg->sched, sizeof newg->sched);
newg->sched.sp = (uintptr)sp;
newg->sched.pc = (uintptr)runtime·goexit;
newg->sched.g = newg;
runtime·gostartcallfn(&newg->sched, fn);
newg->gopc = (uintptr)callerpc;
newg->status = Grunnable;
newg->goid = runtime·xadd64(&runtime·sched.goidgen, 1);
if(raceenabled)
newg->racectx = runtime·racegostart((void*)callerpc);
runqput(m->p, newg);
if(runtime·atomicload(&runtime·sched.npidle) != 0 && runtime·atomicload(&runtime·sched.nmspinning) == 0 && fn->fn != runtime·main) // TODO: fast atomic
wakep();
m->locks--;
if(m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack
g->stackguard0 = StackPreempt;
return newg;
}
// Put on gfree list.
// If local list is too long, transfer a batch to the global list.
static void
gfput(P *p, G *gp)
{
if(gp->stackguard - StackGuard != gp->stack0)
runtime·throw("invalid stack in gfput");
gp->schedlink = p->gfree;
p->gfree = gp;
p->gfreecnt++;
if(p->gfreecnt >= 64) {
runtime·lock(&runtime·sched.gflock);
while(p->gfreecnt >= 32) {
p->gfreecnt--;
gp = p->gfree;
p->gfree = gp->schedlink;
gp->schedlink = runtime·sched.gfree;
runtime·sched.gfree = gp;
}
runtime·unlock(&runtime·sched.gflock);
}
}
// Get from gfree list.
// If local list is empty, grab a batch from global list.
static G*
gfget(P *p)
{
G *gp;
retry:
gp = p->gfree;
if(gp == nil && runtime·sched.gfree) {
runtime·lock(&runtime·sched.gflock);
while(p->gfreecnt < 32 && runtime·sched.gfree) {
p->gfreecnt++;
gp = runtime·sched.gfree;
runtime·sched.gfree = gp->schedlink;
gp->schedlink = p->gfree;
p->gfree = gp;
}
runtime·unlock(&runtime·sched.gflock);
goto retry;
}
if(gp) {
p->gfree = gp->schedlink;
p->gfreecnt--;
}
return gp;
}
// Purge all cached G's from gfree list to the global list.
static void
gfpurge(P *p)
{
G *gp;
runtime·lock(&runtime·sched.gflock);
while(p->gfreecnt) {
p->gfreecnt--;
gp = p->gfree;
p->gfree = gp->schedlink;
gp->schedlink = runtime·sched.gfree;
runtime·sched.gfree = gp;
}
runtime·unlock(&runtime·sched.gflock);
}
void
runtime·Breakpoint(void)
{
runtime·breakpoint();
}
void
runtime·Gosched(void)
{
runtime·gosched();
}
// Implementation of runtime.GOMAXPROCS.
// delete when scheduler is even stronger
int32
runtime·gomaxprocsfunc(int32 n)
{
int32 ret;
if(n > MaxGomaxprocs)
n = MaxGomaxprocs;
runtime·lock(&runtime·sched);
ret = runtime·gomaxprocs;
if(n <= 0 || n == ret) {
runtime·unlock(&runtime·sched);
return ret;
}
runtime·unlock(&runtime·sched);
runtime·semacquire(&runtime·worldsema);
m->gcing = 1;
runtime·stoptheworld();
newprocs = n;
m->gcing = 0;
runtime·semrelease(&runtime·worldsema);
runtime·starttheworld();
return ret;
}
static void
LockOSThread(void)
{
m->lockedg = g;
g->lockedm = m;
}
void
runtime·LockOSThread(void)
{
m->locked |= LockExternal;
LockOSThread();
}
void
runtime·lockOSThread(void)
{
m->locked += LockInternal;
LockOSThread();
}
static void
UnlockOSThread(void)
{
if(m->locked != 0)
return;
m->lockedg = nil;
g->lockedm = nil;
}
void
runtime·UnlockOSThread(void)
{
m->locked &= ~LockExternal;
UnlockOSThread();
}
void
runtime·unlockOSThread(void)
{
if(m->locked < LockInternal)
runtime·throw("runtime: internal error: misuse of lockOSThread/unlockOSThread");
m->locked -= LockInternal;
UnlockOSThread();
}
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
bool
runtime·lockedOSThread(void)
{
return g->lockedm != nil && m->lockedg != nil;
}
// for testing of callbacks
void
runtime·golockedOSThread(bool ret)
{
ret = runtime·lockedOSThread();
FLUSH(&ret);
}
void
runtime·NumGoroutine(intgo ret)
{
ret = runtime·gcount();
FLUSH(&ret);
}
int32
runtime·gcount(void)
{
G *gp;
int32 n, s;
n = 0;
runtime·lock(&runtime·sched);
// TODO(dvyukov): runtime.NumGoroutine() is O(N).
// We do not want to increment/decrement centralized counter in newproc/goexit,
// just to make runtime.NumGoroutine() faster.
// Compromise solution is to introduce per-P counters of active goroutines.
for(gp = runtime·allg; gp; gp = gp->alllink) {
s = gp->status;
if(s == Grunnable || s == Grunning || s == Gsyscall || s == Gwaiting)
n++;
}
runtime·unlock(&runtime·sched);
return n;
}
int32
runtime·mcount(void)
{
return runtime·sched.mcount;
}
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
void
runtime·badmcall(void) // called from assembly
{
runtime·throw("runtime: mcall called on m->g0 stack");
}
void
runtime·badmcall2(void) // called from assembly
{
runtime·throw("runtime: mcall function returned");
}
static struct {
Lock;
void (*fn)(uintptr*, int32);
int32 hz;
uintptr pcbuf[100];
} prof;
// Called if we receive a SIGPROF signal.
void
runtime·sigprof(uint8 *pc, uint8 *sp, uint8 *lr, G *gp)
{
int32 n;
// Windows does profiling in a dedicated thread w/o m.
if(!Windows && (m == nil || m->mcache == nil))
return;
if(prof.fn == nil || prof.hz == 0)
return;
runtime·lock(&prof);
if(prof.fn == nil) {
runtime·unlock(&prof);
return;
}
runtime: record proper goroutine state during stack split Until now, the goroutine state has been scattered during the execution of newstack and oldstack. It's all there, and those routines know how to get back to a working goroutine, but other pieces of the system, like stack traces, do not. If something does interrupt the newstack or oldstack execution, the rest of the system can't understand the goroutine. For example, if newstack decides there is an overflow and calls throw, the stack tracer wouldn't dump the goroutine correctly. For newstack to save a useful state snapshot, it needs to be able to rewind the PC in the function that triggered the split back to the beginning of the function. (The PC is a few instructions in, just after the call to morestack.) To make that possible, we change the prologues to insert a jmp back to the beginning of the function after the call to morestack. That is, the prologue used to be roughly: TEXT myfunc check for split jmpcond nosplit call morestack nosplit: sub $xxx, sp Now an extra instruction is inserted after the call: TEXT myfunc start: check for split jmpcond nosplit call morestack jmp start nosplit: sub $xxx, sp The jmp is not executed directly. It is decoded and simulated by runtime.rewindmorestack to discover the beginning of the function, and then the call to morestack returns directly to the start label instead of to the jump instruction. So logically the jmp is still executed, just not by the cpu. The prologue thus repeats in the case of a function that needs a stack split, but against the cost of the split itself, the extra few instructions are noise. The repeated prologue has the nice effect of making a stack split double-check that the new stack is big enough: if morestack happens to return on a too-small stack, we'll now notice before corruption happens. The ability for newstack to rewind to the beginning of the function should help preemption too. If newstack decides that it was called for preemption instead of a stack split, it now has the goroutine state correctly paused if rescheduling is needed, and when the goroutine can run again, it can return to the start label on its original stack and re-execute the split check. Here is an example of a split stack overflow showing the full trace, without any special cases in the stack printer. (This one was triggered by making the split check incorrect.) runtime: newstack framesize=0x0 argsize=0x18 sp=0x6aebd0 stack=[0x6b0000, 0x6b0fa0] morebuf={pc:0x69f5b sp:0x6aebd8 lr:0x0} sched={pc:0x68880 sp:0x6aebd0 lr:0x0 ctxt:0x34e700} runtime: split stack overflow: 0x6aebd0 < 0x6b0000 fatal error: runtime: split stack overflow goroutine 1 [stack split]: runtime.mallocgc(0x290, 0x100000000, 0x1) /Users/rsc/g/go/src/pkg/runtime/zmalloc_darwin_amd64.c:21 fp=0x6aebd8 runtime.new() /Users/rsc/g/go/src/pkg/runtime/zmalloc_darwin_amd64.c:682 +0x5b fp=0x6aec08 go/build.(*Context).Import(0x5ae340, 0xc210030c71, 0xa, 0xc2100b4380, 0x1b, ...) /Users/rsc/g/go/src/pkg/go/build/build.go:424 +0x3a fp=0x6b00a0 main.loadImport(0xc210030c71, 0xa, 0xc2100b4380, 0x1b, 0xc2100b42c0, ...) /Users/rsc/g/go/src/cmd/go/pkg.go:249 +0x371 fp=0x6b01a8 main.(*Package).load(0xc21017c800, 0xc2100b42c0, 0xc2101828c0, 0x0, 0x0, ...) /Users/rsc/g/go/src/cmd/go/pkg.go:431 +0x2801 fp=0x6b0c98 main.loadPackage(0x369040, 0x7, 0xc2100b42c0, 0x0) /Users/rsc/g/go/src/cmd/go/pkg.go:709 +0x857 fp=0x6b0f80 ----- stack segment boundary ----- main.(*builder).action(0xc2100902a0, 0x0, 0x0, 0xc2100e6c00, 0xc2100e5750, ...) /Users/rsc/g/go/src/cmd/go/build.go:539 +0x437 fp=0x6b14a0 main.(*builder).action(0xc2100902a0, 0x0, 0x0, 0xc21015b400, 0x2, ...) /Users/rsc/g/go/src/cmd/go/build.go:528 +0x1d2 fp=0x6b1658 main.(*builder).test(0xc2100902a0, 0xc210092000, 0x0, 0x0, 0xc21008ff60, ...) /Users/rsc/g/go/src/cmd/go/test.go:622 +0x1b53 fp=0x6b1f68 ----- stack segment boundary ----- main.runTest(0x5a6b20, 0xc21000a020, 0x2, 0x2) /Users/rsc/g/go/src/cmd/go/test.go:366 +0xd09 fp=0x6a5cf0 main.main() /Users/rsc/g/go/src/cmd/go/main.go:161 +0x4f9 fp=0x6a5f78 runtime.main() /Users/rsc/g/go/src/pkg/runtime/proc.c:183 +0x92 fp=0x6a5fa0 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1266 fp=0x6a5fa8 And here is a seg fault during oldstack: SIGSEGV: segmentation violation PC=0x1b2a6 runtime.oldstack() /Users/rsc/g/go/src/pkg/runtime/stack.c:159 +0x76 runtime.lessstack() /Users/rsc/g/go/src/pkg/runtime/asm_amd64.s:270 +0x22 goroutine 1 [stack unsplit]: fmt.(*pp).printArg(0x2102e64e0, 0xe5c80, 0x2102c9220, 0x73, 0x0, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:818 +0x3d3 fp=0x221031e6f8 fmt.(*pp).doPrintf(0x2102e64e0, 0x12fb20, 0x2, 0x221031eb98, 0x1, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:1183 +0x15cb fp=0x221031eaf0 fmt.Sprintf(0x12fb20, 0x2, 0x221031eb98, 0x1, 0x1, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:234 +0x67 fp=0x221031eb40 flag.(*stringValue).String(0x2102c9210, 0x1, 0x0) /Users/rsc/g/go/src/pkg/flag/flag.go:180 +0xb3 fp=0x221031ebb0 flag.(*FlagSet).Var(0x2102f6000, 0x293d38, 0x2102c9210, 0x143490, 0xa, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:633 +0x40 fp=0x221031eca0 flag.(*FlagSet).StringVar(0x2102f6000, 0x2102c9210, 0x143490, 0xa, 0x12fa60, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:550 +0x91 fp=0x221031ece8 flag.(*FlagSet).String(0x2102f6000, 0x143490, 0xa, 0x12fa60, 0x0, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:563 +0x87 fp=0x221031ed38 flag.String(0x143490, 0xa, 0x12fa60, 0x0, 0x161950, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:570 +0x6b fp=0x221031ed80 testing.init() /Users/rsc/g/go/src/pkg/testing/testing.go:-531 +0xbb fp=0x221031edc0 strings_test.init() /Users/rsc/g/go/src/pkg/strings/strings_test.go:1115 +0x62 fp=0x221031ef70 main.init() strings/_test/_testmain.go:90 +0x3d fp=0x221031ef78 runtime.main() /Users/rsc/g/go/src/pkg/runtime/proc.c:180 +0x8a fp=0x221031efa0 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1269 fp=0x221031efa8 goroutine 2 [runnable]: runtime.MHeap_Scavenger() /Users/rsc/g/go/src/pkg/runtime/mheap.c:438 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1269 created by runtime.main /Users/rsc/g/go/src/pkg/runtime/proc.c:166 rax 0x23ccc0 rbx 0x23ccc0 rcx 0x0 rdx 0x38 rdi 0x2102c0170 rsi 0x221032cfe0 rbp 0x221032cfa0 rsp 0x7fff5fbff5b0 r8 0x2102c0120 r9 0x221032cfa0 r10 0x221032c000 r11 0x104ce8 r12 0xe5c80 r13 0x1be82baac718 r14 0x13091135f7d69200 r15 0x0 rip 0x1b2a6 rflags 0x10246 cs 0x2b fs 0x0 gs 0x0 Fixes #5723. R=r, dvyukov, go.peter.90, dave, iant CC=golang-dev https://golang.org/cl/10360048
2013-06-27 09:32:01 -06:00
n = runtime·gentraceback((uintptr)pc, (uintptr)sp, (uintptr)lr, gp, 0, prof.pcbuf, nelem(prof.pcbuf), nil, nil, false);
if(n > 0)
prof.fn(prof.pcbuf, n);
runtime·unlock(&prof);
}
// Arrange to call fn with a traceback hz times a second.
void
runtime·setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz)
{
// Force sane arguments.
if(hz < 0)
hz = 0;
if(hz == 0)
fn = nil;
if(fn == nil)
hz = 0;
// Stop profiler on this cpu so that it is safe to lock prof.
// if a profiling signal came in while we had prof locked,
// it would deadlock.
runtime·resetcpuprofiler(0);
runtime·lock(&prof);
prof.fn = fn;
prof.hz = hz;
runtime·unlock(&prof);
runtime·lock(&runtime·sched);
runtime·sched.profilehz = hz;
runtime·unlock(&runtime·sched);
if(hz != 0)
runtime·resetcpuprofiler(hz);
}
// Change number of processors. The world is stopped, sched is locked.
static void
procresize(int32 new)
{
int32 i, old;
G *gp;
P *p;
old = runtime·gomaxprocs;
if(old < 0 || old > MaxGomaxprocs || new <= 0 || new >MaxGomaxprocs)
runtime·throw("procresize: invalid arg");
// initialize new P's
for(i = 0; i < new; i++) {
p = runtime·allp[i];
if(p == nil) {
p = (P*)runtime·mallocgc(sizeof(*p), 0, FlagNoInvokeGC);
p->status = Pgcstop;
runtime·atomicstorep(&runtime·allp[i], p);
}
if(p->mcache == nil) {
if(old==0 && i==0)
p->mcache = m->mcache; // bootstrap
else
p->mcache = runtime·allocmcache();
}
if(p->runq == nil) {
p->runqsize = 128;
p->runq = (G**)runtime·mallocgc(p->runqsize*sizeof(G*), 0, FlagNoInvokeGC);
}
}
// redistribute runnable G's evenly
for(i = 0; i < old; i++) {
p = runtime·allp[i];
while(gp = runqget(p))
globrunqput(gp);
}
// start at 1 because current M already executes some G and will acquire allp[0] below,
// so if we have a spare G we want to put it into allp[1].
for(i = 1; runtime·sched.runqhead; i++) {
gp = runtime·sched.runqhead;
runtime·sched.runqhead = gp->schedlink;
runqput(runtime·allp[i%new], gp);
}
runtime·sched.runqtail = nil;
runtime·sched.runqsize = 0;
// free unused P's
for(i = new; i < old; i++) {
p = runtime·allp[i];
runtime·freemcache(p->mcache);
p->mcache = nil;
gfpurge(p);
p->status = Pdead;
// can't free P itself because it can be referenced by an M in syscall
}
if(m->p)
m->p->m = nil;
m->p = nil;
m->mcache = nil;
p = runtime·allp[0];
p->m = nil;
p->status = Pidle;
acquirep(p);
for(i = new-1; i > 0; i--) {
p = runtime·allp[i];
p->status = Pidle;
pidleput(p);
}
runtime·singleproc = new == 1;
runtime·atomicstore((uint32*)&runtime·gomaxprocs, new);
}
// Associate p and the current m.
static void
acquirep(P *p)
{
if(m->p || m->mcache)
runtime·throw("acquirep: already in go");
if(p->m || p->status != Pidle) {
runtime·printf("acquirep: p->m=%p(%d) p->status=%d\n", p->m, p->m ? p->m->id : 0, p->status);
runtime·throw("acquirep: invalid p state");
}
m->mcache = p->mcache;
m->p = p;
p->m = m;
p->status = Prunning;
}
// Disassociate p and the current m.
static P*
releasep(void)
{
P *p;
if(m->p == nil || m->mcache == nil)
runtime·throw("releasep: invalid arg");
p = m->p;
if(p->m != m || p->mcache != m->mcache || p->status != Prunning) {
runtime·printf("releasep: m=%p m->p=%p p->m=%p m->mcache=%p p->mcache=%p p->status=%d\n",
m, m->p, p->m, m->mcache, p->mcache, p->status);
runtime·throw("releasep: invalid p state");
}
m->p = nil;
m->mcache = nil;
p->m = nil;
p->status = Pidle;
return p;
}
static void
inclocked(int32 v)
{
runtime·lock(&runtime·sched);
runtime·sched.mlocked += v;
if(v > 0)
checkdead();
runtime·unlock(&runtime·sched);
}
// Check for deadlock situation.
// The check is based on number of running M's, if 0 -> deadlock.
static void
checkdead(void)
{
G *gp;
int32 run, grunning, s;
// -1 for sysmon
run = runtime·sched.mcount - runtime·sched.nmidle - runtime·sched.mlocked - 1;
if(run > 0)
return;
if(run < 0) {
runtime·printf("checkdead: nmidle=%d mlocked=%d mcount=%d\n",
runtime·sched.nmidle, runtime·sched.mlocked, runtime·sched.mcount);
runtime·throw("checkdead: inconsistent counts");
}
grunning = 0;
for(gp = runtime·allg; gp; gp = gp->alllink) {
if(gp->isbackground)
continue;
s = gp->status;
if(s == Gwaiting)
grunning++;
else if(s == Grunnable || s == Grunning || s == Gsyscall) {
runtime·printf("checkdead: find g %D in status %d\n", gp->goid, s);
runtime·throw("checkdead: runnable g");
}
}
if(grunning == 0) // possible if main goroutine calls runtime·Goexit()
runtime·exit(0);
m->throwing = -1; // do not dump full stacks
runtime·throw("all goroutines are asleep - deadlock!");
}
static void
sysmon(void)
{
uint32 idle, delay;
int64 now, lastpoll;
G *gp;
idle = 0; // how many cycles in succession we had not wokeup somebody
delay = 0;
for(;;) {
if(idle == 0) // start with 20us sleep...
delay = 20;
else if(idle > 50) // start doubling the sleep after 1ms...
delay *= 2;
if(delay > 10*1000) // up to 10ms
delay = 10*1000;
runtime·usleep(delay);
if(runtime·gcwaiting || runtime·atomicload(&runtime·sched.npidle) == runtime·gomaxprocs) { // TODO: fast atomic
runtime·lock(&runtime·sched);
if(runtime·atomicload(&runtime·gcwaiting) || runtime·atomicload(&runtime·sched.npidle) == runtime·gomaxprocs) {
runtime·atomicstore(&runtime·sched.sysmonwait, 1);
runtime·unlock(&runtime·sched);
runtime·notesleep(&runtime·sched.sysmonnote);
runtime·noteclear(&runtime·sched.sysmonnote);
idle = 0;
delay = 20;
} else
runtime·unlock(&runtime·sched);
}
// poll network if not polled for more than 10ms
lastpoll = runtime·atomicload64(&runtime·sched.lastpoll);
now = runtime·nanotime();
if(lastpoll != 0 && lastpoll + 10*1000*1000 > now) {
runtime·cas64(&runtime·sched.lastpoll, lastpoll, now);
gp = runtime·netpoll(false); // non-blocking
injectglist(gp);
}
// retake P's blocked in syscalls
// and preempt long running G's
if(retake(now))
idle = 0;
else
idle++;
}
}
typedef struct Pdesc Pdesc;
struct Pdesc
{
uint32 tick;
int64 when;
};
static Pdesc pdesc[MaxGomaxprocs];
static uint32
retake(int64 now)
{
uint32 i, s, n;
int64 t;
P *p;
Pdesc *pd;
n = 0;
for(i = 0; i < runtime·gomaxprocs; i++) {
p = runtime·allp[i];
if(p==nil)
continue;
t = p->tick;
pd = &pdesc[i];
if(pd->tick != t) {
pd->tick = t;
pd->when = now;
continue;
}
s = p->status;
if(s == Psyscall) {
// Retake P from syscall if it's there for more than 1 sysmon tick (20us).
// But only if there is other work to do.
if(p->runqhead == p->runqtail &&
runtime·atomicload(&runtime·sched.nmspinning) + runtime·atomicload(&runtime·sched.npidle) > 0)
continue;
// Need to increment number of locked M's before the CAS.
// Otherwise the M from which we retake can exit the syscall,
// increment nmidle and report deadlock.
inclocked(-1);
if(runtime·cas(&p->status, s, Pidle)) {
n++;
handoffp(p);
}
inclocked(1);
} else if(s == Prunning) {
// Preempt G if it's running for more than 10ms.
if(pd->when + 10*1000*1000 > now)
continue;
preemptone(p);
}
}
return n;
}
// Tell all goroutines that they have been preempted and they should stop.
// This function is purely best-effort. It can fail to inform a goroutine if a
// processor just started running it.
// No locks need to be held.
static void
preemptall(void)
{
P *p;
int32 i;
for(i = 0; i < runtime·gomaxprocs; i++) {
p = runtime·allp[i];
if(p == nil || p->status != Prunning)
continue;
preemptone(p);
}
}
// Tell the goroutine running on processor P to stop.
// This function is purely best-effort. It can incorrectly fail to inform the
// goroutine. It can send inform the wrong goroutine. Even if it informs the
// correct goroutine, that goroutine might ignore the request if it is
// simultaneously executing runtime·newstack.
// No lock needs to be held.
static void
preemptone(P *p)
{
M *mp;
G *gp;
// Preemption requires more robust traceback routines.
// For now, disable.
// The if(1) silences a compiler warning about the rest of the
// function being unreachable.
if(1) return;
mp = p->m;
if(mp == nil || mp == m)
return;
gp = mp->curg;
if(gp == nil || gp == mp->g0)
return;
gp->preempt = true;
gp->stackguard0 = StackPreempt;
}
// Put mp on midle list.
// Sched must be locked.
static void
mput(M *mp)
{
mp->schedlink = runtime·sched.midle;
runtime·sched.midle = mp;
runtime·sched.nmidle++;
checkdead();
}
// Try to get an m from midle list.
// Sched must be locked.
static M*
mget(void)
{
M *mp;
if((mp = runtime·sched.midle) != nil){
runtime·sched.midle = mp->schedlink;
runtime·sched.nmidle--;
}
return mp;
}
// Put gp on the global runnable queue.
// Sched must be locked.
static void
globrunqput(G *gp)
{
gp->schedlink = nil;
if(runtime·sched.runqtail)
runtime·sched.runqtail->schedlink = gp;
else
runtime·sched.runqhead = gp;
runtime·sched.runqtail = gp;
runtime·sched.runqsize++;
}
// Try get a batch of G's from the global runnable queue.
// Sched must be locked.
static G*
globrunqget(P *p, int32 max)
{
G *gp, *gp1;
int32 n;
if(runtime·sched.runqsize == 0)
return nil;
n = runtime·sched.runqsize/runtime·gomaxprocs+1;
if(n > runtime·sched.runqsize)
n = runtime·sched.runqsize;
if(max > 0 && n > max)
n = max;
runtime·sched.runqsize -= n;
if(runtime·sched.runqsize == 0)
runtime·sched.runqtail = nil;
gp = runtime·sched.runqhead;
runtime·sched.runqhead = gp->schedlink;
n--;
while(n--) {
gp1 = runtime·sched.runqhead;
runtime·sched.runqhead = gp1->schedlink;
runqput(p, gp1);
}
return gp;
}
// Put p to on pidle list.
// Sched must be locked.
static void
pidleput(P *p)
{
p->link = runtime·sched.pidle;
runtime·sched.pidle = p;
runtime·xadd(&runtime·sched.npidle, 1); // TODO: fast atomic
}
// Try get a p from pidle list.
// Sched must be locked.
static P*
pidleget(void)
{
P *p;
p = runtime·sched.pidle;
if(p) {
runtime·sched.pidle = p->link;
runtime·xadd(&runtime·sched.npidle, -1); // TODO: fast atomic
}
return p;
}
// Put g on local runnable queue.
// TODO(dvyukov): consider using lock-free queue.
static void
runqput(P *p, G *gp)
{
int32 h, t, s;
runtime·lock(p);
retry:
h = p->runqhead;
t = p->runqtail;
s = p->runqsize;
if(t == h-1 || (h == 0 && t == s-1)) {
runqgrow(p);
goto retry;
}
p->runq[t++] = gp;
if(t == s)
t = 0;
p->runqtail = t;
runtime·unlock(p);
}
// Get g from local runnable queue.
static G*
runqget(P *p)
{
G *gp;
int32 t, h, s;
if(p->runqhead == p->runqtail)
return nil;
runtime·lock(p);
h = p->runqhead;
t = p->runqtail;
s = p->runqsize;
if(t == h) {
runtime·unlock(p);
return nil;
}
gp = p->runq[h++];
if(h == s)
h = 0;
p->runqhead = h;
runtime·unlock(p);
return gp;
}
// Grow local runnable queue.
// TODO(dvyukov): consider using fixed-size array
// and transfer excess to the global list (local queue can grow way too big).
static void
runqgrow(P *p)
{
G **q;
int32 s, t, h, t2;
h = p->runqhead;
t = p->runqtail;
s = p->runqsize;
t2 = 0;
q = runtime·malloc(2*s*sizeof(*q));
while(t != h) {
q[t2++] = p->runq[h++];
if(h == s)
h = 0;
}
runtime·free(p->runq);
p->runq = q;
p->runqhead = 0;
p->runqtail = t2;
p->runqsize = 2*s;
}
// Steal half of elements from local runnable queue of p2
// and put onto local runnable queue of p.
// Returns one of the stolen elements (or nil if failed).
static G*
runqsteal(P *p, P *p2)
{
G *gp, *gp1;
int32 t, h, s, t2, h2, s2, c, i;
if(p2->runqhead == p2->runqtail)
return nil;
// sort locks to prevent deadlocks
if(p < p2)
runtime·lock(p);
runtime·lock(p2);
if(p2->runqhead == p2->runqtail) {
runtime·unlock(p2);
if(p < p2)
runtime·unlock(p);
return nil;
}
if(p >= p2)
runtime·lock(p);
// now we've locked both queues and know the victim is not empty
h = p->runqhead;
t = p->runqtail;
s = p->runqsize;
h2 = p2->runqhead;
t2 = p2->runqtail;
s2 = p2->runqsize;
gp = p2->runq[h2++]; // return value
if(h2 == s2)
h2 = 0;
// steal roughly half
if(t2 > h2)
c = (t2 - h2) / 2;
else
c = (s2 - h2 + t2) / 2;
// copy
for(i = 0; i != c; i++) {
// the target queue is full?
if(t == h-1 || (h == 0 && t == s-1))
break;
// the victim queue is empty?
if(t2 == h2)
break;
gp1 = p2->runq[h2++];
if(h2 == s2)
h2 = 0;
p->runq[t++] = gp1;
if(t == s)
t = 0;
}
p->runqtail = t;
p2->runqhead = h2;
runtime·unlock(p2);
runtime·unlock(p);
return gp;
}
void
runtime·testSchedLocalQueue(void)
{
P p;
G gs[1000];
int32 i, j;
runtime·memclr((byte*)&p, sizeof(p));
p.runqsize = 1;
p.runqhead = 0;
p.runqtail = 0;
p.runq = runtime·malloc(p.runqsize*sizeof(*p.runq));
for(i = 0; i < nelem(gs); i++) {
if(runqget(&p) != nil)
runtime·throw("runq is not empty initially");
for(j = 0; j < i; j++)
runqput(&p, &gs[i]);
for(j = 0; j < i; j++) {
if(runqget(&p) != &gs[i]) {
runtime·printf("bad element at iter %d/%d\n", i, j);
runtime·throw("bad element");
}
}
if(runqget(&p) != nil)
runtime·throw("runq is not empty afterwards");
}
}
void
runtime·testSchedLocalQueueSteal(void)
{
P p1, p2;
G gs[1000], *gp;
int32 i, j, s;
runtime·memclr((byte*)&p1, sizeof(p1));
p1.runqsize = 1;
p1.runqhead = 0;
p1.runqtail = 0;
p1.runq = runtime·malloc(p1.runqsize*sizeof(*p1.runq));
runtime·memclr((byte*)&p2, sizeof(p2));
p2.runqsize = nelem(gs);
p2.runqhead = 0;
p2.runqtail = 0;
p2.runq = runtime·malloc(p2.runqsize*sizeof(*p2.runq));
for(i = 0; i < nelem(gs); i++) {
for(j = 0; j < i; j++) {
gs[j].sig = 0;
runqput(&p1, &gs[j]);
}
gp = runqsteal(&p2, &p1);
s = 0;
if(gp) {
s++;
gp->sig++;
}
while(gp = runqget(&p2)) {
s++;
gp->sig++;
}
while(gp = runqget(&p1))
gp->sig++;
for(j = 0; j < i; j++) {
if(gs[j].sig != 1) {
runtime·printf("bad element %d(%d) at iter %d\n", j, gs[j].sig, i);
runtime·throw("bad element");
}
}
if(s != i/2 && s != i/2+1) {
runtime·printf("bad steal %d, want %d or %d, iter %d\n",
s, i/2, i/2+1, i);
runtime·throw("bad steal");
}
}
}
runtime: record proper goroutine state during stack split Until now, the goroutine state has been scattered during the execution of newstack and oldstack. It's all there, and those routines know how to get back to a working goroutine, but other pieces of the system, like stack traces, do not. If something does interrupt the newstack or oldstack execution, the rest of the system can't understand the goroutine. For example, if newstack decides there is an overflow and calls throw, the stack tracer wouldn't dump the goroutine correctly. For newstack to save a useful state snapshot, it needs to be able to rewind the PC in the function that triggered the split back to the beginning of the function. (The PC is a few instructions in, just after the call to morestack.) To make that possible, we change the prologues to insert a jmp back to the beginning of the function after the call to morestack. That is, the prologue used to be roughly: TEXT myfunc check for split jmpcond nosplit call morestack nosplit: sub $xxx, sp Now an extra instruction is inserted after the call: TEXT myfunc start: check for split jmpcond nosplit call morestack jmp start nosplit: sub $xxx, sp The jmp is not executed directly. It is decoded and simulated by runtime.rewindmorestack to discover the beginning of the function, and then the call to morestack returns directly to the start label instead of to the jump instruction. So logically the jmp is still executed, just not by the cpu. The prologue thus repeats in the case of a function that needs a stack split, but against the cost of the split itself, the extra few instructions are noise. The repeated prologue has the nice effect of making a stack split double-check that the new stack is big enough: if morestack happens to return on a too-small stack, we'll now notice before corruption happens. The ability for newstack to rewind to the beginning of the function should help preemption too. If newstack decides that it was called for preemption instead of a stack split, it now has the goroutine state correctly paused if rescheduling is needed, and when the goroutine can run again, it can return to the start label on its original stack and re-execute the split check. Here is an example of a split stack overflow showing the full trace, without any special cases in the stack printer. (This one was triggered by making the split check incorrect.) runtime: newstack framesize=0x0 argsize=0x18 sp=0x6aebd0 stack=[0x6b0000, 0x6b0fa0] morebuf={pc:0x69f5b sp:0x6aebd8 lr:0x0} sched={pc:0x68880 sp:0x6aebd0 lr:0x0 ctxt:0x34e700} runtime: split stack overflow: 0x6aebd0 < 0x6b0000 fatal error: runtime: split stack overflow goroutine 1 [stack split]: runtime.mallocgc(0x290, 0x100000000, 0x1) /Users/rsc/g/go/src/pkg/runtime/zmalloc_darwin_amd64.c:21 fp=0x6aebd8 runtime.new() /Users/rsc/g/go/src/pkg/runtime/zmalloc_darwin_amd64.c:682 +0x5b fp=0x6aec08 go/build.(*Context).Import(0x5ae340, 0xc210030c71, 0xa, 0xc2100b4380, 0x1b, ...) /Users/rsc/g/go/src/pkg/go/build/build.go:424 +0x3a fp=0x6b00a0 main.loadImport(0xc210030c71, 0xa, 0xc2100b4380, 0x1b, 0xc2100b42c0, ...) /Users/rsc/g/go/src/cmd/go/pkg.go:249 +0x371 fp=0x6b01a8 main.(*Package).load(0xc21017c800, 0xc2100b42c0, 0xc2101828c0, 0x0, 0x0, ...) /Users/rsc/g/go/src/cmd/go/pkg.go:431 +0x2801 fp=0x6b0c98 main.loadPackage(0x369040, 0x7, 0xc2100b42c0, 0x0) /Users/rsc/g/go/src/cmd/go/pkg.go:709 +0x857 fp=0x6b0f80 ----- stack segment boundary ----- main.(*builder).action(0xc2100902a0, 0x0, 0x0, 0xc2100e6c00, 0xc2100e5750, ...) /Users/rsc/g/go/src/cmd/go/build.go:539 +0x437 fp=0x6b14a0 main.(*builder).action(0xc2100902a0, 0x0, 0x0, 0xc21015b400, 0x2, ...) /Users/rsc/g/go/src/cmd/go/build.go:528 +0x1d2 fp=0x6b1658 main.(*builder).test(0xc2100902a0, 0xc210092000, 0x0, 0x0, 0xc21008ff60, ...) /Users/rsc/g/go/src/cmd/go/test.go:622 +0x1b53 fp=0x6b1f68 ----- stack segment boundary ----- main.runTest(0x5a6b20, 0xc21000a020, 0x2, 0x2) /Users/rsc/g/go/src/cmd/go/test.go:366 +0xd09 fp=0x6a5cf0 main.main() /Users/rsc/g/go/src/cmd/go/main.go:161 +0x4f9 fp=0x6a5f78 runtime.main() /Users/rsc/g/go/src/pkg/runtime/proc.c:183 +0x92 fp=0x6a5fa0 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1266 fp=0x6a5fa8 And here is a seg fault during oldstack: SIGSEGV: segmentation violation PC=0x1b2a6 runtime.oldstack() /Users/rsc/g/go/src/pkg/runtime/stack.c:159 +0x76 runtime.lessstack() /Users/rsc/g/go/src/pkg/runtime/asm_amd64.s:270 +0x22 goroutine 1 [stack unsplit]: fmt.(*pp).printArg(0x2102e64e0, 0xe5c80, 0x2102c9220, 0x73, 0x0, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:818 +0x3d3 fp=0x221031e6f8 fmt.(*pp).doPrintf(0x2102e64e0, 0x12fb20, 0x2, 0x221031eb98, 0x1, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:1183 +0x15cb fp=0x221031eaf0 fmt.Sprintf(0x12fb20, 0x2, 0x221031eb98, 0x1, 0x1, ...) /Users/rsc/g/go/src/pkg/fmt/print.go:234 +0x67 fp=0x221031eb40 flag.(*stringValue).String(0x2102c9210, 0x1, 0x0) /Users/rsc/g/go/src/pkg/flag/flag.go:180 +0xb3 fp=0x221031ebb0 flag.(*FlagSet).Var(0x2102f6000, 0x293d38, 0x2102c9210, 0x143490, 0xa, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:633 +0x40 fp=0x221031eca0 flag.(*FlagSet).StringVar(0x2102f6000, 0x2102c9210, 0x143490, 0xa, 0x12fa60, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:550 +0x91 fp=0x221031ece8 flag.(*FlagSet).String(0x2102f6000, 0x143490, 0xa, 0x12fa60, 0x0, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:563 +0x87 fp=0x221031ed38 flag.String(0x143490, 0xa, 0x12fa60, 0x0, 0x161950, ...) /Users/rsc/g/go/src/pkg/flag/flag.go:570 +0x6b fp=0x221031ed80 testing.init() /Users/rsc/g/go/src/pkg/testing/testing.go:-531 +0xbb fp=0x221031edc0 strings_test.init() /Users/rsc/g/go/src/pkg/strings/strings_test.go:1115 +0x62 fp=0x221031ef70 main.init() strings/_test/_testmain.go:90 +0x3d fp=0x221031ef78 runtime.main() /Users/rsc/g/go/src/pkg/runtime/proc.c:180 +0x8a fp=0x221031efa0 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1269 fp=0x221031efa8 goroutine 2 [runnable]: runtime.MHeap_Scavenger() /Users/rsc/g/go/src/pkg/runtime/mheap.c:438 runtime.goexit() /Users/rsc/g/go/src/pkg/runtime/proc.c:1269 created by runtime.main /Users/rsc/g/go/src/pkg/runtime/proc.c:166 rax 0x23ccc0 rbx 0x23ccc0 rcx 0x0 rdx 0x38 rdi 0x2102c0170 rsi 0x221032cfe0 rbp 0x221032cfa0 rsp 0x7fff5fbff5b0 r8 0x2102c0120 r9 0x221032cfa0 r10 0x221032c000 r11 0x104ce8 r12 0xe5c80 r13 0x1be82baac718 r14 0x13091135f7d69200 r15 0x0 rip 0x1b2a6 rflags 0x10246 cs 0x2b fs 0x0 gs 0x0 Fixes #5723. R=r, dvyukov, go.peter.90, dave, iant CC=golang-dev https://golang.org/cl/10360048
2013-06-27 09:32:01 -06:00
extern void runtime·morestack(void);
// Does f mark the top of a goroutine stack?
bool
runtime·topofstack(Func *f)
{
return f->entry == (uintptr)runtime·goexit ||
f->entry == (uintptr)runtime·mstart ||
f->entry == (uintptr)runtime·mcall ||
f->entry == (uintptr)runtime·morestack ||
f->entry == (uintptr)runtime·lessstack ||
f->entry == (uintptr)_rt0_go;
}