1
0
mirror of https://github.com/golang/go synced 2024-11-21 13:44:45 -07:00

runtime: scheduler, cgo reorganization

* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).

Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).

The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack.  Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler.  If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless.  Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.

* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.

Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.

The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).

The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc.  Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.

Fixes #1560.

R=iant
CC=golang-dev
https://golang.org/cl/4253054
This commit is contained in:
Russ Cox 2011-03-07 10:37:42 -05:00
parent 6d6f3381ff
commit f9ca3b5d5b
21 changed files with 904 additions and 416 deletions

View File

@ -6,10 +6,7 @@ include ../../../src/Make.inc
TARG=stdio
CGOFILES=\
align.go\
file.go\
test.go\
test1.go\
CLEANFILES+=hello fib chain run.out

View File

@ -4,26 +4,8 @@
package main
import (
"os"
"stdio"
)
import "stdio"
func main() {
stdio.Stdout.WriteString(stdio.Greeting + "\n")
l := stdio.Atol("123")
if l != 123 {
println("Atol 123: ", l)
panic("bad atol")
}
n, err := stdio.Strtol("asdf", 123)
if n != 0 || err != os.EINVAL {
println("Strtol: ", n, err)
panic("bad atoi2")
}
stdio.TestAlign()
stdio.TestEnum()
}

23
misc/cgo/test/Makefile Normal file
View File

@ -0,0 +1,23 @@
# Copyright 2011 The Go Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
include ../../../src/Make.inc
TARG=runtime/cgotest
CGOFILES=\
align.go\
basic.go\
callback.go\
issue1222.go\
issue1328.go\
issue1560.go\
CGO_OFILES=\
callback_c.o\
OFILES=\
runtime.$O\
include ../../../src/Make.pkg

View File

@ -1,4 +1,4 @@
package stdio
package cgotest
/*
#include <stdio.h>
@ -55,24 +55,18 @@ void cTest(SDL_KeyboardEvent *event) {
import "C"
import (
"fmt"
"syscall"
"testing"
)
func TestAlign() {
if syscall.ARCH == "amd64" {
// alignment is known to be broken on amd64.
// http://code.google.com/p/go/issues/detail?id=609
return
}
func TestAlign(t *testing.T) {
var evt C.SDL_KeyboardEvent
C.makeEvent(&evt)
if C.same(&evt, evt.typ, evt.which, evt.state, evt.keysym.scancode, evt.keysym.sym, evt.keysym.mod, evt.keysym.unicode) == 0 {
fmt.Println("*** bad alignment")
t.Error("*** bad alignment")
C.cTest(&evt)
fmt.Printf("Go: %#x %#x %#x %#x %#x %#x %#x\n",
t.Errorf("Go: %#x %#x %#x %#x %#x %#x %#x\n",
evt.typ, evt.which, evt.state, evt.keysym.scancode,
evt.keysym.sym, evt.keysym.mod, evt.keysym.unicode)
fmt.Println(evt)
t.Error(evt)
}
}

View File

@ -2,9 +2,9 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains test cases for cgo.
// Basic test cases for cgo.
package stdio
package cgotest
/*
#include <stdio.h>
@ -52,6 +52,7 @@ struct ibv_context {
import "C"
import (
"os"
"testing"
"unsafe"
)
@ -89,38 +90,35 @@ func Atol(s string) int {
return int(n)
}
func TestConst() {
func TestConst(t *testing.T) {
C.myConstFunc(nil, 0, nil)
}
func TestEnum() {
func TestEnum(t *testing.T) {
if C.Enum1 != 1 || C.Enum2 != 2 {
println("bad enum", C.Enum1, C.Enum2)
t.Error("bad enum", C.Enum1, C.Enum2)
}
}
func TestAtol() {
func TestAtol(t *testing.T) {
l := Atol("123")
if l != 123 {
println("Atol 123: ", l)
panic("bad atol")
t.Error("Atol 123: ", l)
}
}
func TestErrno() {
func TestErrno(t *testing.T) {
n, err := Strtol("asdf", 123)
if n != 0 || err != os.EINVAL {
println("Strtol: ", n, err)
panic("bad strtol")
t.Error("Strtol: ", n, err)
}
}
func TestMultipleAssign() {
p := C.CString("123")
func TestMultipleAssign(t *testing.T) {
p := C.CString("234")
n, m := C.strtol(p, nil, 345), C.strtol(p, nil, 10)
if n != 0 || m != 234 {
println("Strtol x2: ", n, m)
panic("bad strtol x2")
t.Fatal("Strtol x2: ", n, m)
}
C.free(unsafe.Pointer(p))
}
@ -134,11 +132,3 @@ var (
type Context struct {
ctx *C.struct_ibv_context
}
func Test() {
TestAlign()
TestAtol()
TestEnum()
TestErrno()
TestConst()
}

136
misc/cgo/test/callback.go Normal file
View File

@ -0,0 +1,136 @@
package cgotest
/*
void callback(void *f);
void callGoFoo(void) {
extern void goFoo(void);
goFoo();
}
*/
import "C"
import (
"runtime"
"testing"
"unsafe"
)
// nestedCall calls into C, back into Go, and finally to f.
func nestedCall(f func()) {
// NOTE: Depends on representation of f.
// callback(x) calls goCallback(x)
C.callback(*(*unsafe.Pointer)(unsafe.Pointer(&f)))
}
//export goCallback
func goCallback(p unsafe.Pointer) {
(*(*func())(unsafe.Pointer(&p)))()
}
func TestCallback(t *testing.T) {
var x = false
nestedCall(func(){x = true})
if !x {
t.Fatal("nestedCall did not call func")
}
}
func TestCallbackGC(t *testing.T) {
nestedCall(runtime.GC)
}
func lockedOSThread() bool // in runtime.c
func TestCallbackPanic(t *testing.T) {
// Make sure panic during callback unwinds properly.
if lockedOSThread() {
t.Fatal("locked OS thread on entry to TestCallbackPanic")
}
defer func() {
s := recover()
if s == nil {
t.Fatal("did not panic")
}
if s.(string) != "callback panic" {
t.Fatal("wrong panic:", s)
}
if lockedOSThread() {
t.Fatal("locked OS thread on exit from TestCallbackPanic")
}
}()
nestedCall(func(){panic("callback panic")})
panic("nestedCall returned")
}
func TestCallbackPanicLoop(t *testing.T) {
// Make sure we don't blow out m->g0 stack.
for i := 0; i < 100000; i++ {
TestCallbackPanic(t)
}
}
func TestCallbackPanicLocked(t *testing.T) {
runtime.LockOSThread()
defer runtime.UnlockOSThread()
if !lockedOSThread() {
t.Fatal("runtime.LockOSThread didn't")
}
defer func() {
s := recover()
if s == nil {
t.Fatal("did not panic")
}
if s.(string) != "callback panic" {
t.Fatal("wrong panic:", s)
}
if !lockedOSThread() {
t.Fatal("lost lock on OS thread after panic")
}
}()
nestedCall(func(){panic("callback panic")})
panic("nestedCall returned")
}
// Callback with zero arguments used to make the stack misaligned,
// which broke the garbage collector and other things.
func TestZeroArgCallback(t *testing.T) {
defer func() {
s := recover()
if s != nil {
t.Fatal("panic during callback:", s)
}
}()
C.callGoFoo()
}
//export goFoo
func goFoo() {
x := 1
for i := 0; i < 10000; i++ {
// variadic call mallocs + writes to
variadic(x, x, x)
if x != 1 {
panic("bad x")
}
}
}
func variadic(x ...interface{}) {}
func TestBlocking(t *testing.T) {
c := make(chan int)
go func() {
for i := 0; i < 10; i++ {
c <- <-c
}
}()
nestedCall(func(){
for i := 0; i < 10; i++ {
c <- i
if j := <-c; j != i {
t.Errorf("out of sync %d != %d", j, i)
}
}
})
}

View File

@ -0,0 +1,12 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include <sys/types.h>
#include "_cgo_export.h"
void
callback(void *f)
{
goCallback(f);
}

View File

@ -0,0 +1,6 @@
package cgotest
// dummy file so gotest thinks there are tests.
// the actual tests are in the main go files, next
// to the code they test.

View File

@ -4,7 +4,7 @@
// This file contains test cases for cgo.
package stdio
package cgotest
/*
// issue 1222

View File

@ -0,0 +1,30 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cgotest
import "testing"
// extern void BackIntoGo(void);
// void IntoC() { BackIntoGo(); }
import "C"
//export BackIntoGo
func BackIntoGo() {
x := 1
for i := 0; i < 10000; i++ {
xvariadic(x)
if x != 1 {
panic("x is not 1?")
}
}
}
func xvariadic(x ...interface{}) {
}
func Test1328(t *testing.T) {
C.IntoC()
}

View File

@ -0,0 +1,46 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cgotest
/*
#include <unistd.h>
extern void BackgroundSleep(int);
void twoSleep(int n) {
BackgroundSleep(n);
sleep(n);
}
*/
import "C"
import (
"testing"
"time"
)
var sleepDone = make(chan bool)
func parallelSleep(n int) {
C.twoSleep(C.int(n))
<-sleepDone
}
//export BackgroundSleep
func BackgroundSleep(n int){
go func(){
C.sleep(C.uint(n))
sleepDone <- true
}()
}
func TestParallelSleep(t *testing.T) {
dt := -time.Nanoseconds()
parallelSleep(1)
dt += time.Nanoseconds()
// bug used to run sleeps in serial, producing a 2-second delay.
if dt >= 1.3e9 {
t.Fatalf("parallel 1-second sleeps slept for %f seconds", float64(dt)/1e9)
}
}

21
misc/cgo/test/runtime.c Normal file
View File

@ -0,0 +1,21 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Expose some runtime functions for testing.
typedef char bool;
bool runtime·lockedOSThread(void);
static void
FLUSH(void*)
{
}
void
·lockedOSThread(bool b)
{
b = runtime·lockedOSThread();
FLUSH(&b);
}

View File

@ -21,6 +21,7 @@ fi
rm -f "$GOROOT"/lib/*.a
for i in lib9 libbio libmach cmd pkg \
../misc/cgo/gmp ../misc/cgo/stdio \
../misc/cgo/life ../misc/cgo/test \
../test/bench ../test/garbage
do
gomake -C "$GOROOT/src/$i" clean

View File

@ -105,7 +105,7 @@ TEXT runtime·breakpoint(SB),7,$0
* go-routine
*/
// uintptr gosave(Gobuf*)
// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), 7, $0
MOVL 4(SP), AX // gobuf
@ -116,7 +116,6 @@ TEXT runtime·gosave(SB), 7, $0
get_tls(CX)
MOVL g(CX), BX
MOVL BX, gobuf_g(AX)
MOVL $0, AX // return 0
RET
// void gogo(Gobuf*, uintptr)
@ -148,6 +147,35 @@ TEXT runtime·gogocall(SB), 7, $0
JMP AX
POPL BX // not reached
// void mcall(void (*fn)(G*))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->gobuf)
// to keep running g.
TEXT runtime·mcall(SB), 7, $0
MOVL fn+0(FP), DI
get_tls(CX)
MOVL g(CX), AX // save state in g->gobuf
MOVL 0(SP), BX // caller's PC
MOVL BX, (g_sched+gobuf_pc)(AX)
LEAL 4(SP), BX // caller's SP
MOVL BX, (g_sched+gobuf_sp)(AX)
MOVL AX, (g_sched+gobuf_g)(AX)
// switch to m->g0 & its stack, call fn
MOVL m(CX), BX
MOVL m_g0(BX), SI
CMPL SI, AX // if g == m->g0 call badmcall
JNE 2(PC)
CALL runtime·badmcall(SB)
MOVL SI, g(CX) // g = m->g0
MOVL (g_sched+gobuf_sp)(SI), SP // sp = m->g0->gobuf.sp
PUSHL AX
CALL DI
POPL AX
CALL runtime·badmcall2(SB)
RET
/*
* support for morestack
*/
@ -183,10 +211,10 @@ TEXT runtime·morestack(SB),7,$0
MOVL 0(SP), AX
MOVL AX, m_morepc(BX)
// Call newstack on m's scheduling stack.
// Call newstack on m->g0's stack.
MOVL m_g0(BX), BP
MOVL BP, g(CX)
MOVL (m_sched+gobuf_sp)(BX), AX
MOVL (g_sched+gobuf_sp)(BP), AX
MOVL -4(AX), BX // fault if CALL would, before smashing SP
MOVL AX, SP
CALL runtime·newstack(SB)
@ -226,11 +254,11 @@ TEXT reflect·call(SB), 7, $0
MOVL CX, m_moreargsize(BX) // f's argument size
MOVL $1, m_moreframesize(BX) // f's frame size
// Call newstack on m's scheduling stack.
// Call newstack on m->g0's stack.
MOVL m_g0(BX), BP
get_tls(CX)
MOVL BP, g(CX)
MOVL (m_sched+gobuf_sp)(BX), SP
MOVL (g_sched+gobuf_sp)(BP), SP
CALL runtime·newstack(SB)
MOVL $0, 0x1103 // crash if newstack returns
RET
@ -243,10 +271,10 @@ TEXT runtime·lessstack(SB), 7, $0
MOVL m(CX), BX
MOVL AX, m_cret(BX)
// Call oldstack on m's scheduling stack.
MOVL m_g0(BX), DX
MOVL DX, g(CX)
MOVL (m_sched+gobuf_sp)(BX), SP
// Call oldstack on m->g0's stack.
MOVL m_g0(BX), BP
MOVL BP, g(CX)
MOVL (g_sched+gobuf_sp)(BP), SP
CALL runtime·oldstack(SB)
MOVL $0, 0x1004 // crash if oldstack returns
RET
@ -302,6 +330,133 @@ TEXT runtime·jmpdefer(SB), 7, $0
SUBL $5, (SP) // return to CALL again
JMP AX // but first run the deferred function
// Dummy function to use in saved gobuf.PC,
// to match SP pointing at a return address.
// The gobuf.PC is unused by the contortions here
// but setting it to return will make the traceback code work.
TEXT return<>(SB),7,$0
RET
// asmcgocall(void(*fn)(void*), void *arg)
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.c for more details.
TEXT runtime·asmcgocall(SB),7,$0
MOVL fn+0(FP), AX
MOVL arg+4(FP), BX
MOVL SP, DX
// Figure out if we need to switch to m->g0 stack.
// We get called to create new OS threads too, and those
// come in on the m->g0 stack already.
get_tls(CX)
MOVL m(CX), BP
MOVL m_g0(BP), SI
MOVL g(CX), DI
CMPL SI, DI
JEQ 6(PC)
MOVL SP, (g_sched+gobuf_sp)(DI)
MOVL $return<>(SB), (g_sched+gobuf_pc)(DI)
MOVL DI, (g_sched+gobuf_g)(DI)
MOVL SI, g(CX)
MOVL (g_sched+gobuf_sp)(SI), SP
// Now on a scheduling stack (a pthread-created stack).
SUBL $32, SP
ANDL $~15, SP // alignment, perhaps unnecessary
MOVL DI, 8(SP) // save g
MOVL DX, 4(SP) // save SP
MOVL BX, 0(SP) // first argument in x86-32 ABI
CALL AX
// Restore registers, g, stack pointer.
get_tls(CX)
MOVL 8(SP), DI
MOVL DI, g(CX)
MOVL 4(SP), SP
RET
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize)
// See cgocall.c for more details.
TEXT runtime·cgocallback(SB),7,$12
MOVL fn+0(FP), AX
MOVL frame+4(FP), BX
MOVL framesize+8(FP), DX
// Save current m->g0->sched.sp on stack and then set it to SP.
get_tls(CX)
MOVL m(CX), BP
MOVL m_g0(BP), SI
PUSHL (g_sched+gobuf_sp)(SI)
MOVL SP, (g_sched+gobuf_sp)(SI)
// Switch to m->curg stack and call runtime.cgocallback
// with the three arguments. Because we are taking over
// the execution of m->curg but *not* resuming what had
// been running, we need to save that information (m->curg->gobuf)
// so that we can restore it when we're done.
// We can restore m->curg->gobuf.sp easily, because calling
// runtime.cgocallback leaves SP unchanged upon return.
// To save m->curg->gobuf.pc, we push it onto the stack.
// This has the added benefit that it looks to the traceback
// routine like cgocallback is going to return to that
// PC (because we defined cgocallback to have
// a frame size of 12, the same amount that we use below),
// so that the traceback will seamlessly trace back into
// the earlier calls.
MOVL m_curg(BP), SI
MOVL SI, g(CX)
MOVL (g_sched+gobuf_sp)(SI), DI // prepare stack as DI
// Push gobuf.pc
MOVL (g_sched+gobuf_pc)(SI), BP
SUBL $4, DI
MOVL BP, 0(DI)
// Push arguments to cgocallbackg.
// Frame size here must match the frame size above
// to trick traceback routines into doing the right thing.
SUBL $12, DI
MOVL AX, 0(DI)
MOVL BX, 4(DI)
MOVL DX, 8(DI)
// Switch stack and make the call.
MOVL DI, SP
CALL runtime·cgocallbackg(SB)
// Restore g->gobuf (== m->curg->gobuf) from saved values.
get_tls(CX)
MOVL g(CX), SI
MOVL 12(SP), BP
MOVL BP, (g_sched+gobuf_pc)(SI)
LEAL (12+4)(SP), DI
MOVL DI, (g_sched+gobuf_sp)(SI)
// Switch back to m->g0's stack and restore m->g0->sched.sp.
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
// so we do not have to restore it.)
MOVL m(CX), BP
MOVL m_g0(BP), SI
MOVL SI, g(CX)
MOVL (g_sched+gobuf_sp)(SI), SP
POPL (g_sched+gobuf_sp)(SI)
// Done!
RET
// check that SP is in range [g->stackbase, g->stackguard)
TEXT runtime·stackcheck(SB), 7, $0
get_tls(CX)
MOVL g(CX), AX
CMPL g_stackbase(AX), SP
JHI 2(PC)
INT $3
CMPL SP, g_stackguard(AX)
JHI 2(PC)
INT $3
RET
TEXT runtime·memclr(SB),7,$0
MOVL 4(SP), DI // arg 1 addr
MOVL 8(SP), CX // arg 2 count
@ -345,82 +500,4 @@ TEXT runtime·emptyfunc(SB),0,$0
TEXT runtime·abort(SB),7,$0
INT $0x3
// runcgo(void(*fn)(void*), void *arg)
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
TEXT runtime·runcgo(SB),7,$16
MOVL fn+0(FP), AX
MOVL arg+4(FP), BX
MOVL SP, CX
// Figure out if we need to switch to m->g0 stack.
get_tls(DI)
MOVL m(DI), DX
MOVL m_g0(DX), SI
CMPL g(DI), SI
JEQ 2(PC)
MOVL (m_sched+gobuf_sp)(DX), SP
// Now on a scheduling stack (a pthread-created stack).
SUBL $16, SP
ANDL $~15, SP // alignment for gcc ABI
MOVL g(DI), BP
MOVL BP, 8(SP)
MOVL SI, g(DI)
MOVL CX, 4(SP)
MOVL BX, 0(SP)
CALL AX
// Back; switch to original g and stack, re-establish
// "DF is clear" invariant.
CLD
get_tls(DI)
MOVL 8(SP), SI
MOVL SI, g(DI)
MOVL 4(SP), SP
RET
// runcgocallback(G *g1, void* sp, void (*fn)(void))
// Switch to g1 and sp, call fn, switch back. fn's arguments are on
// the new stack.
TEXT runtime·runcgocallback(SB),7,$32
MOVL g1+0(FP), DX
MOVL sp+4(FP), AX
MOVL fn+8(FP), BX
// We are running on m's scheduler stack. Save current SP
// into m->sched.sp so that a recursive call to runcgo doesn't
// clobber our stack, and also so that we can restore
// the SP when the call finishes. Reusing m->sched.sp
// for this purpose depends on the fact that there is only
// one possible gosave of m->sched.
get_tls(CX)
MOVL DX, g(CX)
MOVL m(CX), CX
MOVL SP, (m_sched+gobuf_sp)(CX)
// Set new SP, call fn
MOVL AX, SP
CALL BX
// Restore old g and SP, return
get_tls(CX)
MOVL m(CX), DX
MOVL m_g0(DX), BX
MOVL BX, g(CX)
MOVL (m_sched+gobuf_sp)(DX), SP
RET
// check that SP is in range [g->stackbase, g->stackguard)
TEXT runtime·stackcheck(SB), 7, $0
get_tls(CX)
MOVL g(CX), AX
CMPL g_stackbase(AX), SP
JHI 2(PC)
INT $3
CMPL SP, g_stackguard(AX)
JHI 2(PC)
INT $3
RET
GLOBL runtime·tls0(SB), $32

View File

@ -89,7 +89,7 @@ TEXT runtime·breakpoint(SB),7,$0
* go-routine
*/
// uintptr gosave(Gobuf*)
// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), 7, $0
MOVQ 8(SP), AX // gobuf
@ -100,7 +100,6 @@ TEXT runtime·gosave(SB), 7, $0
get_tls(CX)
MOVQ g(CX), BX
MOVQ BX, gobuf_g(AX)
MOVL $0, AX // return 0
RET
// void gogo(Gobuf*, uintptr)
@ -132,6 +131,35 @@ TEXT runtime·gogocall(SB), 7, $0
JMP AX
POPQ BX // not reached
// void mcall(void (*fn)(G*))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->gobuf)
// to keep running g.
TEXT runtime·mcall(SB), 7, $0
MOVQ fn+0(FP), DI
get_tls(CX)
MOVQ g(CX), AX // save state in g->gobuf
MOVQ 0(SP), BX // caller's PC
MOVQ BX, (g_sched+gobuf_pc)(AX)
LEAQ 8(SP), BX // caller's SP
MOVQ BX, (g_sched+gobuf_sp)(AX)
MOVQ AX, (g_sched+gobuf_g)(AX)
// switch to m->g0 & its stack, call fn
MOVQ m(CX), BX
MOVQ m_g0(BX), SI
CMPQ SI, AX // if g == m->g0 call badmcall
JNE 2(PC)
CALL runtime·badmcall(SB)
MOVQ SI, g(CX) // g = m->g0
MOVQ (g_sched+gobuf_sp)(SI), SP // sp = m->g0->gobuf.sp
PUSHQ AX
CALL DI
POPQ AX
CALL runtime·badmcall2(SB)
RET
/*
* support for morestack
*/
@ -160,10 +188,10 @@ TEXT runtime·morestack(SB),7,$0
MOVQ 0(SP), AX
MOVQ AX, m_morepc(BX)
// Call newstack on m's scheduling stack.
// Call newstack on m->g0's stack.
MOVQ m_g0(BX), BP
MOVQ BP, g(CX)
MOVQ (m_sched+gobuf_sp)(BX), SP
MOVQ (g_sched+gobuf_sp)(BP), SP
CALL runtime·newstack(SB)
MOVQ $0, 0x1003 // crash if newstack returns
RET
@ -201,11 +229,11 @@ TEXT reflect·call(SB), 7, $0
MOVL CX, m_moreargsize(BX) // f's argument size
MOVL $1, m_moreframesize(BX) // f's frame size
// Call newstack on m's scheduling stack.
// Call newstack on m->g0's stack.
MOVQ m_g0(BX), BP
get_tls(CX)
MOVQ BP, g(CX)
MOVQ (m_sched+gobuf_sp)(BX), SP
MOVQ (g_sched+gobuf_sp)(BP), SP
CALL runtime·newstack(SB)
MOVQ $0, 0x1103 // crash if newstack returns
RET
@ -217,10 +245,10 @@ TEXT runtime·lessstack(SB), 7, $0
MOVQ m(CX), BX
MOVQ AX, m_cret(BX)
// Call oldstack on m's scheduling stack.
MOVQ m_g0(BX), DX
MOVQ DX, g(CX)
MOVQ (m_sched+gobuf_sp)(BX), SP
// Call oldstack on m->g0's stack.
MOVQ m_g0(BX), BP
MOVQ BP, g(CX)
MOVQ (g_sched+gobuf_sp)(BP), SP
CALL runtime·oldstack(SB)
MOVQ $0, 0x1004 // crash if oldstack returns
RET
@ -336,7 +364,6 @@ TEXT runtime·casp(SB), 7, $0
MOVL $1, AX
RET
// void jmpdefer(fn, sp);
// called from deferreturn.
// 1. pop the caller
@ -349,68 +376,119 @@ TEXT runtime·jmpdefer(SB), 7, $0
SUBQ $5, (SP) // return to CALL again
JMP AX // but first run the deferred function
// runcgo(void(*fn)(void*), void *arg)
// Dummy function to use in saved gobuf.PC,
// to match SP pointing at a return address.
// The gobuf.PC is unused by the contortions here
// but setting it to return will make the traceback code work.
TEXT return<>(SB),7,$0
RET
// asmcgocall(void(*fn)(void*), void *arg)
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
TEXT runtime·runcgo(SB),7,$32
MOVQ fn+0(FP), R12
MOVQ arg+8(FP), R13
MOVQ SP, CX
// See cgocall.c for more details.
TEXT runtime·asmcgocall(SB),7,$0
MOVQ fn+0(FP), AX
MOVQ arg+8(FP), BX
MOVQ SP, DX
// Figure out if we need to switch to m->g0 stack.
get_tls(DI)
MOVQ m(DI), DX
MOVQ m_g0(DX), SI
CMPQ g(DI), SI
JEQ 2(PC)
MOVQ (m_sched+gobuf_sp)(DX), SP
// We get called to create new OS threads too, and those
// come in on the m->g0 stack already.
get_tls(CX)
MOVQ m(CX), BP
MOVQ m_g0(BP), SI
MOVQ g(CX), DI
CMPQ SI, DI
JEQ 6(PC)
MOVQ SP, (g_sched+gobuf_sp)(DI)
MOVQ $return<>(SB), (g_sched+gobuf_pc)(DI)
MOVQ DI, (g_sched+gobuf_g)(DI)
MOVQ SI, g(CX)
MOVQ (g_sched+gobuf_sp)(SI), SP
// Now on a scheduling stack (a pthread-created stack).
SUBQ $32, SP
ANDQ $~15, SP // alignment for gcc ABI
MOVQ g(DI), BP
MOVQ BP, 16(SP)
MOVQ SI, g(DI)
MOVQ CX, 8(SP)
MOVQ R13, DI // DI = first argument in AMD64 ABI
CALL R12
MOVQ DI, 16(SP) // save g
MOVQ DX, 8(SP) // save SP
MOVQ BX, DI // DI = first argument in AMD64 ABI
CALL AX
// Restore registers, g, stack pointer.
get_tls(DI)
MOVQ 16(SP), SI
MOVQ SI, g(DI)
get_tls(CX)
MOVQ 16(SP), DI
MOVQ DI, g(CX)
MOVQ 8(SP), SP
RET
// runcgocallback(G *g1, void* sp, void (*fn)(void))
// Switch to g1 and sp, call fn, switch back. fn's arguments are on
// the new stack.
TEXT runtime·runcgocallback(SB),7,$48
MOVQ g1+0(FP), DX
MOVQ sp+8(FP), AX
MOVQ fp+16(FP), BX
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize)
// See cgocall.c for more details.
TEXT runtime·cgocallback(SB),7,$24
MOVQ fn+0(FP), AX
MOVQ frame+8(FP), BX
MOVQ framesize+16(FP), DX
// We are running on m's scheduler stack. Save current SP
// into m->sched.sp so that a recursive call to runcgo doesn't
// clobber our stack, and also so that we can restore
// the SP when the call finishes. Reusing m->sched.sp
// for this purpose depends on the fact that there is only
// one possible gosave of m->sched.
// Save current m->g0->sched.sp on stack and then set it to SP.
get_tls(CX)
MOVQ DX, g(CX)
MOVQ m(CX), CX
MOVQ SP, (m_sched+gobuf_sp)(CX)
MOVQ m(CX), BP
MOVQ m_g0(BP), SI
PUSHQ (g_sched+gobuf_sp)(SI)
MOVQ SP, (g_sched+gobuf_sp)(SI)
// Set new SP, call fn
MOVQ AX, SP
CALL BX
// Switch to m->curg stack and call runtime.cgocallback
// with the three arguments. Because we are taking over
// the execution of m->curg but *not* resuming what had
// been running, we need to save that information (m->curg->gobuf)
// so that we can restore it when we're done.
// We can restore m->curg->gobuf.sp easily, because calling
// runtime.cgocallback leaves SP unchanged upon return.
// To save m->curg->gobuf.pc, we push it onto the stack.
// This has the added benefit that it looks to the traceback
// routine like cgocallback is going to return to that
// PC (because we defined cgocallback to have
// a frame size of 24, the same amount that we use below),
// so that the traceback will seamlessly trace back into
// the earlier calls.
MOVQ m_curg(BP), SI
MOVQ SI, g(CX)
MOVQ (g_sched+gobuf_sp)(SI), DI // prepare stack as DI
// Restore old g and SP, return
// Push gobuf.pc
MOVQ (g_sched+gobuf_pc)(SI), BP
SUBQ $8, DI
MOVQ BP, 0(DI)
// Push arguments to cgocallbackg.
// Frame size here must match the frame size above
// to trick traceback routines into doing the right thing.
SUBQ $24, DI
MOVQ AX, 0(DI)
MOVQ BX, 8(DI)
MOVQ DX, 16(DI)
// Switch stack and make the call.
MOVQ DI, SP
CALL runtime·cgocallbackg(SB)
// Restore g->gobuf (== m->curg->gobuf) from saved values.
get_tls(CX)
MOVQ m(CX), DX
MOVQ m_g0(DX), BX
MOVQ BX, g(CX)
MOVQ (m_sched+gobuf_sp)(DX), SP
MOVQ g(CX), SI
MOVQ 24(SP), BP
MOVQ BP, (g_sched+gobuf_pc)(SI)
LEAQ (24+8)(SP), DI
MOVQ DI, (g_sched+gobuf_sp)(SI)
// Switch back to m->g0's stack and restore m->g0->sched.sp.
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
// so we do not have to restore it.)
MOVQ m(CX), BP
MOVQ m_g0(BP), SI
MOVQ SI, g(CX)
MOVQ (g_sched+gobuf_sp)(SI), SP
POPQ (g_sched+gobuf_sp)(SI)
// Done!
RET
// check that SP is in range [g->stackbase, g->stackguard)

View File

@ -93,14 +93,13 @@ TEXT runtime·breakpoint(SB),7,$0
* go-routine
*/
// uintptr gosave(Gobuf*)
// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), 7, $-4
MOVW 0(FP), R0 // gobuf
MOVW SP, gobuf_sp(R0)
MOVW LR, gobuf_pc(R0)
MOVW g, gobuf_g(R0)
MOVW $0, R0 // return 0
RET
// void gogo(Gobuf*, uintptr)
@ -127,6 +126,30 @@ TEXT runtime·gogocall(SB), 7, $-4
MOVW gobuf_pc(R0), LR
MOVW R1, PC
// void mcall(void (*fn)(G*))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->gobuf)
// to keep running g.
TEXT runtime·mcall(SB), 7, $-4
MOVW fn+0(FP), R0
// Save caller state in g->gobuf.
MOVW SP, (g_sched+gobuf_sp)(g)
MOVW LR, (g_sched+gobuf_pc)(g)
MOVW g, (g_sched+gobuf_g)(g)
// Switch to m->g0 & its stack, call fn.
MOVW g, R1
MOVW m_g0(m), g
CMP g, R1
BL.EQ runtime·badmcall(SB)
MOVW (g_sched+gobuf_sp)(g), SP
SUB $8, SP
MOVW R1, 4(SP)
BL (R0)
BL runtime·badmcall2(SB)
RET
/*
* support for morestack
*/
@ -159,9 +182,9 @@ TEXT runtime·morestack(SB),7,$-4
// Set m->morepc to f's PC.
MOVW LR, m_morepc(m)
// Call newstack on m's scheduling stack.
// Call newstack on m->g0's stack.
MOVW m_g0(m), g
MOVW (m_sched+gobuf_sp)(m), SP
MOVW (g_sched+gobuf_sp)(g), SP
B runtime·newstack(SB)
// Called from reflection library. Mimics morestack,
@ -192,9 +215,9 @@ TEXT reflect·call(SB), 7, $-4
MOVW $1, R3
MOVW R3, m_moreframesize(m) // f's frame size
// Call newstack on m's scheduling stack.
// Call newstack on m->g0's stack.
MOVW m_g0(m), g
MOVW (m_sched+gobuf_sp)(m), SP
MOVW (g_sched+gobuf_sp)(g), SP
B runtime·newstack(SB)
// Return point when leaving stack.
@ -203,9 +226,9 @@ TEXT runtime·lessstack(SB), 7, $-4
// Save return value in m->cret
MOVW R0, m_cret(m)
// Call oldstack on m's scheduling stack.
// Call oldstack on m->g0's stack.
MOVW m_g0(m), g
MOVW (m_sched+gobuf_sp)(m), SP
MOVW (g_sched+gobuf_sp)(g), SP
B runtime·oldstack(SB)
// void jmpdefer(fn, sp);
@ -221,6 +244,12 @@ TEXT runtime·jmpdefer(SB), 7, $0
MOVW $-4(SP), SP // SP is 4 below argp, due to saved LR
B (R0)
TEXT runtime·asmcgocall(SB),7,$0
B runtime·cgounimpl(SB)
TEXT runtime·cgocallback(SB),7,$0
B runtime·cgounimpl(SB)
TEXT runtime·memclr(SB),7,$20
MOVW 0(FP), R0
MOVW $0, R1 // c = 0
@ -248,22 +277,6 @@ TEXT runtime·getcallersp(SB),7,$-4
MOVW $-4(R0), R0
RET
// runcgo(void(*fn)(void*), void *arg)
// Just call fn(arg), but first align the stack
// appropriately for the gcc ABI.
// TODO(kaib): figure out the arm-gcc ABI
TEXT runtime·runcgo(SB),7,$16
BL runtime·abort(SB)
// MOVL fn+0(FP), AX
// MOVL arg+4(FP), BX
// MOVL SP, CX
// ANDL $~15, SP // alignment for gcc ABI
// MOVL CX, 4(SP)
// MOVL BX, 0(SP)
// CALL AX
// MOVL 4(SP), SP
// RET
TEXT runtime·emptyfunc(SB),0,$0
RET
@ -271,10 +284,6 @@ TEXT runtime·abort(SB),7,$-4
MOVW $0, R0
MOVW (R0), R1
TEXT runtime·runcgocallback(SB),7,$0
MOVW $0, R0
MOVW (R0), R1
// bool armcas(int32 *val, int32 old, int32 new)
// Atomically:
// if(*val == old){

View File

@ -3,18 +3,97 @@
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "arch.h"
#include "stack.h"
#include "cgocall.h"
// Cgo call and callback support.
//
// To call into the C function f from Go, the cgo-generated code calls
// runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a
// gcc-compiled function written by cgo.
//
// runtime.cgocall (below) locks g to m, calls entersyscall
// so as not to block other goroutines or the garbage collector,
// and then calls runtime.asmcgocall(_cgo_Cfunc_f, frame).
//
// runtime.asmcgocall (in $GOARCH/asm.s) switches to the m->g0 stack
// (assumed to be an operating system-allocated stack, so safe to run
// gcc-compiled code on) and calls _cgo_Cfunc_f(frame).
//
// _cgo_Cfunc_f invokes the actual C function f with arguments
// taken from the frame structure, records the results in the frame,
// and returns to runtime.asmcgocall.
//
// After it regains control, runtime.asmcgocall switches back to the
// original g (m->curg)'s stack and returns to runtime.cgocall.
//
// After it regains control, runtime.cgocall calls exitsyscall, which blocks
// until this m can run Go code without violating the $GOMAXPROCS limit,
// and then unlocks g from m.
//
// The above description skipped over the possibility of the gcc-compiled
// function f calling back into Go. If that happens, we continue down
// the rabbit hole during the execution of f.
//
// To make it possible for gcc-compiled C code to call a Go function p.GoF,
// cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't
// know about packages). The gcc-compiled C function f calls GoF.
//
// GoF calls crosscall2(_cgoexp_GoF, frame, framesize). Crosscall2
// (in cgo/$GOOS.S, a gcc-compiled assembly file) is a two-argument
// adapter from the gcc function call ABI to the 6c function call ABI.
// It is called from gcc to call 6c functions. In this case it calls
// _cgoexp_GoF(frame, framesize), still running on m->g0's stack
// and outside the $GOMAXPROCS limit. Thus, this code cannot yet
// call arbitrary Go code directly and must be careful not to allocate
// memory or use up m->g0's stack.
//
// _cgoexp_GoF calls runtime.cgocallback(p.GoF, frame, framesize).
// (The reason for having _cgoexp_GoF instead of writing a crosscall3
// to make this call directly is that _cgoexp_GoF, because it is compiled
// with 6c instead of gcc, can refer to dotted names like
// runtime.cgocallback and p.GoF.)
//
// runtime.cgocallback (in $GOOS/asm.s) switches from m->g0's
// stack to the original g (m->curg)'s stack, on which it calls
// runtime.cgocallbackg(p.GoF, frame, framesize).
// As part of the stack switch, runtime.cgocallback saves the current
// SP as m->g0->sched.sp, so that any use of m->g0's stack during the
// execution of the callback will be done below the existing stack frames.
// Before overwriting m->g0->sched.sp, it pushes the old value on the
// m->g0 stack, so that it can be restored later.
//
// runtime.cgocallbackg (below) is now running on a real goroutine
// stack (not an m->g0 stack). First it calls runtime.exitsyscall, which will
// block until the $GOMAXPROCS limit allows running this goroutine.
// Once exitsyscall has returned, it is safe to do things like call the memory
// allocator or invoke the Go callback function p.GoF. runtime.cgocallback
// first defers a function to unwind m->g0.sched.sp, so that if p.GoF
// panics, m->g0.sched.sp will be restored to its old value: the m->g0 stack
// and the m->curg stack will be unwound in lock step.
// Then it calls p.GoF. Finally it pops but does not execute the deferred
// function, calls runtime.entersyscall, and returns to runtime.cgocallback.
//
// After it regains control, runtime.cgocallback switches back to
// m->g0's stack (the pointer is still in m->g0.sched.sp), restores the old
// m->g0.sched.sp value from the stack, and returns to _cgoexp_GoF.
//
// _cgoexp_GoF immediately returns to crosscall2, which restores the
// callee-save registers for gcc and returns to GoF, which returns to f.
void *initcgo; /* filled in by dynamic linker when Cgo is available */
int64 ncgocall;
void runtime·entersyscall(void);
void runtime·exitsyscall(void);
static void unlockm(void);
static void unwindm(void);
// Call from Go to C.
void
runtime·cgocall(void (*fn)(void*), void *arg)
{
G *oldlock;
Defer *d;
if(!runtime·iscgo)
runtime·throw("cgocall unavailable");
@ -28,61 +107,49 @@ runtime·cgocall(void (*fn)(void*), void *arg)
* Lock g to m to ensure we stay on the same stack if we do a
* cgo callback.
*/
oldlock = m->lockedg;
m->lockedg = g;
g->lockedm = m;
d = nil;
if(m->lockedg == nil) {
m->lockedg = g;
g->lockedm = m;
// Add entry to defer stack in case of panic.
d = runtime·malloc(sizeof(*d));
d->fn = (byte*)unlockm;
d->siz = 0;
d->link = g->defer;
d->argp = (void*)-1; // unused because unwindm never recovers
g->defer = d;
}
/*
* Announce we are entering a system call
* so that the scheduler knows to create another
* M to run goroutines while we are in the
* foreign code.
*
* The call to asmcgocall is guaranteed not to
* split the stack and does not allocate memory,
* so it is safe to call while "in a system call", outside
* the $GOMAXPROCS accounting.
*/
runtime·entersyscall();
runtime·runcgo(fn, arg);
runtime·asmcgocall(fn, arg);
runtime·exitsyscall();
m->lockedg = oldlock;
if(oldlock == nil)
g->lockedm = nil;
return;
if(d != nil) {
if(g->defer != d || d->fn != (byte*)unlockm)
runtime·throw("runtime: bad defer entry in cgocallback");
g->defer = d->link;
runtime·free(d);
unlockm();
}
}
// When a C function calls back into Go, the wrapper function will
// call this. This switches to a Go stack, copies the arguments
// (arg/argsize) on to the stack, calls the function, copies the
// arguments back where they came from, and finally returns to the old
// stack.
void
runtime·cgocallback(void (*fn)(void), void *arg, int32 argsize)
static void
unlockm(void)
{
Gobuf oldsched, oldg1sched;
G *g1;
void *sp;
if(g != m->g0)
runtime·throw("bad g in cgocallback");
g1 = m->curg;
oldsched = m->sched;
oldg1sched = g1->sched;
runtime·startcgocallback(g1);
sp = g1->sched.sp - argsize;
if(sp < g1->stackguard - StackGuard - StackSystem + 8) // +8 for return address
runtime·throw("g stack overflow in cgocallback");
runtime·mcpy(sp, arg, argsize);
runtime·runcgocallback(g1, sp, fn);
runtime·mcpy(arg, sp, argsize);
runtime·endcgocallback(g1);
m->sched = oldsched;
g1->sched = oldg1sched;
m->lockedg = nil;
g->lockedm = nil;
}
void
@ -92,6 +159,8 @@ runtime·Cgocalls(int64 ret)
FLUSH(&ret);
}
// Helper functions for cgo code.
void (*_cgo_malloc)(void*);
void (*_cgo_free)(void*);
@ -115,3 +184,63 @@ runtime·cfree(void *p)
runtime·cgocall(_cgo_free, p);
}
// Call from C back to Go.
void
runtime·cgocallbackg(void (*fn)(void), void *arg, uintptr argsize)
{
Defer *d;
if(g != m->curg)
runtime·throw("runtime: bad g in cgocallback");
runtime·exitsyscall(); // coming out of cgo call
// Add entry to defer stack in case of panic.
d = runtime·malloc(sizeof(*d));
d->fn = (byte*)unwindm;
d->siz = 0;
d->link = g->defer;
d->argp = (void*)-1; // unused because unwindm never recovers
g->defer = d;
// Invoke callback.
reflect·call((byte*)fn, arg, argsize);
// Pop defer.
// Do not unwind m->g0->sched.sp.
// Our caller, cgocallback, will do that.
if(g->defer != d || d->fn != (byte*)unwindm)
runtime·throw("runtime: bad defer entry in cgocallback");
g->defer = d->link;
runtime·free(d);
runtime·entersyscall(); // going back to cgo call
}
static void
unwindm(void)
{
// Restore sp saved by cgocallback during
// unwind of g's stack (see comment at top of file).
switch(thechar){
default:
runtime·throw("runtime: unwindm not implemented");
case '8':
case '6':
m->g0->sched.sp = *(void**)m->g0->sched.sp;
break;
}
}
void
runtime·badcgocallback(void) // called from assembly
{
runtime·throw("runtime: misaligned stack in cgocallback");
}
void
runtime·cgounimpl(void) // called from (incomplete) assembly
{
runtime·throw("runtime: cgo not implemented");
}

View File

@ -7,6 +7,6 @@
*/
void runtime·cgocall(void (*fn)(void*), void*);
void runtime·cgocallback(void (*fn)(void), void*, int32);
void runtime·cgocallback(void (*fn)(void), void*, uintptr);
void *runtime·cmalloc(uintptr);
void runtime·cfree(void*);

View File

@ -379,8 +379,6 @@ mark(void)
case Gdead:
break;
case Grunning:
case Grecovery:
case Gstackalloc:
if(gp != g)
runtime·throw("mark - world not stopped");
scanstack(gp);

View File

@ -12,6 +12,9 @@
bool runtime·iscgo;
static void unwindstack(G*, byte*);
static void schedule(G*);
static void acquireproc(void);
static void releaseproc(void);
typedef struct Sched Sched;
@ -280,7 +283,7 @@ readylocked(G *g)
}
// Mark runnable.
if(g->status == Grunnable || g->status == Grunning || g->status == Grecovery || g->status == Gstackalloc) {
if(g->status == Grunnable || g->status == Grunning) {
runtime·printf("goroutine %d has status %d\n", g->goid, g->status);
runtime·throw("bad g->status in ready");
}
@ -419,8 +422,15 @@ runtime·mstart(void)
runtime·throw("bad runtime·mstart");
if(m->mcache == nil)
m->mcache = runtime·allocmcache();
// Record top of stack for use by mcall.
// Once we call schedule we're never coming back,
// so other calls can reuse this stack space.
runtime·gosave(&m->g0->sched);
m->g0->sched.pc = (void*)-1; // make sure it is never used
runtime·minit();
scheduler();
schedule(nil);
}
// When running with cgo, we call libcgo_thread_start
@ -454,7 +464,7 @@ matchmg(void)
if((m = mget(g)) == nil){
m = runtime·malloc(sizeof(M));
// Add to runtime·allm so garbage collector doesn't free m
// when it is just in a register (R14 on amd64).
// when it is just in a register or thread-local storage.
m->alllink = runtime·allm;
runtime·allm = m;
m->id = runtime·sched.mcount++;
@ -469,7 +479,7 @@ matchmg(void)
ts.m = m;
ts.g = m->g0;
ts.fn = runtime·mstart;
runtime·runcgo(libcgo_thread_start, &ts);
runtime·asmcgocall(libcgo_thread_start, &ts);
} else {
if(Windows)
// windows will layout sched stack on os stack
@ -483,58 +493,17 @@ matchmg(void)
}
}
// Scheduler loop: find g to run, run it, repeat.
// One round of scheduler: find a goroutine and run it.
// The argument is the goroutine that was running before
// schedule was called, or nil if this is the first call.
// Never returns.
static void
scheduler(void)
schedule(G *gp)
{
G* gp;
runtime·lock(&runtime·sched);
if(runtime·gosave(&m->sched) != 0){
gp = m->curg;
if(gp->status == Grecovery) {
// switched to scheduler to get stack unwound.
// don't go through the full scheduling logic.
Defer *d;
d = gp->defer;
gp->defer = d->link;
// unwind to the stack frame with d's arguments in it.
unwindstack(gp, d->argp);
// make the deferproc for this d return again,
// this time returning 1. function will jump to
// standard return epilogue.
// the -2*sizeof(uintptr) makes up for the
// two extra words that are on the stack at
// each call to deferproc.
// (the pc we're returning to does pop pop
// before it tests the return value.)
// on the arm there are 2 saved LRs mixed in too.
if(thechar == '5')
gp->sched.sp = (byte*)d->argp - 4*sizeof(uintptr);
else
gp->sched.sp = (byte*)d->argp - 2*sizeof(uintptr);
gp->sched.pc = d->pc;
gp->status = Grunning;
runtime·free(d);
runtime·gogo(&gp->sched, 1);
}
if(gp->status == Gstackalloc) {
// switched to scheduler stack to call stackalloc.
gp->param = runtime·stackalloc((uintptr)gp->param);
gp->status = Grunning;
runtime·gogo(&gp->sched, 1);
}
// Jumped here via runtime·gosave/gogo, so didn't
// execute lock(&runtime·sched) above.
runtime·lock(&runtime·sched);
if(gp != nil) {
if(runtime·sched.predawn)
runtime·throw("init sleeping");
runtime·throw("init rescheduling");
// Just finished running gp.
gp->m = nil;
@ -545,8 +514,6 @@ scheduler(void)
switch(gp->status){
case Grunnable:
case Gdead:
case Grecovery:
case Gstackalloc:
// Shouldn't have been running!
runtime·throw("bad gp->status in sched");
case Grunning:
@ -581,7 +548,7 @@ scheduler(void)
if(gp->sched.pc == (byte*)runtime·goexit) { // kickoff
runtime·gogocall(&gp->sched, (void(*)(void))gp->entry);
}
runtime·gogo(&gp->sched, 1);
runtime·gogo(&gp->sched, 0);
}
// Enter scheduler. If g->status is Grunning,
@ -595,8 +562,7 @@ runtime·gosched(void)
runtime·throw("gosched holding locks");
if(g == m->g0)
runtime·throw("gosched of g0");
if(runtime·gosave(&g->sched) == 0)
runtime·gogo(&m->sched, 1);
runtime·mcall(schedule);
}
// The goroutine g is about to enter a system call.
@ -605,19 +571,20 @@ runtime·gosched(void)
// not from the low-level system calls used by the runtime.
// Entersyscall cannot split the stack: the runtime·gosave must
// make g->sched refer to the caller's stack pointer.
// It's okay to call matchmg and notewakeup even after
// decrementing mcpu, because we haven't released the
// sched lock yet.
#pragma textflag 7
void
runtime·entersyscall(void)
{
runtime·lock(&runtime·sched);
// Leave SP around for gc and traceback.
// Do before notewakeup so that gc
// never sees Gsyscall with wrong stack.
runtime·gosave(&g->sched);
if(runtime·sched.predawn) {
runtime·unlock(&runtime·sched);
if(runtime·sched.predawn)
return;
}
runtime·lock(&runtime·sched);
g->status = Gsyscall;
runtime·sched.mcpu--;
runtime·sched.msyscall++;
@ -637,11 +604,10 @@ runtime·entersyscall(void)
void
runtime·exitsyscall(void)
{
runtime·lock(&runtime·sched);
if(runtime·sched.predawn) {
runtime·unlock(&runtime·sched);
if(runtime·sched.predawn)
return;
}
runtime·lock(&runtime·sched);
runtime·sched.msyscall--;
runtime·sched.mcpu++;
// Fast path - if there's room for this m, we're done.
@ -664,60 +630,6 @@ runtime·exitsyscall(void)
runtime·gosched();
}
// Restore the position of m's scheduler stack if we unwind the stack
// through a cgo callback.
static void
runtime·unwindcgocallback(void **spaddr, void *sp)
{
*spaddr = sp;
}
// Start scheduling g1 again for a cgo callback.
void
runtime·startcgocallback(G* g1)
{
Defer *d;
runtime·lock(&runtime·sched);
g1->status = Grunning;
runtime·sched.msyscall--;
runtime·sched.mcpu++;
runtime·unlock(&runtime·sched);
// Add an entry to the defer stack which restores the old
// position of m's scheduler stack. This is so that if the
// code we are calling panics, we won't lose the space on the
// scheduler stack. Note that we are locked to this m here.
d = runtime·malloc(sizeof(*d) + 2*sizeof(void*) - sizeof(d->args));
d->fn = (byte*)runtime·unwindcgocallback;
d->siz = 2 * sizeof(uintptr);
((void**)d->args)[0] = &m->sched.sp;
((void**)d->args)[1] = m->sched.sp;
d->link = g1->defer;
g1->defer = d;
}
// Stop scheduling g1 after a cgo callback.
void
runtime·endcgocallback(G* g1)
{
Defer *d;
runtime·lock(&runtime·sched);
g1->status = Gsyscall;
runtime·sched.mcpu--;
runtime·sched.msyscall++;
runtime·unlock(&runtime·sched);
// Remove the entry on the defer stack added by
// startcgocallback.
d = g1->defer;
if (d == nil || d->fn != (byte*)runtime·unwindcgocallback)
runtime·throw("bad defer entry in endcgocallback");
g1->defer = d->link;
runtime·free(d);
}
void
runtime·oldstack(void)
{
@ -767,6 +679,10 @@ runtime·newstack(void)
runtime·printf("runtime: split stack overflow: %p < %p\n", m->morebuf.sp, g1->stackguard - StackGuard);
runtime·throw("runtime: split stack overflow");
}
if(argsize % sizeof(uintptr) != 0) {
runtime·printf("runtime: stack split with misaligned argsize %d\n", argsize);
runtime·throw("runtime: stack split argsize");
}
reflectcall = framesize==1;
if(reflectcall)
@ -831,12 +747,18 @@ runtime·newstack(void)
*(int32*)345 = 123; // never return
}
static void
mstackalloc(G *gp)
{
gp->param = runtime·stackalloc((uintptr)gp->param);
runtime·gogo(&gp->sched, 0);
}
G*
runtime·malg(int32 stacksize)
{
G *newg;
byte *stk;
int32 oldstatus;
newg = runtime·malloc(sizeof(G));
if(stacksize >= 0) {
@ -845,17 +767,10 @@ runtime·malg(int32 stacksize)
stk = runtime·stackalloc(StackSystem + stacksize);
} else {
// have to call stackalloc on scheduler stack.
oldstatus = g->status;
g->param = (void*)(StackSystem + stacksize);
g->status = Gstackalloc;
// next two lines are runtime·gosched without the check
// of m->locks. we're almost certainly holding a lock,
// but this is not a real rescheduling so it's okay.
if(runtime·gosave(&g->sched) == 0)
runtime·gogo(&m->sched, 1);
runtime·mcall(mstackalloc);
stk = g->param;
g->param = nil;
g->status = oldstatus;
}
newg->stack0 = stk;
newg->stackguard = stk + StackSystem + StackGuard;
@ -1040,6 +955,8 @@ printpanics(Panic *p)
runtime·printf(" [recovered]");
runtime·printf("\n");
}
static void recovery(G*);
void
runtime·panic(Eface e)
@ -1070,9 +987,8 @@ runtime·panic(Eface e)
// for scheduler to find.
d->link = g->defer;
g->defer = d;
g->status = Grecovery;
runtime·gosched();
runtime·throw("recovery failed"); // gosched should not return
runtime·mcall(recovery);
runtime·throw("recovery failed"); // mcall should not return
}
runtime·free(d);
}
@ -1083,6 +999,36 @@ runtime·panic(Eface e)
runtime·dopanic(0);
}
static void
recovery(G *gp)
{
Defer *d;
// Rewind gp's stack; we're running on m->g0's stack.
d = gp->defer;
gp->defer = d->link;
// Unwind to the stack frame with d's arguments in it.
unwindstack(gp, d->argp);
// Make the deferproc for this d return again,
// this time returning 1. The calling function will
// jump to the standard return epilogue.
// The -2*sizeof(uintptr) makes up for the
// two extra words that are on the stack at
// each call to deferproc.
// (The pc we're returning to does pop pop
// before it tests the return value.)
// On the arm there are 2 saved LRs mixed in too.
if(thechar == '5')
gp->sched.sp = (byte*)d->argp - 4*sizeof(uintptr);
else
gp->sched.sp = (byte*)d->argp - 2*sizeof(uintptr);
gp->sched.pc = d->pc;
runtime·free(d);
runtime·gogo(&gp->sched, 1);
}
#pragma textflag 7 /* no split, or else g->stackguard is not the stack for fp */
void
runtime·recover(byte *argp, Eface ret)
@ -1238,6 +1184,12 @@ runtime·UnlockOSThread(void)
g->lockedm = nil;
}
bool
runtime·lockedOSThread(void)
{
return g->lockedm != nil && m->lockedg != nil;
}
// for testing of wire, unwire
void
runtime·mid(uint32 ret)
@ -1258,3 +1210,15 @@ runtime·mcount(void)
{
return runtime·sched.mcount;
}
void
runtime·badmcall(void) // called from assembly
{
runtime·throw("runtime: mcall called on m->g0 stack");
}
void
runtime·badmcall2(void) // called from assembly
{
runtime·throw("runtime: mcall function returned");
}

View File

@ -103,8 +103,6 @@ enum
Gwaiting,
Gmoribund,
Gdead,
Grecovery,
Gstackalloc,
};
enum
{
@ -219,7 +217,6 @@ struct M
uint64 procid; // for debuggers, but offset not hard-coded
G* gsignal; // signal-handling G
uint32 tls[8]; // thread-local storage (for 386 extern register)
Gobuf sched; // scheduling stack
G* curg; // current running goroutine
int32 id;
int32 mallocing;
@ -385,7 +382,7 @@ int32 runtime·charntorune(int32*, uint8*, int32);
void runtime·gogo(Gobuf*, uintptr);
void runtime·gogocall(Gobuf*, void(*)(void));
uintptr runtime·gosave(Gobuf*);
void runtime·gosave(Gobuf*);
void runtime·lessstack(void);
void runtime·goargs(void);
void runtime·goenvs(void);
@ -442,17 +439,15 @@ void runtime·walkfintab(void (*fn)(void*));
void runtime·runpanic(Panic*);
void* runtime·getcallersp(void*);
int32 runtime·mcount(void);
void runtime·mcall(void(*)(G*));
void runtime·exit(int32);
void runtime·breakpoint(void);
void runtime·gosched(void);
void runtime·goexit(void);
void runtime·runcgo(void (*fn)(void*), void*);
void runtime·runcgocallback(G*, void*, void (*fn)());
void runtime·asmcgocall(void (*fn)(void*), void*);
void runtime·entersyscall(void);
void runtime·exitsyscall(void);
void runtime·startcgocallback(G*);
void runtime·endcgocallback(G*);
G* runtime·newproc1(byte*, byte*, int32, int32, void*);
void runtime·siginit(void);
bool runtime·sigsend(int32 sig);