mirror of
https://github.com/golang/go
synced 2024-11-19 20:54:39 -07:00
334bf95f9e
R=rsc, remyoudompheng, minux.ma, ality CC=golang-dev https://golang.org/cl/6242061
1839 lines
46 KiB
C
1839 lines
46 KiB
C
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
#include "runtime.h"
|
|
#include "arch_GOARCH.h"
|
|
#include "defs_GOOS_GOARCH.h"
|
|
#include "malloc.h"
|
|
#include "os_GOOS.h"
|
|
#include "stack.h"
|
|
|
|
bool runtime·iscgo;
|
|
|
|
static void unwindstack(G*, byte*);
|
|
static void schedule(G*);
|
|
|
|
typedef struct Sched Sched;
|
|
|
|
M runtime·m0;
|
|
G runtime·g0; // idle goroutine for m0
|
|
|
|
static int32 debug = 0;
|
|
|
|
int32 runtime·gcwaiting;
|
|
|
|
// Go scheduler
|
|
//
|
|
// The go scheduler's job is to match ready-to-run goroutines (`g's)
|
|
// with waiting-for-work schedulers (`m's). If there are ready g's
|
|
// and no waiting m's, ready() will start a new m running in a new
|
|
// OS thread, so that all ready g's can run simultaneously, up to a limit.
|
|
// For now, m's never go away.
|
|
//
|
|
// By default, Go keeps only one kernel thread (m) running user code
|
|
// at a single time; other threads may be blocked in the operating system.
|
|
// Setting the environment variable $GOMAXPROCS or calling
|
|
// runtime.GOMAXPROCS() will change the number of user threads
|
|
// allowed to execute simultaneously. $GOMAXPROCS is thus an
|
|
// approximation of the maximum number of cores to use.
|
|
//
|
|
// Even a program that can run without deadlock in a single process
|
|
// might use more m's if given the chance. For example, the prime
|
|
// sieve will use as many m's as there are primes (up to runtime·sched.mmax),
|
|
// allowing different stages of the pipeline to execute in parallel.
|
|
// We could revisit this choice, only kicking off new m's for blocking
|
|
// system calls, but that would limit the amount of parallel computation
|
|
// that go would try to do.
|
|
//
|
|
// In general, one could imagine all sorts of refinements to the
|
|
// scheduler, but the goal now is just to get something working on
|
|
// Linux and OS X.
|
|
|
|
struct Sched {
|
|
Lock;
|
|
|
|
G *gfree; // available g's (status == Gdead)
|
|
int32 goidgen;
|
|
|
|
G *ghead; // g's waiting to run
|
|
G *gtail;
|
|
int32 gwait; // number of g's waiting to run
|
|
int32 gcount; // number of g's that are alive
|
|
int32 grunning; // number of g's running on cpu or in syscall
|
|
|
|
M *mhead; // m's waiting for work
|
|
int32 mwait; // number of m's waiting for work
|
|
int32 mcount; // number of m's that have been created
|
|
|
|
volatile uint32 atomic; // atomic scheduling word (see below)
|
|
|
|
int32 profilehz; // cpu profiling rate
|
|
|
|
bool init; // running initialization
|
|
bool lockmain; // init called runtime.LockOSThread
|
|
|
|
Note stopped; // one g can set waitstop and wait here for m's to stop
|
|
};
|
|
|
|
// The atomic word in sched is an atomic uint32 that
|
|
// holds these fields.
|
|
//
|
|
// [15 bits] mcpu number of m's executing on cpu
|
|
// [15 bits] mcpumax max number of m's allowed on cpu
|
|
// [1 bit] waitstop some g is waiting on stopped
|
|
// [1 bit] gwaiting gwait != 0
|
|
//
|
|
// These fields are the information needed by entersyscall
|
|
// and exitsyscall to decide whether to coordinate with the
|
|
// scheduler. Packing them into a single machine word lets
|
|
// them use a fast path with a single atomic read/write and
|
|
// no lock/unlock. This greatly reduces contention in
|
|
// syscall- or cgo-heavy multithreaded programs.
|
|
//
|
|
// Except for entersyscall and exitsyscall, the manipulations
|
|
// to these fields only happen while holding the schedlock,
|
|
// so the routines holding schedlock only need to worry about
|
|
// what entersyscall and exitsyscall do, not the other routines
|
|
// (which also use the schedlock).
|
|
//
|
|
// In particular, entersyscall and exitsyscall only read mcpumax,
|
|
// waitstop, and gwaiting. They never write them. Thus, writes to those
|
|
// fields can be done (holding schedlock) without fear of write conflicts.
|
|
// There may still be logic conflicts: for example, the set of waitstop must
|
|
// be conditioned on mcpu >= mcpumax or else the wait may be a
|
|
// spurious sleep. The Promela model in proc.p verifies these accesses.
|
|
enum {
|
|
mcpuWidth = 15,
|
|
mcpuMask = (1<<mcpuWidth) - 1,
|
|
mcpuShift = 0,
|
|
mcpumaxShift = mcpuShift + mcpuWidth,
|
|
waitstopShift = mcpumaxShift + mcpuWidth,
|
|
gwaitingShift = waitstopShift+1,
|
|
|
|
// The max value of GOMAXPROCS is constrained
|
|
// by the max value we can store in the bit fields
|
|
// of the atomic word. Reserve a few high values
|
|
// so that we can detect accidental decrement
|
|
// beyond zero.
|
|
maxgomaxprocs = mcpuMask - 10,
|
|
};
|
|
|
|
#define atomic_mcpu(v) (((v)>>mcpuShift)&mcpuMask)
|
|
#define atomic_mcpumax(v) (((v)>>mcpumaxShift)&mcpuMask)
|
|
#define atomic_waitstop(v) (((v)>>waitstopShift)&1)
|
|
#define atomic_gwaiting(v) (((v)>>gwaitingShift)&1)
|
|
|
|
Sched runtime·sched;
|
|
int32 runtime·gomaxprocs;
|
|
bool runtime·singleproc;
|
|
|
|
static bool canaddmcpu(void);
|
|
|
|
// An m that is waiting for notewakeup(&m->havenextg). This may
|
|
// only be accessed while the scheduler lock is held. This is used to
|
|
// minimize the number of times we call notewakeup while the scheduler
|
|
// lock is held, since the m will normally move quickly to lock the
|
|
// scheduler itself, producing lock contention.
|
|
static M* mwakeup;
|
|
|
|
// Scheduling helpers. Sched must be locked.
|
|
static void gput(G*); // put/get on ghead/gtail
|
|
static G* gget(void);
|
|
static void mput(M*); // put/get on mhead
|
|
static M* mget(G*);
|
|
static void gfput(G*); // put/get on gfree
|
|
static G* gfget(void);
|
|
static void matchmg(void); // match m's to g's
|
|
static void readylocked(G*); // ready, but sched is locked
|
|
static void mnextg(M*, G*);
|
|
static void mcommoninit(M*);
|
|
|
|
void
|
|
setmcpumax(uint32 n)
|
|
{
|
|
uint32 v, w;
|
|
|
|
for(;;) {
|
|
v = runtime·sched.atomic;
|
|
w = v;
|
|
w &= ~(mcpuMask<<mcpumaxShift);
|
|
w |= n<<mcpumaxShift;
|
|
if(runtime·cas(&runtime·sched.atomic, v, w))
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Keep trace of scavenger's goroutine for deadlock detection.
|
|
static G *scvg;
|
|
|
|
// The bootstrap sequence is:
|
|
//
|
|
// call osinit
|
|
// call schedinit
|
|
// make & queue new G
|
|
// call runtime·mstart
|
|
//
|
|
// The new G calls runtime·main.
|
|
void
|
|
runtime·schedinit(void)
|
|
{
|
|
int32 n;
|
|
byte *p;
|
|
|
|
m->nomemprof++;
|
|
runtime·mallocinit();
|
|
mcommoninit(m);
|
|
|
|
runtime·goargs();
|
|
runtime·goenvs();
|
|
|
|
// For debugging:
|
|
// Allocate internal symbol table representation now,
|
|
// so that we don't need to call malloc when we crash.
|
|
// runtime·findfunc(0);
|
|
|
|
runtime·gomaxprocs = 1;
|
|
p = runtime·getenv("GOMAXPROCS");
|
|
if(p != nil && (n = runtime·atoi(p)) != 0) {
|
|
if(n > maxgomaxprocs)
|
|
n = maxgomaxprocs;
|
|
runtime·gomaxprocs = n;
|
|
}
|
|
// wait for the main goroutine to start before taking
|
|
// GOMAXPROCS into account.
|
|
setmcpumax(1);
|
|
runtime·singleproc = runtime·gomaxprocs == 1;
|
|
|
|
canaddmcpu(); // mcpu++ to account for bootstrap m
|
|
m->helpgc = 1; // flag to tell schedule() to mcpu--
|
|
runtime·sched.grunning++;
|
|
|
|
mstats.enablegc = 1;
|
|
m->nomemprof--;
|
|
}
|
|
|
|
extern void main·init(void);
|
|
extern void main·main(void);
|
|
|
|
// The main goroutine.
|
|
void
|
|
runtime·main(void)
|
|
{
|
|
// Lock the main goroutine onto this, the main OS thread,
|
|
// during initialization. Most programs won't care, but a few
|
|
// do require certain calls to be made by the main thread.
|
|
// Those can arrange for main.main to run in the main thread
|
|
// by calling runtime.LockOSThread during initialization
|
|
// to preserve the lock.
|
|
runtime·LockOSThread();
|
|
// From now on, newgoroutines may use non-main threads.
|
|
setmcpumax(runtime·gomaxprocs);
|
|
runtime·sched.init = true;
|
|
scvg = runtime·newproc1((byte*)runtime·MHeap_Scavenger, nil, 0, 0, runtime·main);
|
|
main·init();
|
|
runtime·sched.init = false;
|
|
if(!runtime·sched.lockmain)
|
|
runtime·UnlockOSThread();
|
|
|
|
// The deadlock detection has false negatives.
|
|
// Let scvg start up, to eliminate the false negative
|
|
// for the trivial program func main() { select{} }.
|
|
runtime·gosched();
|
|
|
|
main·main();
|
|
runtime·exit(0);
|
|
for(;;)
|
|
*(int32*)runtime·main = 0;
|
|
}
|
|
|
|
// Lock the scheduler.
|
|
static void
|
|
schedlock(void)
|
|
{
|
|
runtime·lock(&runtime·sched);
|
|
}
|
|
|
|
// Unlock the scheduler.
|
|
static void
|
|
schedunlock(void)
|
|
{
|
|
M *m;
|
|
|
|
m = mwakeup;
|
|
mwakeup = nil;
|
|
runtime·unlock(&runtime·sched);
|
|
if(m != nil)
|
|
runtime·notewakeup(&m->havenextg);
|
|
}
|
|
|
|
void
|
|
runtime·goexit(void)
|
|
{
|
|
g->status = Gmoribund;
|
|
runtime·gosched();
|
|
}
|
|
|
|
void
|
|
runtime·goroutineheader(G *g)
|
|
{
|
|
int8 *status;
|
|
|
|
switch(g->status) {
|
|
case Gidle:
|
|
status = "idle";
|
|
break;
|
|
case Grunnable:
|
|
status = "runnable";
|
|
break;
|
|
case Grunning:
|
|
status = "running";
|
|
break;
|
|
case Gsyscall:
|
|
status = "syscall";
|
|
break;
|
|
case Gwaiting:
|
|
if(g->waitreason)
|
|
status = g->waitreason;
|
|
else
|
|
status = "waiting";
|
|
break;
|
|
case Gmoribund:
|
|
status = "moribund";
|
|
break;
|
|
default:
|
|
status = "???";
|
|
break;
|
|
}
|
|
runtime·printf("goroutine %d [%s]:\n", g->goid, status);
|
|
}
|
|
|
|
void
|
|
runtime·tracebackothers(G *me)
|
|
{
|
|
G *g;
|
|
|
|
for(g = runtime·allg; g != nil; g = g->alllink) {
|
|
if(g == me || g->status == Gdead)
|
|
continue;
|
|
runtime·printf("\n");
|
|
runtime·goroutineheader(g);
|
|
runtime·traceback(g->sched.pc, (byte*)g->sched.sp, 0, g);
|
|
}
|
|
}
|
|
|
|
// Mark this g as m's idle goroutine.
|
|
// This functionality might be used in environments where programs
|
|
// are limited to a single thread, to simulate a select-driven
|
|
// network server. It is not exposed via the standard runtime API.
|
|
void
|
|
runtime·idlegoroutine(void)
|
|
{
|
|
if(g->idlem != nil)
|
|
runtime·throw("g is already an idle goroutine");
|
|
g->idlem = m;
|
|
}
|
|
|
|
static void
|
|
mcommoninit(M *m)
|
|
{
|
|
m->id = runtime·sched.mcount++;
|
|
m->fastrand = 0x49f6428aUL + m->id + runtime·cputicks();
|
|
m->stackalloc = runtime·malloc(sizeof(*m->stackalloc));
|
|
runtime·FixAlloc_Init(m->stackalloc, FixedStack, runtime·SysAlloc, nil, nil);
|
|
|
|
if(m->mcache == nil)
|
|
m->mcache = runtime·allocmcache();
|
|
|
|
runtime·callers(1, m->createstack, nelem(m->createstack));
|
|
|
|
// Add to runtime·allm so garbage collector doesn't free m
|
|
// when it is just in a register or thread-local storage.
|
|
m->alllink = runtime·allm;
|
|
// runtime·NumCgoCall() iterates over allm w/o schedlock,
|
|
// so we need to publish it safely.
|
|
runtime·atomicstorep(&runtime·allm, m);
|
|
}
|
|
|
|
// Try to increment mcpu. Report whether succeeded.
|
|
static bool
|
|
canaddmcpu(void)
|
|
{
|
|
uint32 v;
|
|
|
|
for(;;) {
|
|
v = runtime·sched.atomic;
|
|
if(atomic_mcpu(v) >= atomic_mcpumax(v))
|
|
return 0;
|
|
if(runtime·cas(&runtime·sched.atomic, v, v+(1<<mcpuShift)))
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// Put on `g' queue. Sched must be locked.
|
|
static void
|
|
gput(G *g)
|
|
{
|
|
M *m;
|
|
|
|
// If g is wired, hand it off directly.
|
|
if((m = g->lockedm) != nil && canaddmcpu()) {
|
|
mnextg(m, g);
|
|
return;
|
|
}
|
|
|
|
// If g is the idle goroutine for an m, hand it off.
|
|
if(g->idlem != nil) {
|
|
if(g->idlem->idleg != nil) {
|
|
runtime·printf("m%d idle out of sync: g%d g%d\n",
|
|
g->idlem->id,
|
|
g->idlem->idleg->goid, g->goid);
|
|
runtime·throw("runtime: double idle");
|
|
}
|
|
g->idlem->idleg = g;
|
|
return;
|
|
}
|
|
|
|
g->schedlink = nil;
|
|
if(runtime·sched.ghead == nil)
|
|
runtime·sched.ghead = g;
|
|
else
|
|
runtime·sched.gtail->schedlink = g;
|
|
runtime·sched.gtail = g;
|
|
|
|
// increment gwait.
|
|
// if it transitions to nonzero, set atomic gwaiting bit.
|
|
if(runtime·sched.gwait++ == 0)
|
|
runtime·xadd(&runtime·sched.atomic, 1<<gwaitingShift);
|
|
}
|
|
|
|
// Report whether gget would return something.
|
|
static bool
|
|
haveg(void)
|
|
{
|
|
return runtime·sched.ghead != nil || m->idleg != nil;
|
|
}
|
|
|
|
// Get from `g' queue. Sched must be locked.
|
|
static G*
|
|
gget(void)
|
|
{
|
|
G *g;
|
|
|
|
g = runtime·sched.ghead;
|
|
if(g){
|
|
runtime·sched.ghead = g->schedlink;
|
|
if(runtime·sched.ghead == nil)
|
|
runtime·sched.gtail = nil;
|
|
// decrement gwait.
|
|
// if it transitions to zero, clear atomic gwaiting bit.
|
|
if(--runtime·sched.gwait == 0)
|
|
runtime·xadd(&runtime·sched.atomic, -1<<gwaitingShift);
|
|
} else if(m->idleg != nil) {
|
|
g = m->idleg;
|
|
m->idleg = nil;
|
|
}
|
|
return g;
|
|
}
|
|
|
|
// Put on `m' list. Sched must be locked.
|
|
static void
|
|
mput(M *m)
|
|
{
|
|
m->schedlink = runtime·sched.mhead;
|
|
runtime·sched.mhead = m;
|
|
runtime·sched.mwait++;
|
|
}
|
|
|
|
// Get an `m' to run `g'. Sched must be locked.
|
|
static M*
|
|
mget(G *g)
|
|
{
|
|
M *m;
|
|
|
|
// if g has its own m, use it.
|
|
if(g && (m = g->lockedm) != nil)
|
|
return m;
|
|
|
|
// otherwise use general m pool.
|
|
if((m = runtime·sched.mhead) != nil){
|
|
runtime·sched.mhead = m->schedlink;
|
|
runtime·sched.mwait--;
|
|
}
|
|
return m;
|
|
}
|
|
|
|
// Mark g ready to run.
|
|
void
|
|
runtime·ready(G *g)
|
|
{
|
|
schedlock();
|
|
readylocked(g);
|
|
schedunlock();
|
|
}
|
|
|
|
// Mark g ready to run. Sched is already locked.
|
|
// G might be running already and about to stop.
|
|
// The sched lock protects g->status from changing underfoot.
|
|
static void
|
|
readylocked(G *g)
|
|
{
|
|
if(g->m){
|
|
// Running on another machine.
|
|
// Ready it when it stops.
|
|
g->readyonstop = 1;
|
|
return;
|
|
}
|
|
|
|
// Mark runnable.
|
|
if(g->status == Grunnable || g->status == Grunning) {
|
|
runtime·printf("goroutine %d has status %d\n", g->goid, g->status);
|
|
runtime·throw("bad g->status in ready");
|
|
}
|
|
g->status = Grunnable;
|
|
|
|
gput(g);
|
|
matchmg();
|
|
}
|
|
|
|
static void
|
|
nop(void)
|
|
{
|
|
}
|
|
|
|
// Same as readylocked but a different symbol so that
|
|
// debuggers can set a breakpoint here and catch all
|
|
// new goroutines.
|
|
static void
|
|
newprocreadylocked(G *g)
|
|
{
|
|
nop(); // avoid inlining in 6l
|
|
readylocked(g);
|
|
}
|
|
|
|
// Pass g to m for running.
|
|
// Caller has already incremented mcpu.
|
|
static void
|
|
mnextg(M *m, G *g)
|
|
{
|
|
runtime·sched.grunning++;
|
|
m->nextg = g;
|
|
if(m->waitnextg) {
|
|
m->waitnextg = 0;
|
|
if(mwakeup != nil)
|
|
runtime·notewakeup(&mwakeup->havenextg);
|
|
mwakeup = m;
|
|
}
|
|
}
|
|
|
|
// Get the next goroutine that m should run.
|
|
// Sched must be locked on entry, is unlocked on exit.
|
|
// Makes sure that at most $GOMAXPROCS g's are
|
|
// running on cpus (not in system calls) at any given time.
|
|
static G*
|
|
nextgandunlock(void)
|
|
{
|
|
G *gp;
|
|
uint32 v;
|
|
|
|
top:
|
|
if(atomic_mcpu(runtime·sched.atomic) >= maxgomaxprocs)
|
|
runtime·throw("negative mcpu");
|
|
|
|
// If there is a g waiting as m->nextg, the mcpu++
|
|
// happened before it was passed to mnextg.
|
|
if(m->nextg != nil) {
|
|
gp = m->nextg;
|
|
m->nextg = nil;
|
|
schedunlock();
|
|
return gp;
|
|
}
|
|
|
|
if(m->lockedg != nil) {
|
|
// We can only run one g, and it's not available.
|
|
// Make sure some other cpu is running to handle
|
|
// the ordinary run queue.
|
|
if(runtime·sched.gwait != 0) {
|
|
matchmg();
|
|
// m->lockedg might have been on the queue.
|
|
if(m->nextg != nil) {
|
|
gp = m->nextg;
|
|
m->nextg = nil;
|
|
schedunlock();
|
|
return gp;
|
|
}
|
|
}
|
|
} else {
|
|
// Look for work on global queue.
|
|
while(haveg() && canaddmcpu()) {
|
|
gp = gget();
|
|
if(gp == nil)
|
|
runtime·throw("gget inconsistency");
|
|
|
|
if(gp->lockedm) {
|
|
mnextg(gp->lockedm, gp);
|
|
continue;
|
|
}
|
|
runtime·sched.grunning++;
|
|
schedunlock();
|
|
return gp;
|
|
}
|
|
|
|
// The while loop ended either because the g queue is empty
|
|
// or because we have maxed out our m procs running go
|
|
// code (mcpu >= mcpumax). We need to check that
|
|
// concurrent actions by entersyscall/exitsyscall cannot
|
|
// invalidate the decision to end the loop.
|
|
//
|
|
// We hold the sched lock, so no one else is manipulating the
|
|
// g queue or changing mcpumax. Entersyscall can decrement
|
|
// mcpu, but if does so when there is something on the g queue,
|
|
// the gwait bit will be set, so entersyscall will take the slow path
|
|
// and use the sched lock. So it cannot invalidate our decision.
|
|
//
|
|
// Wait on global m queue.
|
|
mput(m);
|
|
}
|
|
|
|
// Look for deadlock situation.
|
|
// There is a race with the scavenger that causes false negatives:
|
|
// if the scavenger is just starting, then we have
|
|
// scvg != nil && grunning == 0 && gwait == 0
|
|
// and we do not detect a deadlock. It is possible that we should
|
|
// add that case to the if statement here, but it is too close to Go 1
|
|
// to make such a subtle change. Instead, we work around the
|
|
// false negative in trivial programs by calling runtime.gosched
|
|
// from the main goroutine just before main.main.
|
|
// See runtime·main above.
|
|
//
|
|
// On a related note, it is also possible that the scvg == nil case is
|
|
// wrong and should include gwait, but that does not happen in
|
|
// standard Go programs, which all start the scavenger.
|
|
//
|
|
if((scvg == nil && runtime·sched.grunning == 0) ||
|
|
(scvg != nil && runtime·sched.grunning == 1 && runtime·sched.gwait == 0 &&
|
|
(scvg->status == Grunning || scvg->status == Gsyscall))) {
|
|
runtime·throw("all goroutines are asleep - deadlock!");
|
|
}
|
|
|
|
m->nextg = nil;
|
|
m->waitnextg = 1;
|
|
runtime·noteclear(&m->havenextg);
|
|
|
|
// Stoptheworld is waiting for all but its cpu to go to stop.
|
|
// Entersyscall might have decremented mcpu too, but if so
|
|
// it will see the waitstop and take the slow path.
|
|
// Exitsyscall never increments mcpu beyond mcpumax.
|
|
v = runtime·atomicload(&runtime·sched.atomic);
|
|
if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) {
|
|
// set waitstop = 0 (known to be 1)
|
|
runtime·xadd(&runtime·sched.atomic, -1<<waitstopShift);
|
|
runtime·notewakeup(&runtime·sched.stopped);
|
|
}
|
|
schedunlock();
|
|
|
|
runtime·notesleep(&m->havenextg);
|
|
if(m->helpgc) {
|
|
runtime·gchelper();
|
|
m->helpgc = 0;
|
|
runtime·lock(&runtime·sched);
|
|
goto top;
|
|
}
|
|
if((gp = m->nextg) == nil)
|
|
runtime·throw("bad m->nextg in nextgoroutine");
|
|
m->nextg = nil;
|
|
return gp;
|
|
}
|
|
|
|
int32
|
|
runtime·gcprocs(void)
|
|
{
|
|
int32 n;
|
|
|
|
// Figure out how many CPUs to use during GC.
|
|
// Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
|
|
n = runtime·gomaxprocs;
|
|
if(n > runtime·ncpu)
|
|
n = runtime·ncpu;
|
|
if(n > MaxGcproc)
|
|
n = MaxGcproc;
|
|
if(n > runtime·sched.mwait+1) // one M is currently running
|
|
n = runtime·sched.mwait+1;
|
|
return n;
|
|
}
|
|
|
|
void
|
|
runtime·helpgc(int32 nproc)
|
|
{
|
|
M *mp;
|
|
int32 n;
|
|
|
|
runtime·lock(&runtime·sched);
|
|
for(n = 1; n < nproc; n++) { // one M is currently running
|
|
mp = mget(nil);
|
|
if(mp == nil)
|
|
runtime·throw("runtime·gcprocs inconsistency");
|
|
mp->helpgc = 1;
|
|
mp->waitnextg = 0;
|
|
runtime·notewakeup(&mp->havenextg);
|
|
}
|
|
runtime·unlock(&runtime·sched);
|
|
}
|
|
|
|
void
|
|
runtime·stoptheworld(void)
|
|
{
|
|
uint32 v;
|
|
|
|
schedlock();
|
|
runtime·gcwaiting = 1;
|
|
|
|
setmcpumax(1);
|
|
|
|
// while mcpu > 1
|
|
for(;;) {
|
|
v = runtime·sched.atomic;
|
|
if(atomic_mcpu(v) <= 1)
|
|
break;
|
|
|
|
// It would be unsafe for multiple threads to be using
|
|
// the stopped note at once, but there is only
|
|
// ever one thread doing garbage collection.
|
|
runtime·noteclear(&runtime·sched.stopped);
|
|
if(atomic_waitstop(v))
|
|
runtime·throw("invalid waitstop");
|
|
|
|
// atomic { waitstop = 1 }, predicated on mcpu <= 1 check above
|
|
// still being true.
|
|
if(!runtime·cas(&runtime·sched.atomic, v, v+(1<<waitstopShift)))
|
|
continue;
|
|
|
|
schedunlock();
|
|
runtime·notesleep(&runtime·sched.stopped);
|
|
schedlock();
|
|
}
|
|
runtime·singleproc = runtime·gomaxprocs == 1;
|
|
schedunlock();
|
|
}
|
|
|
|
void
|
|
runtime·starttheworld(void)
|
|
{
|
|
M *m;
|
|
int32 max;
|
|
|
|
// Figure out how many CPUs GC could possibly use.
|
|
max = runtime·gomaxprocs;
|
|
if(max > runtime·ncpu)
|
|
max = runtime·ncpu;
|
|
if(max > MaxGcproc)
|
|
max = MaxGcproc;
|
|
|
|
schedlock();
|
|
runtime·gcwaiting = 0;
|
|
setmcpumax(runtime·gomaxprocs);
|
|
matchmg();
|
|
if(runtime·gcprocs() < max && canaddmcpu()) {
|
|
// If GC could have used another helper proc, start one now,
|
|
// in the hope that it will be available next time.
|
|
// It would have been even better to start it before the collection,
|
|
// but doing so requires allocating memory, so it's tricky to
|
|
// coordinate. This lazy approach works out in practice:
|
|
// we don't mind if the first couple gc rounds don't have quite
|
|
// the maximum number of procs.
|
|
// canaddmcpu above did mcpu++
|
|
// (necessary, because m will be doing various
|
|
// initialization work so is definitely running),
|
|
// but m is not running a specific goroutine,
|
|
// so set the helpgc flag as a signal to m's
|
|
// first schedule(nil) to mcpu-- and grunning--.
|
|
m = runtime·newm();
|
|
m->helpgc = 1;
|
|
runtime·sched.grunning++;
|
|
}
|
|
schedunlock();
|
|
}
|
|
|
|
// Called to start an M.
|
|
void
|
|
runtime·mstart(void)
|
|
{
|
|
// It is used by windows-386 only. Unfortunately, seh needs
|
|
// to be located on os stack, and mstart runs on os stack
|
|
// for both m0 and m.
|
|
SEH seh;
|
|
|
|
if(g != m->g0)
|
|
runtime·throw("bad runtime·mstart");
|
|
|
|
// Record top of stack for use by mcall.
|
|
// Once we call schedule we're never coming back,
|
|
// so other calls can reuse this stack space.
|
|
runtime·gosave(&m->g0->sched);
|
|
m->g0->sched.pc = (void*)-1; // make sure it is never used
|
|
m->seh = &seh;
|
|
runtime·asminit();
|
|
runtime·minit();
|
|
|
|
// Install signal handlers; after minit so that minit can
|
|
// prepare the thread to be able to handle the signals.
|
|
if(m == &runtime·m0)
|
|
runtime·initsig();
|
|
|
|
schedule(nil);
|
|
|
|
// TODO(brainman): This point is never reached, because scheduler
|
|
// does not release os threads at the moment. But once this path
|
|
// is enabled, we must remove our seh here.
|
|
}
|
|
|
|
// When running with cgo, we call libcgo_thread_start
|
|
// to start threads for us so that we can play nicely with
|
|
// foreign code.
|
|
void (*libcgo_thread_start)(void*);
|
|
|
|
typedef struct CgoThreadStart CgoThreadStart;
|
|
struct CgoThreadStart
|
|
{
|
|
M *m;
|
|
G *g;
|
|
void (*fn)(void);
|
|
};
|
|
|
|
// Kick off new m's as needed (up to mcpumax).
|
|
// Sched is locked.
|
|
static void
|
|
matchmg(void)
|
|
{
|
|
G *gp;
|
|
M *mp;
|
|
|
|
if(m->mallocing || m->gcing)
|
|
return;
|
|
|
|
while(haveg() && canaddmcpu()) {
|
|
gp = gget();
|
|
if(gp == nil)
|
|
runtime·throw("gget inconsistency");
|
|
|
|
// Find the m that will run gp.
|
|
if((mp = mget(gp)) == nil)
|
|
mp = runtime·newm();
|
|
mnextg(mp, gp);
|
|
}
|
|
}
|
|
|
|
// Create a new m. It will start off with a call to runtime·mstart.
|
|
M*
|
|
runtime·newm(void)
|
|
{
|
|
M *m;
|
|
|
|
m = runtime·malloc(sizeof(M));
|
|
mcommoninit(m);
|
|
|
|
if(runtime·iscgo) {
|
|
CgoThreadStart ts;
|
|
|
|
if(libcgo_thread_start == nil)
|
|
runtime·throw("libcgo_thread_start missing");
|
|
// pthread_create will make us a stack.
|
|
m->g0 = runtime·malg(-1);
|
|
ts.m = m;
|
|
ts.g = m->g0;
|
|
ts.fn = runtime·mstart;
|
|
runtime·asmcgocall(libcgo_thread_start, &ts);
|
|
} else {
|
|
if(Windows)
|
|
// windows will layout sched stack on os stack
|
|
m->g0 = runtime·malg(-1);
|
|
else
|
|
m->g0 = runtime·malg(8192);
|
|
runtime·newosproc(m, m->g0, (byte*)m->g0->stackbase, runtime·mstart);
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
// One round of scheduler: find a goroutine and run it.
|
|
// The argument is the goroutine that was running before
|
|
// schedule was called, or nil if this is the first call.
|
|
// Never returns.
|
|
static void
|
|
schedule(G *gp)
|
|
{
|
|
int32 hz;
|
|
uint32 v;
|
|
|
|
schedlock();
|
|
if(gp != nil) {
|
|
// Just finished running gp.
|
|
gp->m = nil;
|
|
runtime·sched.grunning--;
|
|
|
|
// atomic { mcpu-- }
|
|
v = runtime·xadd(&runtime·sched.atomic, -1<<mcpuShift);
|
|
if(atomic_mcpu(v) > maxgomaxprocs)
|
|
runtime·throw("negative mcpu in scheduler");
|
|
|
|
switch(gp->status){
|
|
case Grunnable:
|
|
case Gdead:
|
|
// Shouldn't have been running!
|
|
runtime·throw("bad gp->status in sched");
|
|
case Grunning:
|
|
gp->status = Grunnable;
|
|
gput(gp);
|
|
break;
|
|
case Gmoribund:
|
|
gp->status = Gdead;
|
|
if(gp->lockedm) {
|
|
gp->lockedm = nil;
|
|
m->lockedg = nil;
|
|
}
|
|
gp->idlem = nil;
|
|
unwindstack(gp, nil);
|
|
gfput(gp);
|
|
if(--runtime·sched.gcount == 0)
|
|
runtime·exit(0);
|
|
break;
|
|
}
|
|
if(gp->readyonstop){
|
|
gp->readyonstop = 0;
|
|
readylocked(gp);
|
|
}
|
|
} else if(m->helpgc) {
|
|
// Bootstrap m or new m started by starttheworld.
|
|
// atomic { mcpu-- }
|
|
v = runtime·xadd(&runtime·sched.atomic, -1<<mcpuShift);
|
|
if(atomic_mcpu(v) > maxgomaxprocs)
|
|
runtime·throw("negative mcpu in scheduler");
|
|
// Compensate for increment in starttheworld().
|
|
runtime·sched.grunning--;
|
|
m->helpgc = 0;
|
|
} else if(m->nextg != nil) {
|
|
// New m started by matchmg.
|
|
} else {
|
|
runtime·throw("invalid m state in scheduler");
|
|
}
|
|
|
|
// Find (or wait for) g to run. Unlocks runtime·sched.
|
|
gp = nextgandunlock();
|
|
gp->readyonstop = 0;
|
|
gp->status = Grunning;
|
|
m->curg = gp;
|
|
gp->m = m;
|
|
|
|
// Check whether the profiler needs to be turned on or off.
|
|
hz = runtime·sched.profilehz;
|
|
if(m->profilehz != hz)
|
|
runtime·resetcpuprofiler(hz);
|
|
|
|
if(gp->sched.pc == (byte*)runtime·goexit) { // kickoff
|
|
runtime·gogocall(&gp->sched, (void(*)(void))gp->entry);
|
|
}
|
|
runtime·gogo(&gp->sched, 0);
|
|
}
|
|
|
|
// Enter scheduler. If g->status is Grunning,
|
|
// re-queues g and runs everyone else who is waiting
|
|
// before running g again. If g->status is Gmoribund,
|
|
// kills off g.
|
|
// Cannot split stack because it is called from exitsyscall.
|
|
// See comment below.
|
|
#pragma textflag 7
|
|
void
|
|
runtime·gosched(void)
|
|
{
|
|
if(m->locks != 0)
|
|
runtime·throw("gosched holding locks");
|
|
if(g == m->g0)
|
|
runtime·throw("gosched of g0");
|
|
runtime·mcall(schedule);
|
|
}
|
|
|
|
// The goroutine g is about to enter a system call.
|
|
// Record that it's not using the cpu anymore.
|
|
// This is called only from the go syscall library and cgocall,
|
|
// not from the low-level system calls used by the runtime.
|
|
//
|
|
// Entersyscall cannot split the stack: the runtime·gosave must
|
|
// make g->sched refer to the caller's stack segment, because
|
|
// entersyscall is going to return immediately after.
|
|
// It's okay to call matchmg and notewakeup even after
|
|
// decrementing mcpu, because we haven't released the
|
|
// sched lock yet, so the garbage collector cannot be running.
|
|
#pragma textflag 7
|
|
void
|
|
runtime·entersyscall(void)
|
|
{
|
|
uint32 v;
|
|
|
|
if(m->profilehz > 0)
|
|
runtime·setprof(false);
|
|
|
|
// Leave SP around for gc and traceback.
|
|
runtime·gosave(&g->sched);
|
|
g->gcsp = g->sched.sp;
|
|
g->gcstack = g->stackbase;
|
|
g->gcguard = g->stackguard;
|
|
g->status = Gsyscall;
|
|
if(g->gcsp < g->gcguard-StackGuard || g->gcstack < g->gcsp) {
|
|
// runtime·printf("entersyscall inconsistent %p [%p,%p]\n",
|
|
// g->gcsp, g->gcguard-StackGuard, g->gcstack);
|
|
runtime·throw("entersyscall");
|
|
}
|
|
|
|
// Fast path.
|
|
// The slow path inside the schedlock/schedunlock will get
|
|
// through without stopping if it does:
|
|
// mcpu--
|
|
// gwait not true
|
|
// waitstop && mcpu <= mcpumax not true
|
|
// If we can do the same with a single atomic add,
|
|
// then we can skip the locks.
|
|
v = runtime·xadd(&runtime·sched.atomic, -1<<mcpuShift);
|
|
if(!atomic_gwaiting(v) && (!atomic_waitstop(v) || atomic_mcpu(v) > atomic_mcpumax(v)))
|
|
return;
|
|
|
|
schedlock();
|
|
v = runtime·atomicload(&runtime·sched.atomic);
|
|
if(atomic_gwaiting(v)) {
|
|
matchmg();
|
|
v = runtime·atomicload(&runtime·sched.atomic);
|
|
}
|
|
if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) {
|
|
runtime·xadd(&runtime·sched.atomic, -1<<waitstopShift);
|
|
runtime·notewakeup(&runtime·sched.stopped);
|
|
}
|
|
|
|
// Re-save sched in case one of the calls
|
|
// (notewakeup, matchmg) triggered something using it.
|
|
runtime·gosave(&g->sched);
|
|
|
|
schedunlock();
|
|
}
|
|
|
|
// The goroutine g exited its system call.
|
|
// Arrange for it to run on a cpu again.
|
|
// This is called only from the go syscall library, not
|
|
// from the low-level system calls used by the runtime.
|
|
void
|
|
runtime·exitsyscall(void)
|
|
{
|
|
uint32 v;
|
|
|
|
// Fast path.
|
|
// If we can do the mcpu++ bookkeeping and
|
|
// find that we still have mcpu <= mcpumax, then we can
|
|
// start executing Go code immediately, without having to
|
|
// schedlock/schedunlock.
|
|
v = runtime·xadd(&runtime·sched.atomic, (1<<mcpuShift));
|
|
if(m->profilehz == runtime·sched.profilehz && atomic_mcpu(v) <= atomic_mcpumax(v)) {
|
|
// There's a cpu for us, so we can run.
|
|
g->status = Grunning;
|
|
// Garbage collector isn't running (since we are),
|
|
// so okay to clear gcstack.
|
|
g->gcstack = (uintptr)nil;
|
|
|
|
if(m->profilehz > 0)
|
|
runtime·setprof(true);
|
|
return;
|
|
}
|
|
|
|
// Tell scheduler to put g back on the run queue:
|
|
// mostly equivalent to g->status = Grunning,
|
|
// but keeps the garbage collector from thinking
|
|
// that g is running right now, which it's not.
|
|
g->readyonstop = 1;
|
|
|
|
// All the cpus are taken.
|
|
// The scheduler will ready g and put this m to sleep.
|
|
// When the scheduler takes g away from m,
|
|
// it will undo the runtime·sched.mcpu++ above.
|
|
runtime·gosched();
|
|
|
|
// Gosched returned, so we're allowed to run now.
|
|
// Delete the gcstack information that we left for
|
|
// the garbage collector during the system call.
|
|
// Must wait until now because until gosched returns
|
|
// we don't know for sure that the garbage collector
|
|
// is not running.
|
|
g->gcstack = (uintptr)nil;
|
|
}
|
|
|
|
// Called from runtime·lessstack when returning from a function which
|
|
// allocated a new stack segment. The function's return value is in
|
|
// m->cret.
|
|
void
|
|
runtime·oldstack(void)
|
|
{
|
|
Stktop *top, old;
|
|
uint32 argsize;
|
|
uintptr cret;
|
|
byte *sp;
|
|
G *g1;
|
|
int32 goid;
|
|
|
|
//printf("oldstack m->cret=%p\n", m->cret);
|
|
|
|
g1 = m->curg;
|
|
top = (Stktop*)g1->stackbase;
|
|
sp = (byte*)top;
|
|
old = *top;
|
|
argsize = old.argsize;
|
|
if(argsize > 0) {
|
|
sp -= argsize;
|
|
runtime·memmove(top->argp, sp, argsize);
|
|
}
|
|
goid = old.gobuf.g->goid; // fault if g is bad, before gogo
|
|
USED(goid);
|
|
|
|
if(old.free != 0)
|
|
runtime·stackfree((byte*)g1->stackguard - StackGuard, old.free);
|
|
g1->stackbase = (uintptr)old.stackbase;
|
|
g1->stackguard = (uintptr)old.stackguard;
|
|
|
|
cret = m->cret;
|
|
m->cret = 0; // drop reference
|
|
runtime·gogo(&old.gobuf, cret);
|
|
}
|
|
|
|
// Called from reflect·call or from runtime·morestack when a new
|
|
// stack segment is needed. Allocate a new stack big enough for
|
|
// m->moreframesize bytes, copy m->moreargsize bytes to the new frame,
|
|
// and then act as though runtime·lessstack called the function at
|
|
// m->morepc.
|
|
void
|
|
runtime·newstack(void)
|
|
{
|
|
int32 framesize, argsize;
|
|
Stktop *top;
|
|
byte *stk, *sp;
|
|
G *g1;
|
|
Gobuf label;
|
|
bool reflectcall;
|
|
uintptr free;
|
|
|
|
framesize = m->moreframesize;
|
|
argsize = m->moreargsize;
|
|
g1 = m->curg;
|
|
|
|
if(m->morebuf.sp < g1->stackguard - StackGuard) {
|
|
runtime·printf("runtime: split stack overflow: %p < %p\n", m->morebuf.sp, g1->stackguard - StackGuard);
|
|
runtime·throw("runtime: split stack overflow");
|
|
}
|
|
if(argsize % sizeof(uintptr) != 0) {
|
|
runtime·printf("runtime: stack split with misaligned argsize %d\n", argsize);
|
|
runtime·throw("runtime: stack split argsize");
|
|
}
|
|
|
|
reflectcall = framesize==1;
|
|
if(reflectcall)
|
|
framesize = 0;
|
|
|
|
if(reflectcall && m->morebuf.sp - sizeof(Stktop) - argsize - 32 > g1->stackguard) {
|
|
// special case: called from reflect.call (framesize==1)
|
|
// to call code with an arbitrary argument size,
|
|
// and we have enough space on the current stack.
|
|
// the new Stktop* is necessary to unwind, but
|
|
// we don't need to create a new segment.
|
|
top = (Stktop*)(m->morebuf.sp - sizeof(*top));
|
|
stk = (byte*)g1->stackguard - StackGuard;
|
|
free = 0;
|
|
} else {
|
|
// allocate new segment.
|
|
framesize += argsize;
|
|
framesize += StackExtra; // room for more functions, Stktop.
|
|
if(framesize < StackMin)
|
|
framesize = StackMin;
|
|
framesize += StackSystem;
|
|
stk = runtime·stackalloc(framesize);
|
|
top = (Stktop*)(stk+framesize-sizeof(*top));
|
|
free = framesize;
|
|
}
|
|
|
|
//runtime·printf("newstack framesize=%d argsize=%d morepc=%p moreargp=%p gobuf=%p, %p top=%p old=%p\n",
|
|
//framesize, argsize, m->morepc, m->moreargp, m->morebuf.pc, m->morebuf.sp, top, g1->stackbase);
|
|
|
|
top->stackbase = (byte*)g1->stackbase;
|
|
top->stackguard = (byte*)g1->stackguard;
|
|
top->gobuf = m->morebuf;
|
|
top->argp = m->moreargp;
|
|
top->argsize = argsize;
|
|
top->free = free;
|
|
m->moreargp = nil;
|
|
m->morebuf.pc = nil;
|
|
m->morebuf.sp = (uintptr)nil;
|
|
|
|
// copy flag from panic
|
|
top->panic = g1->ispanic;
|
|
g1->ispanic = false;
|
|
|
|
g1->stackbase = (uintptr)top;
|
|
g1->stackguard = (uintptr)stk + StackGuard;
|
|
|
|
sp = (byte*)top;
|
|
if(argsize > 0) {
|
|
sp -= argsize;
|
|
runtime·memmove(sp, top->argp, argsize);
|
|
}
|
|
if(thechar == '5') {
|
|
// caller would have saved its LR below args.
|
|
sp -= sizeof(void*);
|
|
*(void**)sp = nil;
|
|
}
|
|
|
|
// Continue as if lessstack had just called m->morepc
|
|
// (the PC that decided to grow the stack).
|
|
label.sp = (uintptr)sp;
|
|
label.pc = (byte*)runtime·lessstack;
|
|
label.g = m->curg;
|
|
runtime·gogocall(&label, m->morepc);
|
|
|
|
*(int32*)345 = 123; // never return
|
|
}
|
|
|
|
// Hook used by runtime·malg to call runtime·stackalloc on the
|
|
// scheduler stack. This exists because runtime·stackalloc insists
|
|
// on being called on the scheduler stack, to avoid trying to grow
|
|
// the stack while allocating a new stack segment.
|
|
static void
|
|
mstackalloc(G *gp)
|
|
{
|
|
gp->param = runtime·stackalloc((uintptr)gp->param);
|
|
runtime·gogo(&gp->sched, 0);
|
|
}
|
|
|
|
// Allocate a new g, with a stack big enough for stacksize bytes.
|
|
G*
|
|
runtime·malg(int32 stacksize)
|
|
{
|
|
G *newg;
|
|
byte *stk;
|
|
|
|
if(StackTop < sizeof(Stktop)) {
|
|
runtime·printf("runtime: SizeofStktop=%d, should be >=%d\n", (int32)StackTop, (int32)sizeof(Stktop));
|
|
runtime·throw("runtime: bad stack.h");
|
|
}
|
|
|
|
newg = runtime·malloc(sizeof(G));
|
|
if(stacksize >= 0) {
|
|
if(g == m->g0) {
|
|
// running on scheduler stack already.
|
|
stk = runtime·stackalloc(StackSystem + stacksize);
|
|
} else {
|
|
// have to call stackalloc on scheduler stack.
|
|
g->param = (void*)(StackSystem + stacksize);
|
|
runtime·mcall(mstackalloc);
|
|
stk = g->param;
|
|
g->param = nil;
|
|
}
|
|
newg->stack0 = (uintptr)stk;
|
|
newg->stackguard = (uintptr)stk + StackGuard;
|
|
newg->stackbase = (uintptr)stk + StackSystem + stacksize - sizeof(Stktop);
|
|
runtime·memclr((byte*)newg->stackbase, sizeof(Stktop));
|
|
}
|
|
return newg;
|
|
}
|
|
|
|
// Create a new g running fn with siz bytes of arguments.
|
|
// Put it on the queue of g's waiting to run.
|
|
// The compiler turns a go statement into a call to this.
|
|
// Cannot split the stack because it assumes that the arguments
|
|
// are available sequentially after &fn; they would not be
|
|
// copied if a stack split occurred. It's OK for this to call
|
|
// functions that split the stack.
|
|
#pragma textflag 7
|
|
void
|
|
runtime·newproc(int32 siz, byte* fn, ...)
|
|
{
|
|
byte *argp;
|
|
|
|
if(thechar == '5')
|
|
argp = (byte*)(&fn+2); // skip caller's saved LR
|
|
else
|
|
argp = (byte*)(&fn+1);
|
|
runtime·newproc1(fn, argp, siz, 0, runtime·getcallerpc(&siz));
|
|
}
|
|
|
|
// Create a new g running fn with narg bytes of arguments starting
|
|
// at argp and returning nret bytes of results. callerpc is the
|
|
// address of the go statement that created this. The new g is put
|
|
// on the queue of g's waiting to run.
|
|
G*
|
|
runtime·newproc1(byte *fn, byte *argp, int32 narg, int32 nret, void *callerpc)
|
|
{
|
|
byte *sp;
|
|
G *newg;
|
|
int32 siz;
|
|
|
|
//printf("newproc1 %p %p narg=%d nret=%d\n", fn, argp, narg, nret);
|
|
siz = narg + nret;
|
|
siz = (siz+7) & ~7;
|
|
|
|
// We could instead create a secondary stack frame
|
|
// and make it look like goexit was on the original but
|
|
// the call to the actual goroutine function was split.
|
|
// Not worth it: this is almost always an error.
|
|
if(siz > StackMin - 1024)
|
|
runtime·throw("runtime.newproc: function arguments too large for new goroutine");
|
|
|
|
schedlock();
|
|
|
|
if((newg = gfget()) != nil){
|
|
if(newg->stackguard - StackGuard != newg->stack0)
|
|
runtime·throw("invalid stack in newg");
|
|
} else {
|
|
newg = runtime·malg(StackMin);
|
|
if(runtime·lastg == nil)
|
|
runtime·allg = newg;
|
|
else
|
|
runtime·lastg->alllink = newg;
|
|
runtime·lastg = newg;
|
|
}
|
|
newg->status = Gwaiting;
|
|
newg->waitreason = "new goroutine";
|
|
|
|
sp = (byte*)newg->stackbase;
|
|
sp -= siz;
|
|
runtime·memmove(sp, argp, narg);
|
|
if(thechar == '5') {
|
|
// caller's LR
|
|
sp -= sizeof(void*);
|
|
*(void**)sp = nil;
|
|
}
|
|
|
|
newg->sched.sp = (uintptr)sp;
|
|
newg->sched.pc = (byte*)runtime·goexit;
|
|
newg->sched.g = newg;
|
|
newg->entry = fn;
|
|
newg->gopc = (uintptr)callerpc;
|
|
|
|
runtime·sched.gcount++;
|
|
runtime·sched.goidgen++;
|
|
newg->goid = runtime·sched.goidgen;
|
|
|
|
newprocreadylocked(newg);
|
|
schedunlock();
|
|
|
|
return newg;
|
|
//printf(" goid=%d\n", newg->goid);
|
|
}
|
|
|
|
// Create a new deferred function fn with siz bytes of arguments.
|
|
// The compiler turns a defer statement into a call to this.
|
|
// Cannot split the stack because it assumes that the arguments
|
|
// are available sequentially after &fn; they would not be
|
|
// copied if a stack split occurred. It's OK for this to call
|
|
// functions that split the stack.
|
|
#pragma textflag 7
|
|
uintptr
|
|
runtime·deferproc(int32 siz, byte* fn, ...)
|
|
{
|
|
Defer *d;
|
|
int32 mallocsiz;
|
|
|
|
mallocsiz = sizeof(*d);
|
|
if(siz > sizeof(d->args))
|
|
mallocsiz += siz - sizeof(d->args);
|
|
d = runtime·malloc(mallocsiz);
|
|
d->fn = fn;
|
|
d->siz = siz;
|
|
d->pc = runtime·getcallerpc(&siz);
|
|
if(thechar == '5')
|
|
d->argp = (byte*)(&fn+2); // skip caller's saved link register
|
|
else
|
|
d->argp = (byte*)(&fn+1);
|
|
runtime·memmove(d->args, d->argp, d->siz);
|
|
|
|
d->link = g->defer;
|
|
g->defer = d;
|
|
|
|
// deferproc returns 0 normally.
|
|
// a deferred func that stops a panic
|
|
// makes the deferproc return 1.
|
|
// the code the compiler generates always
|
|
// checks the return value and jumps to the
|
|
// end of the function if deferproc returns != 0.
|
|
return 0;
|
|
}
|
|
|
|
// Run a deferred function if there is one.
|
|
// The compiler inserts a call to this at the end of any
|
|
// function which calls defer.
|
|
// If there is a deferred function, this will call runtime·jmpdefer,
|
|
// which will jump to the deferred function such that it appears
|
|
// to have been called by the caller of deferreturn at the point
|
|
// just before deferreturn was called. The effect is that deferreturn
|
|
// is called again and again until there are no more deferred functions.
|
|
// Cannot split the stack because we reuse the caller's frame to
|
|
// call the deferred function.
|
|
#pragma textflag 7
|
|
void
|
|
runtime·deferreturn(uintptr arg0)
|
|
{
|
|
Defer *d;
|
|
byte *argp, *fn;
|
|
|
|
d = g->defer;
|
|
if(d == nil)
|
|
return;
|
|
argp = (byte*)&arg0;
|
|
if(d->argp != argp)
|
|
return;
|
|
runtime·memmove(argp, d->args, d->siz);
|
|
g->defer = d->link;
|
|
fn = d->fn;
|
|
if(!d->nofree)
|
|
runtime·free(d);
|
|
runtime·jmpdefer(fn, argp);
|
|
}
|
|
|
|
// Run all deferred functions for the current goroutine.
|
|
static void
|
|
rundefer(void)
|
|
{
|
|
Defer *d;
|
|
|
|
while((d = g->defer) != nil) {
|
|
g->defer = d->link;
|
|
reflect·call(d->fn, (byte*)d->args, d->siz);
|
|
if(!d->nofree)
|
|
runtime·free(d);
|
|
}
|
|
}
|
|
|
|
// Free stack frames until we hit the last one
|
|
// or until we find the one that contains the sp.
|
|
static void
|
|
unwindstack(G *gp, byte *sp)
|
|
{
|
|
Stktop *top;
|
|
byte *stk;
|
|
|
|
// Must be called from a different goroutine, usually m->g0.
|
|
if(g == gp)
|
|
runtime·throw("unwindstack on self");
|
|
|
|
while((top = (Stktop*)gp->stackbase) != nil && top->stackbase != nil) {
|
|
stk = (byte*)gp->stackguard - StackGuard;
|
|
if(stk <= sp && sp < (byte*)gp->stackbase)
|
|
break;
|
|
gp->stackbase = (uintptr)top->stackbase;
|
|
gp->stackguard = (uintptr)top->stackguard;
|
|
if(top->free != 0)
|
|
runtime·stackfree(stk, top->free);
|
|
}
|
|
|
|
if(sp != nil && (sp < (byte*)gp->stackguard - StackGuard || (byte*)gp->stackbase < sp)) {
|
|
runtime·printf("recover: %p not in [%p, %p]\n", sp, gp->stackguard - StackGuard, gp->stackbase);
|
|
runtime·throw("bad unwindstack");
|
|
}
|
|
}
|
|
|
|
// Print all currently active panics. Used when crashing.
|
|
static void
|
|
printpanics(Panic *p)
|
|
{
|
|
if(p->link) {
|
|
printpanics(p->link);
|
|
runtime·printf("\t");
|
|
}
|
|
runtime·printf("panic: ");
|
|
runtime·printany(p->arg);
|
|
if(p->recovered)
|
|
runtime·printf(" [recovered]");
|
|
runtime·printf("\n");
|
|
}
|
|
|
|
static void recovery(G*);
|
|
|
|
// The implementation of the predeclared function panic.
|
|
void
|
|
runtime·panic(Eface e)
|
|
{
|
|
Defer *d;
|
|
Panic *p;
|
|
|
|
p = runtime·mal(sizeof *p);
|
|
p->arg = e;
|
|
p->link = g->panic;
|
|
p->stackbase = (byte*)g->stackbase;
|
|
g->panic = p;
|
|
|
|
for(;;) {
|
|
d = g->defer;
|
|
if(d == nil)
|
|
break;
|
|
// take defer off list in case of recursive panic
|
|
g->defer = d->link;
|
|
g->ispanic = true; // rock for newstack, where reflect.call ends up
|
|
reflect·call(d->fn, (byte*)d->args, d->siz);
|
|
if(p->recovered) {
|
|
g->panic = p->link;
|
|
if(g->panic == nil) // must be done with signal
|
|
g->sig = 0;
|
|
runtime·free(p);
|
|
// put recovering defer back on list
|
|
// for scheduler to find.
|
|
d->link = g->defer;
|
|
g->defer = d;
|
|
runtime·mcall(recovery);
|
|
runtime·throw("recovery failed"); // mcall should not return
|
|
}
|
|
if(!d->nofree)
|
|
runtime·free(d);
|
|
}
|
|
|
|
// ran out of deferred calls - old-school panic now
|
|
runtime·startpanic();
|
|
printpanics(g->panic);
|
|
runtime·dopanic(0);
|
|
}
|
|
|
|
// Unwind the stack after a deferred function calls recover
|
|
// after a panic. Then arrange to continue running as though
|
|
// the caller of the deferred function returned normally.
|
|
static void
|
|
recovery(G *gp)
|
|
{
|
|
Defer *d;
|
|
|
|
// Rewind gp's stack; we're running on m->g0's stack.
|
|
d = gp->defer;
|
|
gp->defer = d->link;
|
|
|
|
// Unwind to the stack frame with d's arguments in it.
|
|
unwindstack(gp, d->argp);
|
|
|
|
// Make the deferproc for this d return again,
|
|
// this time returning 1. The calling function will
|
|
// jump to the standard return epilogue.
|
|
// The -2*sizeof(uintptr) makes up for the
|
|
// two extra words that are on the stack at
|
|
// each call to deferproc.
|
|
// (The pc we're returning to does pop pop
|
|
// before it tests the return value.)
|
|
// On the arm there are 2 saved LRs mixed in too.
|
|
if(thechar == '5')
|
|
gp->sched.sp = (uintptr)d->argp - 4*sizeof(uintptr);
|
|
else
|
|
gp->sched.sp = (uintptr)d->argp - 2*sizeof(uintptr);
|
|
gp->sched.pc = d->pc;
|
|
if(!d->nofree)
|
|
runtime·free(d);
|
|
runtime·gogo(&gp->sched, 1);
|
|
}
|
|
|
|
// The implementation of the predeclared function recover.
|
|
// Cannot split the stack because it needs to reliably
|
|
// find the stack segment of its caller.
|
|
#pragma textflag 7
|
|
void
|
|
runtime·recover(byte *argp, Eface ret)
|
|
{
|
|
Stktop *top, *oldtop;
|
|
Panic *p;
|
|
|
|
// Must be a panic going on.
|
|
if((p = g->panic) == nil || p->recovered)
|
|
goto nomatch;
|
|
|
|
// Frame must be at the top of the stack segment,
|
|
// because each deferred call starts a new stack
|
|
// segment as a side effect of using reflect.call.
|
|
// (There has to be some way to remember the
|
|
// variable argument frame size, and the segment
|
|
// code already takes care of that for us, so we
|
|
// reuse it.)
|
|
//
|
|
// As usual closures complicate things: the fp that
|
|
// the closure implementation function claims to have
|
|
// is where the explicit arguments start, after the
|
|
// implicit pointer arguments and PC slot.
|
|
// If we're on the first new segment for a closure,
|
|
// then fp == top - top->args is correct, but if
|
|
// the closure has its own big argument frame and
|
|
// allocated a second segment (see below),
|
|
// the fp is slightly above top - top->args.
|
|
// That condition can't happen normally though
|
|
// (stack pointers go down, not up), so we can accept
|
|
// any fp between top and top - top->args as
|
|
// indicating the top of the segment.
|
|
top = (Stktop*)g->stackbase;
|
|
if(argp < (byte*)top - top->argsize || (byte*)top < argp)
|
|
goto nomatch;
|
|
|
|
// The deferred call makes a new segment big enough
|
|
// for the argument frame but not necessarily big
|
|
// enough for the function's local frame (size unknown
|
|
// at the time of the call), so the function might have
|
|
// made its own segment immediately. If that's the
|
|
// case, back top up to the older one, the one that
|
|
// reflect.call would have made for the panic.
|
|
//
|
|
// The fp comparison here checks that the argument
|
|
// frame that was copied during the split (the top->args
|
|
// bytes above top->fp) abuts the old top of stack.
|
|
// This is a correct test for both closure and non-closure code.
|
|
oldtop = (Stktop*)top->stackbase;
|
|
if(oldtop != nil && top->argp == (byte*)oldtop - top->argsize)
|
|
top = oldtop;
|
|
|
|
// Now we have the segment that was created to
|
|
// run this call. It must have been marked as a panic segment.
|
|
if(!top->panic)
|
|
goto nomatch;
|
|
|
|
// Okay, this is the top frame of a deferred call
|
|
// in response to a panic. It can see the panic argument.
|
|
p->recovered = 1;
|
|
ret = p->arg;
|
|
FLUSH(&ret);
|
|
return;
|
|
|
|
nomatch:
|
|
ret.type = nil;
|
|
ret.data = nil;
|
|
FLUSH(&ret);
|
|
}
|
|
|
|
|
|
// Put on gfree list. Sched must be locked.
|
|
static void
|
|
gfput(G *g)
|
|
{
|
|
if(g->stackguard - StackGuard != g->stack0)
|
|
runtime·throw("invalid stack in gfput");
|
|
g->schedlink = runtime·sched.gfree;
|
|
runtime·sched.gfree = g;
|
|
}
|
|
|
|
// Get from gfree list. Sched must be locked.
|
|
static G*
|
|
gfget(void)
|
|
{
|
|
G *g;
|
|
|
|
g = runtime·sched.gfree;
|
|
if(g)
|
|
runtime·sched.gfree = g->schedlink;
|
|
return g;
|
|
}
|
|
|
|
void
|
|
runtime·Breakpoint(void)
|
|
{
|
|
runtime·breakpoint();
|
|
}
|
|
|
|
void
|
|
runtime·Goexit(void)
|
|
{
|
|
rundefer();
|
|
runtime·goexit();
|
|
}
|
|
|
|
void
|
|
runtime·Gosched(void)
|
|
{
|
|
runtime·gosched();
|
|
}
|
|
|
|
// Implementation of runtime.GOMAXPROCS.
|
|
// delete when scheduler is stronger
|
|
int32
|
|
runtime·gomaxprocsfunc(int32 n)
|
|
{
|
|
int32 ret;
|
|
uint32 v;
|
|
|
|
schedlock();
|
|
ret = runtime·gomaxprocs;
|
|
if(n <= 0)
|
|
n = ret;
|
|
if(n > maxgomaxprocs)
|
|
n = maxgomaxprocs;
|
|
runtime·gomaxprocs = n;
|
|
if(runtime·gomaxprocs > 1)
|
|
runtime·singleproc = false;
|
|
if(runtime·gcwaiting != 0) {
|
|
if(atomic_mcpumax(runtime·sched.atomic) != 1)
|
|
runtime·throw("invalid mcpumax during gc");
|
|
schedunlock();
|
|
return ret;
|
|
}
|
|
|
|
setmcpumax(n);
|
|
|
|
// If there are now fewer allowed procs
|
|
// than procs running, stop.
|
|
v = runtime·atomicload(&runtime·sched.atomic);
|
|
if(atomic_mcpu(v) > n) {
|
|
schedunlock();
|
|
runtime·gosched();
|
|
return ret;
|
|
}
|
|
// handle more procs
|
|
matchmg();
|
|
schedunlock();
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
runtime·LockOSThread(void)
|
|
{
|
|
if(m == &runtime·m0 && runtime·sched.init) {
|
|
runtime·sched.lockmain = true;
|
|
return;
|
|
}
|
|
m->lockedg = g;
|
|
g->lockedm = m;
|
|
}
|
|
|
|
void
|
|
runtime·UnlockOSThread(void)
|
|
{
|
|
if(m == &runtime·m0 && runtime·sched.init) {
|
|
runtime·sched.lockmain = false;
|
|
return;
|
|
}
|
|
m->lockedg = nil;
|
|
g->lockedm = nil;
|
|
}
|
|
|
|
bool
|
|
runtime·lockedOSThread(void)
|
|
{
|
|
return g->lockedm != nil && m->lockedg != nil;
|
|
}
|
|
|
|
// for testing of callbacks
|
|
void
|
|
runtime·golockedOSThread(bool ret)
|
|
{
|
|
ret = runtime·lockedOSThread();
|
|
FLUSH(&ret);
|
|
}
|
|
|
|
// for testing of wire, unwire
|
|
void
|
|
runtime·mid(uint32 ret)
|
|
{
|
|
ret = m->id;
|
|
FLUSH(&ret);
|
|
}
|
|
|
|
void
|
|
runtime·NumGoroutine(int32 ret)
|
|
{
|
|
ret = runtime·sched.gcount;
|
|
FLUSH(&ret);
|
|
}
|
|
|
|
int32
|
|
runtime·gcount(void)
|
|
{
|
|
return runtime·sched.gcount;
|
|
}
|
|
|
|
int32
|
|
runtime·mcount(void)
|
|
{
|
|
return runtime·sched.mcount;
|
|
}
|
|
|
|
void
|
|
runtime·badmcall(void) // called from assembly
|
|
{
|
|
runtime·throw("runtime: mcall called on m->g0 stack");
|
|
}
|
|
|
|
void
|
|
runtime·badmcall2(void) // called from assembly
|
|
{
|
|
runtime·throw("runtime: mcall function returned");
|
|
}
|
|
|
|
static struct {
|
|
Lock;
|
|
void (*fn)(uintptr*, int32);
|
|
int32 hz;
|
|
uintptr pcbuf[100];
|
|
} prof;
|
|
|
|
// Called if we receive a SIGPROF signal.
|
|
void
|
|
runtime·sigprof(uint8 *pc, uint8 *sp, uint8 *lr, G *gp)
|
|
{
|
|
int32 n;
|
|
|
|
if(prof.fn == nil || prof.hz == 0)
|
|
return;
|
|
|
|
runtime·lock(&prof);
|
|
if(prof.fn == nil) {
|
|
runtime·unlock(&prof);
|
|
return;
|
|
}
|
|
n = runtime·gentraceback(pc, sp, lr, gp, 0, prof.pcbuf, nelem(prof.pcbuf));
|
|
if(n > 0)
|
|
prof.fn(prof.pcbuf, n);
|
|
runtime·unlock(&prof);
|
|
}
|
|
|
|
// Arrange to call fn with a traceback hz times a second.
|
|
void
|
|
runtime·setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz)
|
|
{
|
|
// Force sane arguments.
|
|
if(hz < 0)
|
|
hz = 0;
|
|
if(hz == 0)
|
|
fn = nil;
|
|
if(fn == nil)
|
|
hz = 0;
|
|
|
|
// Stop profiler on this cpu so that it is safe to lock prof.
|
|
// if a profiling signal came in while we had prof locked,
|
|
// it would deadlock.
|
|
runtime·resetcpuprofiler(0);
|
|
|
|
runtime·lock(&prof);
|
|
prof.fn = fn;
|
|
prof.hz = hz;
|
|
runtime·unlock(&prof);
|
|
runtime·lock(&runtime·sched);
|
|
runtime·sched.profilehz = hz;
|
|
runtime·unlock(&runtime·sched);
|
|
|
|
if(hz != 0)
|
|
runtime·resetcpuprofiler(hz);
|
|
}
|
|
|
|
void (*libcgo_setenv)(byte**);
|
|
|
|
// Update the C environment if cgo is loaded.
|
|
// Called from syscall.Setenv.
|
|
void
|
|
syscall·setenv_c(String k, String v)
|
|
{
|
|
byte *arg[2];
|
|
|
|
if(libcgo_setenv == nil)
|
|
return;
|
|
|
|
arg[0] = runtime·malloc(k.len + 1);
|
|
runtime·memmove(arg[0], k.str, k.len);
|
|
arg[0][k.len] = 0;
|
|
|
|
arg[1] = runtime·malloc(v.len + 1);
|
|
runtime·memmove(arg[1], v.str, v.len);
|
|
arg[1][v.len] = 0;
|
|
|
|
runtime·asmcgocall((void*)libcgo_setenv, arg);
|
|
runtime·free(arg[0]);
|
|
runtime·free(arg[1]);
|
|
}
|