// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "runtime.h" #include "arch_GOARCH.h" #include "defs_GOOS_GOARCH.h" #include "malloc.h" #include "os_GOOS.h" #include "stack.h" bool runtime·iscgo; static void unwindstack(G*, byte*); static void schedule(G*); typedef struct Sched Sched; M runtime·m0; G runtime·g0; // idle goroutine for m0 static int32 debug = 0; int32 runtime·gcwaiting; // Go scheduler // // The go scheduler's job is to match ready-to-run goroutines (`g's) // with waiting-for-work schedulers (`m's). If there are ready g's // and no waiting m's, ready() will start a new m running in a new // OS thread, so that all ready g's can run simultaneously, up to a limit. // For now, m's never go away. // // By default, Go keeps only one kernel thread (m) running user code // at a single time; other threads may be blocked in the operating system. // Setting the environment variable $GOMAXPROCS or calling // runtime.GOMAXPROCS() will change the number of user threads // allowed to execute simultaneously. $GOMAXPROCS is thus an // approximation of the maximum number of cores to use. // // Even a program that can run without deadlock in a single process // might use more m's if given the chance. For example, the prime // sieve will use as many m's as there are primes (up to runtime·sched.mmax), // allowing different stages of the pipeline to execute in parallel. // We could revisit this choice, only kicking off new m's for blocking // system calls, but that would limit the amount of parallel computation // that go would try to do. // // In general, one could imagine all sorts of refinements to the // scheduler, but the goal now is just to get something working on // Linux and OS X. struct Sched { Lock; G *gfree; // available g's (status == Gdead) int32 goidgen; G *ghead; // g's waiting to run G *gtail; int32 gwait; // number of g's waiting to run int32 gcount; // number of g's that are alive int32 grunning; // number of g's running on cpu or in syscall M *mhead; // m's waiting for work int32 mwait; // number of m's waiting for work int32 mcount; // number of m's that have been created volatile uint32 atomic; // atomic scheduling word (see below) int32 profilehz; // cpu profiling rate bool init; // running initialization bool lockmain; // init called runtime.LockOSThread Note stopped; // one g can set waitstop and wait here for m's to stop }; // The atomic word in sched is an atomic uint32 that // holds these fields. // // [15 bits] mcpu number of m's executing on cpu // [15 bits] mcpumax max number of m's allowed on cpu // [1 bit] waitstop some g is waiting on stopped // [1 bit] gwaiting gwait != 0 // // These fields are the information needed by entersyscall // and exitsyscall to decide whether to coordinate with the // scheduler. Packing them into a single machine word lets // them use a fast path with a single atomic read/write and // no lock/unlock. This greatly reduces contention in // syscall- or cgo-heavy multithreaded programs. // // Except for entersyscall and exitsyscall, the manipulations // to these fields only happen while holding the schedlock, // so the routines holding schedlock only need to worry about // what entersyscall and exitsyscall do, not the other routines // (which also use the schedlock). // // In particular, entersyscall and exitsyscall only read mcpumax, // waitstop, and gwaiting. They never write them. Thus, writes to those // fields can be done (holding schedlock) without fear of write conflicts. // There may still be logic conflicts: for example, the set of waitstop must // be conditioned on mcpu >= mcpumax or else the wait may be a // spurious sleep. The Promela model in proc.p verifies these accesses. enum { mcpuWidth = 15, mcpuMask = (1<>mcpuShift)&mcpuMask) #define atomic_mcpumax(v) (((v)>>mcpumaxShift)&mcpuMask) #define atomic_waitstop(v) (((v)>>waitstopShift)&1) #define atomic_gwaiting(v) (((v)>>gwaitingShift)&1) Sched runtime·sched; int32 runtime·gomaxprocs; bool runtime·singleproc; static bool canaddmcpu(void); // An m that is waiting for notewakeup(&m->havenextg). This may // only be accessed while the scheduler lock is held. This is used to // minimize the number of times we call notewakeup while the scheduler // lock is held, since the m will normally move quickly to lock the // scheduler itself, producing lock contention. static M* mwakeup; // Scheduling helpers. Sched must be locked. static void gput(G*); // put/get on ghead/gtail static G* gget(void); static void mput(M*); // put/get on mhead static M* mget(G*); static void gfput(G*); // put/get on gfree static G* gfget(void); static void matchmg(void); // match m's to g's static void readylocked(G*); // ready, but sched is locked static void mnextg(M*, G*); static void mcommoninit(M*); void setmcpumax(uint32 n) { uint32 v, w; for(;;) { v = runtime·sched.atomic; w = v; w &= ~(mcpuMask<nomemprof++; runtime·mallocinit(); mcommoninit(m); runtime·goargs(); runtime·goenvs(); // For debugging: // Allocate internal symbol table representation now, // so that we don't need to call malloc when we crash. // runtime·findfunc(0); runtime·gomaxprocs = 1; p = runtime·getenv("GOMAXPROCS"); if(p != nil && (n = runtime·atoi(p)) != 0) { if(n > maxgomaxprocs) n = maxgomaxprocs; runtime·gomaxprocs = n; } // wait for the main goroutine to start before taking // GOMAXPROCS into account. setmcpumax(1); runtime·singleproc = runtime·gomaxprocs == 1; canaddmcpu(); // mcpu++ to account for bootstrap m m->helpgc = 1; // flag to tell schedule() to mcpu-- runtime·sched.grunning++; mstats.enablegc = 1; m->nomemprof--; } extern void main·init(void); extern void main·main(void); // The main goroutine. void runtime·main(void) { // Lock the main goroutine onto this, the main OS thread, // during initialization. Most programs won't care, but a few // do require certain calls to be made by the main thread. // Those can arrange for main.main to run in the main thread // by calling runtime.LockOSThread during initialization // to preserve the lock. runtime·LockOSThread(); // From now on, newgoroutines may use non-main threads. setmcpumax(runtime·gomaxprocs); runtime·sched.init = true; scvg = runtime·newproc1((byte*)runtime·MHeap_Scavenger, nil, 0, 0, runtime·main); main·init(); runtime·sched.init = false; if(!runtime·sched.lockmain) runtime·UnlockOSThread(); // The deadlock detection has false negatives. // Let scvg start up, to eliminate the false negative // for the trivial program func main() { select{} }. runtime·gosched(); main·main(); runtime·exit(0); for(;;) *(int32*)runtime·main = 0; } // Lock the scheduler. static void schedlock(void) { runtime·lock(&runtime·sched); } // Unlock the scheduler. static void schedunlock(void) { M *m; m = mwakeup; mwakeup = nil; runtime·unlock(&runtime·sched); if(m != nil) runtime·notewakeup(&m->havenextg); } void runtime·goexit(void) { g->status = Gmoribund; runtime·gosched(); } void runtime·goroutineheader(G *g) { int8 *status; switch(g->status) { case Gidle: status = "idle"; break; case Grunnable: status = "runnable"; break; case Grunning: status = "running"; break; case Gsyscall: status = "syscall"; break; case Gwaiting: if(g->waitreason) status = g->waitreason; else status = "waiting"; break; case Gmoribund: status = "moribund"; break; default: status = "???"; break; } runtime·printf("goroutine %d [%s]:\n", g->goid, status); } void runtime·tracebackothers(G *me) { G *g; for(g = runtime·allg; g != nil; g = g->alllink) { if(g == me || g->status == Gdead) continue; runtime·printf("\n"); runtime·goroutineheader(g); runtime·traceback(g->sched.pc, (byte*)g->sched.sp, 0, g); } } // Mark this g as m's idle goroutine. // This functionality might be used in environments where programs // are limited to a single thread, to simulate a select-driven // network server. It is not exposed via the standard runtime API. void runtime·idlegoroutine(void) { if(g->idlem != nil) runtime·throw("g is already an idle goroutine"); g->idlem = m; } static void mcommoninit(M *m) { m->id = runtime·sched.mcount++; m->fastrand = 0x49f6428aUL + m->id + runtime·cputicks(); m->stackalloc = runtime·malloc(sizeof(*m->stackalloc)); runtime·FixAlloc_Init(m->stackalloc, FixedStack, runtime·SysAlloc, nil, nil); if(m->mcache == nil) m->mcache = runtime·allocmcache(); runtime·callers(1, m->createstack, nelem(m->createstack)); // Add to runtime·allm so garbage collector doesn't free m // when it is just in a register or thread-local storage. m->alllink = runtime·allm; // runtime·NumCgoCall() iterates over allm w/o schedlock, // so we need to publish it safely. runtime·atomicstorep(&runtime·allm, m); } // Try to increment mcpu. Report whether succeeded. static bool canaddmcpu(void) { uint32 v; for(;;) { v = runtime·sched.atomic; if(atomic_mcpu(v) >= atomic_mcpumax(v)) return 0; if(runtime·cas(&runtime·sched.atomic, v, v+(1<lockedm) != nil && canaddmcpu()) { mnextg(m, g); return; } // If g is the idle goroutine for an m, hand it off. if(g->idlem != nil) { if(g->idlem->idleg != nil) { runtime·printf("m%d idle out of sync: g%d g%d\n", g->idlem->id, g->idlem->idleg->goid, g->goid); runtime·throw("runtime: double idle"); } g->idlem->idleg = g; return; } g->schedlink = nil; if(runtime·sched.ghead == nil) runtime·sched.ghead = g; else runtime·sched.gtail->schedlink = g; runtime·sched.gtail = g; // increment gwait. // if it transitions to nonzero, set atomic gwaiting bit. if(runtime·sched.gwait++ == 0) runtime·xadd(&runtime·sched.atomic, 1<idleg != nil; } // Get from `g' queue. Sched must be locked. static G* gget(void) { G *g; g = runtime·sched.ghead; if(g){ runtime·sched.ghead = g->schedlink; if(runtime·sched.ghead == nil) runtime·sched.gtail = nil; // decrement gwait. // if it transitions to zero, clear atomic gwaiting bit. if(--runtime·sched.gwait == 0) runtime·xadd(&runtime·sched.atomic, -1<idleg != nil) { g = m->idleg; m->idleg = nil; } return g; } // Put on `m' list. Sched must be locked. static void mput(M *m) { m->schedlink = runtime·sched.mhead; runtime·sched.mhead = m; runtime·sched.mwait++; } // Get an `m' to run `g'. Sched must be locked. static M* mget(G *g) { M *m; // if g has its own m, use it. if(g && (m = g->lockedm) != nil) return m; // otherwise use general m pool. if((m = runtime·sched.mhead) != nil){ runtime·sched.mhead = m->schedlink; runtime·sched.mwait--; } return m; } // Mark g ready to run. void runtime·ready(G *g) { schedlock(); readylocked(g); schedunlock(); } // Mark g ready to run. Sched is already locked. // G might be running already and about to stop. // The sched lock protects g->status from changing underfoot. static void readylocked(G *g) { if(g->m){ // Running on another machine. // Ready it when it stops. g->readyonstop = 1; return; } // Mark runnable. if(g->status == Grunnable || g->status == Grunning) { runtime·printf("goroutine %d has status %d\n", g->goid, g->status); runtime·throw("bad g->status in ready"); } g->status = Grunnable; gput(g); matchmg(); } static void nop(void) { } // Same as readylocked but a different symbol so that // debuggers can set a breakpoint here and catch all // new goroutines. static void newprocreadylocked(G *g) { nop(); // avoid inlining in 6l readylocked(g); } // Pass g to m for running. // Caller has already incremented mcpu. static void mnextg(M *m, G *g) { runtime·sched.grunning++; m->nextg = g; if(m->waitnextg) { m->waitnextg = 0; if(mwakeup != nil) runtime·notewakeup(&mwakeup->havenextg); mwakeup = m; } } // Get the next goroutine that m should run. // Sched must be locked on entry, is unlocked on exit. // Makes sure that at most $GOMAXPROCS g's are // running on cpus (not in system calls) at any given time. static G* nextgandunlock(void) { G *gp; uint32 v; top: if(atomic_mcpu(runtime·sched.atomic) >= maxgomaxprocs) runtime·throw("negative mcpu"); // If there is a g waiting as m->nextg, the mcpu++ // happened before it was passed to mnextg. if(m->nextg != nil) { gp = m->nextg; m->nextg = nil; schedunlock(); return gp; } if(m->lockedg != nil) { // We can only run one g, and it's not available. // Make sure some other cpu is running to handle // the ordinary run queue. if(runtime·sched.gwait != 0) { matchmg(); // m->lockedg might have been on the queue. if(m->nextg != nil) { gp = m->nextg; m->nextg = nil; schedunlock(); return gp; } } } else { // Look for work on global queue. while(haveg() && canaddmcpu()) { gp = gget(); if(gp == nil) runtime·throw("gget inconsistency"); if(gp->lockedm) { mnextg(gp->lockedm, gp); continue; } runtime·sched.grunning++; schedunlock(); return gp; } // The while loop ended either because the g queue is empty // or because we have maxed out our m procs running go // code (mcpu >= mcpumax). We need to check that // concurrent actions by entersyscall/exitsyscall cannot // invalidate the decision to end the loop. // // We hold the sched lock, so no one else is manipulating the // g queue or changing mcpumax. Entersyscall can decrement // mcpu, but if does so when there is something on the g queue, // the gwait bit will be set, so entersyscall will take the slow path // and use the sched lock. So it cannot invalidate our decision. // // Wait on global m queue. mput(m); } // Look for deadlock situation. // There is a race with the scavenger that causes false negatives: // if the scavenger is just starting, then we have // scvg != nil && grunning == 0 && gwait == 0 // and we do not detect a deadlock. It is possible that we should // add that case to the if statement here, but it is too close to Go 1 // to make such a subtle change. Instead, we work around the // false negative in trivial programs by calling runtime.gosched // from the main goroutine just before main.main. // See runtime·main above. // // On a related note, it is also possible that the scvg == nil case is // wrong and should include gwait, but that does not happen in // standard Go programs, which all start the scavenger. // if((scvg == nil && runtime·sched.grunning == 0) || (scvg != nil && runtime·sched.grunning == 1 && runtime·sched.gwait == 0 && (scvg->status == Grunning || scvg->status == Gsyscall))) { runtime·throw("all goroutines are asleep - deadlock!"); } m->nextg = nil; m->waitnextg = 1; runtime·noteclear(&m->havenextg); // Stoptheworld is waiting for all but its cpu to go to stop. // Entersyscall might have decremented mcpu too, but if so // it will see the waitstop and take the slow path. // Exitsyscall never increments mcpu beyond mcpumax. v = runtime·atomicload(&runtime·sched.atomic); if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) { // set waitstop = 0 (known to be 1) runtime·xadd(&runtime·sched.atomic, -1<havenextg); if(m->helpgc) { runtime·gchelper(); m->helpgc = 0; runtime·lock(&runtime·sched); goto top; } if((gp = m->nextg) == nil) runtime·throw("bad m->nextg in nextgoroutine"); m->nextg = nil; return gp; } int32 runtime·gcprocs(void) { int32 n; // Figure out how many CPUs to use during GC. // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc. n = runtime·gomaxprocs; if(n > runtime·ncpu) n = runtime·ncpu; if(n > MaxGcproc) n = MaxGcproc; if(n > runtime·sched.mwait+1) // one M is currently running n = runtime·sched.mwait+1; return n; } void runtime·helpgc(int32 nproc) { M *mp; int32 n; runtime·lock(&runtime·sched); for(n = 1; n < nproc; n++) { // one M is currently running mp = mget(nil); if(mp == nil) runtime·throw("runtime·gcprocs inconsistency"); mp->helpgc = 1; mp->waitnextg = 0; runtime·notewakeup(&mp->havenextg); } runtime·unlock(&runtime·sched); } void runtime·stoptheworld(void) { uint32 v; schedlock(); runtime·gcwaiting = 1; setmcpumax(1); // while mcpu > 1 for(;;) { v = runtime·sched.atomic; if(atomic_mcpu(v) <= 1) break; // It would be unsafe for multiple threads to be using // the stopped note at once, but there is only // ever one thread doing garbage collection. runtime·noteclear(&runtime·sched.stopped); if(atomic_waitstop(v)) runtime·throw("invalid waitstop"); // atomic { waitstop = 1 }, predicated on mcpu <= 1 check above // still being true. if(!runtime·cas(&runtime·sched.atomic, v, v+(1< runtime·ncpu) max = runtime·ncpu; if(max > MaxGcproc) max = MaxGcproc; schedlock(); runtime·gcwaiting = 0; setmcpumax(runtime·gomaxprocs); matchmg(); if(runtime·gcprocs() < max && canaddmcpu()) { // If GC could have used another helper proc, start one now, // in the hope that it will be available next time. // It would have been even better to start it before the collection, // but doing so requires allocating memory, so it's tricky to // coordinate. This lazy approach works out in practice: // we don't mind if the first couple gc rounds don't have quite // the maximum number of procs. // canaddmcpu above did mcpu++ // (necessary, because m will be doing various // initialization work so is definitely running), // but m is not running a specific goroutine, // so set the helpgc flag as a signal to m's // first schedule(nil) to mcpu-- and grunning--. m = runtime·newm(); m->helpgc = 1; runtime·sched.grunning++; } schedunlock(); } // Called to start an M. void runtime·mstart(void) { // It is used by windows-386 only. Unfortunately, seh needs // to be located on os stack, and mstart runs on os stack // for both m0 and m. SEH seh; if(g != m->g0) runtime·throw("bad runtime·mstart"); // Record top of stack for use by mcall. // Once we call schedule we're never coming back, // so other calls can reuse this stack space. runtime·gosave(&m->g0->sched); m->g0->sched.pc = (void*)-1; // make sure it is never used m->seh = &seh; runtime·asminit(); runtime·minit(); // Install signal handlers; after minit so that minit can // prepare the thread to be able to handle the signals. if(m == &runtime·m0) runtime·initsig(); schedule(nil); // TODO(brainman): This point is never reached, because scheduler // does not release os threads at the moment. But once this path // is enabled, we must remove our seh here. } // When running with cgo, we call libcgo_thread_start // to start threads for us so that we can play nicely with // foreign code. void (*libcgo_thread_start)(void*); typedef struct CgoThreadStart CgoThreadStart; struct CgoThreadStart { M *m; G *g; void (*fn)(void); }; // Kick off new m's as needed (up to mcpumax). // Sched is locked. static void matchmg(void) { G *gp; M *mp; if(m->mallocing || m->gcing) return; while(haveg() && canaddmcpu()) { gp = gget(); if(gp == nil) runtime·throw("gget inconsistency"); // Find the m that will run gp. if((mp = mget(gp)) == nil) mp = runtime·newm(); mnextg(mp, gp); } } // Create a new m. It will start off with a call to runtime·mstart. M* runtime·newm(void) { M *m; m = runtime·malloc(sizeof(M)); mcommoninit(m); if(runtime·iscgo) { CgoThreadStart ts; if(libcgo_thread_start == nil) runtime·throw("libcgo_thread_start missing"); // pthread_create will make us a stack. m->g0 = runtime·malg(-1); ts.m = m; ts.g = m->g0; ts.fn = runtime·mstart; runtime·asmcgocall(libcgo_thread_start, &ts); } else { if(Windows) // windows will layout sched stack on os stack m->g0 = runtime·malg(-1); else m->g0 = runtime·malg(8192); runtime·newosproc(m, m->g0, (byte*)m->g0->stackbase, runtime·mstart); } return m; } // One round of scheduler: find a goroutine and run it. // The argument is the goroutine that was running before // schedule was called, or nil if this is the first call. // Never returns. static void schedule(G *gp) { int32 hz; uint32 v; schedlock(); if(gp != nil) { // Just finished running gp. gp->m = nil; runtime·sched.grunning--; // atomic { mcpu-- } v = runtime·xadd(&runtime·sched.atomic, -1< maxgomaxprocs) runtime·throw("negative mcpu in scheduler"); switch(gp->status){ case Grunnable: case Gdead: // Shouldn't have been running! runtime·throw("bad gp->status in sched"); case Grunning: gp->status = Grunnable; gput(gp); break; case Gmoribund: gp->status = Gdead; if(gp->lockedm) { gp->lockedm = nil; m->lockedg = nil; } gp->idlem = nil; unwindstack(gp, nil); gfput(gp); if(--runtime·sched.gcount == 0) runtime·exit(0); break; } if(gp->readyonstop){ gp->readyonstop = 0; readylocked(gp); } } else if(m->helpgc) { // Bootstrap m or new m started by starttheworld. // atomic { mcpu-- } v = runtime·xadd(&runtime·sched.atomic, -1< maxgomaxprocs) runtime·throw("negative mcpu in scheduler"); // Compensate for increment in starttheworld(). runtime·sched.grunning--; m->helpgc = 0; } else if(m->nextg != nil) { // New m started by matchmg. } else { runtime·throw("invalid m state in scheduler"); } // Find (or wait for) g to run. Unlocks runtime·sched. gp = nextgandunlock(); gp->readyonstop = 0; gp->status = Grunning; m->curg = gp; gp->m = m; // Check whether the profiler needs to be turned on or off. hz = runtime·sched.profilehz; if(m->profilehz != hz) runtime·resetcpuprofiler(hz); if(gp->sched.pc == (byte*)runtime·goexit) { // kickoff runtime·gogocall(&gp->sched, (void(*)(void))gp->entry); } runtime·gogo(&gp->sched, 0); } // Enter scheduler. If g->status is Grunning, // re-queues g and runs everyone else who is waiting // before running g again. If g->status is Gmoribund, // kills off g. // Cannot split stack because it is called from exitsyscall. // See comment below. #pragma textflag 7 void runtime·gosched(void) { if(m->locks != 0) runtime·throw("gosched holding locks"); if(g == m->g0) runtime·throw("gosched of g0"); runtime·mcall(schedule); } // The goroutine g is about to enter a system call. // Record that it's not using the cpu anymore. // This is called only from the go syscall library and cgocall, // not from the low-level system calls used by the runtime. // // Entersyscall cannot split the stack: the runtime·gosave must // make g->sched refer to the caller's stack segment, because // entersyscall is going to return immediately after. // It's okay to call matchmg and notewakeup even after // decrementing mcpu, because we haven't released the // sched lock yet, so the garbage collector cannot be running. #pragma textflag 7 void runtime·entersyscall(void) { uint32 v; if(m->profilehz > 0) runtime·setprof(false); // Leave SP around for gc and traceback. runtime·gosave(&g->sched); g->gcsp = g->sched.sp; g->gcstack = g->stackbase; g->gcguard = g->stackguard; g->status = Gsyscall; if(g->gcsp < g->gcguard-StackGuard || g->gcstack < g->gcsp) { // runtime·printf("entersyscall inconsistent %p [%p,%p]\n", // g->gcsp, g->gcguard-StackGuard, g->gcstack); runtime·throw("entersyscall"); } // Fast path. // The slow path inside the schedlock/schedunlock will get // through without stopping if it does: // mcpu-- // gwait not true // waitstop && mcpu <= mcpumax not true // If we can do the same with a single atomic add, // then we can skip the locks. v = runtime·xadd(&runtime·sched.atomic, -1< atomic_mcpumax(v))) return; schedlock(); v = runtime·atomicload(&runtime·sched.atomic); if(atomic_gwaiting(v)) { matchmg(); v = runtime·atomicload(&runtime·sched.atomic); } if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) { runtime·xadd(&runtime·sched.atomic, -1<sched); schedunlock(); } // The goroutine g exited its system call. // Arrange for it to run on a cpu again. // This is called only from the go syscall library, not // from the low-level system calls used by the runtime. void runtime·exitsyscall(void) { uint32 v; // Fast path. // If we can do the mcpu++ bookkeeping and // find that we still have mcpu <= mcpumax, then we can // start executing Go code immediately, without having to // schedlock/schedunlock. v = runtime·xadd(&runtime·sched.atomic, (1<profilehz == runtime·sched.profilehz && atomic_mcpu(v) <= atomic_mcpumax(v)) { // There's a cpu for us, so we can run. g->status = Grunning; // Garbage collector isn't running (since we are), // so okay to clear gcstack. g->gcstack = (uintptr)nil; if(m->profilehz > 0) runtime·setprof(true); return; } // Tell scheduler to put g back on the run queue: // mostly equivalent to g->status = Grunning, // but keeps the garbage collector from thinking // that g is running right now, which it's not. g->readyonstop = 1; // All the cpus are taken. // The scheduler will ready g and put this m to sleep. // When the scheduler takes g away from m, // it will undo the runtime·sched.mcpu++ above. runtime·gosched(); // Gosched returned, so we're allowed to run now. // Delete the gcstack information that we left for // the garbage collector during the system call. // Must wait until now because until gosched returns // we don't know for sure that the garbage collector // is not running. g->gcstack = (uintptr)nil; } // Called from runtime·lessstack when returning from a function which // allocated a new stack segment. The function's return value is in // m->cret. void runtime·oldstack(void) { Stktop *top, old; uint32 argsize; uintptr cret; byte *sp; G *g1; int32 goid; //printf("oldstack m->cret=%p\n", m->cret); g1 = m->curg; top = (Stktop*)g1->stackbase; sp = (byte*)top; old = *top; argsize = old.argsize; if(argsize > 0) { sp -= argsize; runtime·memmove(top->argp, sp, argsize); } goid = old.gobuf.g->goid; // fault if g is bad, before gogo USED(goid); if(old.free != 0) runtime·stackfree((byte*)g1->stackguard - StackGuard, old.free); g1->stackbase = (uintptr)old.stackbase; g1->stackguard = (uintptr)old.stackguard; cret = m->cret; m->cret = 0; // drop reference runtime·gogo(&old.gobuf, cret); } // Called from reflect·call or from runtime·morestack when a new // stack segment is needed. Allocate a new stack big enough for // m->moreframesize bytes, copy m->moreargsize bytes to the new frame, // and then act as though runtime·lessstack called the function at // m->morepc. void runtime·newstack(void) { int32 framesize, argsize; Stktop *top; byte *stk, *sp; G *g1; Gobuf label; bool reflectcall; uintptr free; framesize = m->moreframesize; argsize = m->moreargsize; g1 = m->curg; if(m->morebuf.sp < g1->stackguard - StackGuard) { runtime·printf("runtime: split stack overflow: %p < %p\n", m->morebuf.sp, g1->stackguard - StackGuard); runtime·throw("runtime: split stack overflow"); } if(argsize % sizeof(uintptr) != 0) { runtime·printf("runtime: stack split with misaligned argsize %d\n", argsize); runtime·throw("runtime: stack split argsize"); } reflectcall = framesize==1; if(reflectcall) framesize = 0; if(reflectcall && m->morebuf.sp - sizeof(Stktop) - argsize - 32 > g1->stackguard) { // special case: called from reflect.call (framesize==1) // to call code with an arbitrary argument size, // and we have enough space on the current stack. // the new Stktop* is necessary to unwind, but // we don't need to create a new segment. top = (Stktop*)(m->morebuf.sp - sizeof(*top)); stk = (byte*)g1->stackguard - StackGuard; free = 0; } else { // allocate new segment. framesize += argsize; framesize += StackExtra; // room for more functions, Stktop. if(framesize < StackMin) framesize = StackMin; framesize += StackSystem; stk = runtime·stackalloc(framesize); top = (Stktop*)(stk+framesize-sizeof(*top)); free = framesize; } //runtime·printf("newstack framesize=%d argsize=%d morepc=%p moreargp=%p gobuf=%p, %p top=%p old=%p\n", //framesize, argsize, m->morepc, m->moreargp, m->morebuf.pc, m->morebuf.sp, top, g1->stackbase); top->stackbase = (byte*)g1->stackbase; top->stackguard = (byte*)g1->stackguard; top->gobuf = m->morebuf; top->argp = m->moreargp; top->argsize = argsize; top->free = free; m->moreargp = nil; m->morebuf.pc = nil; m->morebuf.sp = (uintptr)nil; // copy flag from panic top->panic = g1->ispanic; g1->ispanic = false; g1->stackbase = (uintptr)top; g1->stackguard = (uintptr)stk + StackGuard; sp = (byte*)top; if(argsize > 0) { sp -= argsize; runtime·memmove(sp, top->argp, argsize); } if(thechar == '5') { // caller would have saved its LR below args. sp -= sizeof(void*); *(void**)sp = nil; } // Continue as if lessstack had just called m->morepc // (the PC that decided to grow the stack). label.sp = (uintptr)sp; label.pc = (byte*)runtime·lessstack; label.g = m->curg; runtime·gogocall(&label, m->morepc); *(int32*)345 = 123; // never return } // Hook used by runtime·malg to call runtime·stackalloc on the // scheduler stack. This exists because runtime·stackalloc insists // on being called on the scheduler stack, to avoid trying to grow // the stack while allocating a new stack segment. static void mstackalloc(G *gp) { gp->param = runtime·stackalloc((uintptr)gp->param); runtime·gogo(&gp->sched, 0); } // Allocate a new g, with a stack big enough for stacksize bytes. G* runtime·malg(int32 stacksize) { G *newg; byte *stk; if(StackTop < sizeof(Stktop)) { runtime·printf("runtime: SizeofStktop=%d, should be >=%d\n", (int32)StackTop, (int32)sizeof(Stktop)); runtime·throw("runtime: bad stack.h"); } newg = runtime·malloc(sizeof(G)); if(stacksize >= 0) { if(g == m->g0) { // running on scheduler stack already. stk = runtime·stackalloc(StackSystem + stacksize); } else { // have to call stackalloc on scheduler stack. g->param = (void*)(StackSystem + stacksize); runtime·mcall(mstackalloc); stk = g->param; g->param = nil; } newg->stack0 = (uintptr)stk; newg->stackguard = (uintptr)stk + StackGuard; newg->stackbase = (uintptr)stk + StackSystem + stacksize - sizeof(Stktop); runtime·memclr((byte*)newg->stackbase, sizeof(Stktop)); } return newg; } // Create a new g running fn with siz bytes of arguments. // Put it on the queue of g's waiting to run. // The compiler turns a go statement into a call to this. // Cannot split the stack because it assumes that the arguments // are available sequentially after &fn; they would not be // copied if a stack split occurred. It's OK for this to call // functions that split the stack. #pragma textflag 7 void runtime·newproc(int32 siz, byte* fn, ...) { byte *argp; if(thechar == '5') argp = (byte*)(&fn+2); // skip caller's saved LR else argp = (byte*)(&fn+1); runtime·newproc1(fn, argp, siz, 0, runtime·getcallerpc(&siz)); } // Create a new g running fn with narg bytes of arguments starting // at argp and returning nret bytes of results. callerpc is the // address of the go statement that created this. The new g is put // on the queue of g's waiting to run. G* runtime·newproc1(byte *fn, byte *argp, int32 narg, int32 nret, void *callerpc) { byte *sp; G *newg; int32 siz; //printf("newproc1 %p %p narg=%d nret=%d\n", fn, argp, narg, nret); siz = narg + nret; siz = (siz+7) & ~7; // We could instead create a secondary stack frame // and make it look like goexit was on the original but // the call to the actual goroutine function was split. // Not worth it: this is almost always an error. if(siz > StackMin - 1024) runtime·throw("runtime.newproc: function arguments too large for new goroutine"); schedlock(); if((newg = gfget()) != nil){ if(newg->stackguard - StackGuard != newg->stack0) runtime·throw("invalid stack in newg"); } else { newg = runtime·malg(StackMin); if(runtime·lastg == nil) runtime·allg = newg; else runtime·lastg->alllink = newg; runtime·lastg = newg; } newg->status = Gwaiting; newg->waitreason = "new goroutine"; sp = (byte*)newg->stackbase; sp -= siz; runtime·memmove(sp, argp, narg); if(thechar == '5') { // caller's LR sp -= sizeof(void*); *(void**)sp = nil; } newg->sched.sp = (uintptr)sp; newg->sched.pc = (byte*)runtime·goexit; newg->sched.g = newg; newg->entry = fn; newg->gopc = (uintptr)callerpc; runtime·sched.gcount++; runtime·sched.goidgen++; newg->goid = runtime·sched.goidgen; newprocreadylocked(newg); schedunlock(); return newg; //printf(" goid=%d\n", newg->goid); } // Create a new deferred function fn with siz bytes of arguments. // The compiler turns a defer statement into a call to this. // Cannot split the stack because it assumes that the arguments // are available sequentially after &fn; they would not be // copied if a stack split occurred. It's OK for this to call // functions that split the stack. #pragma textflag 7 uintptr runtime·deferproc(int32 siz, byte* fn, ...) { Defer *d; int32 mallocsiz; mallocsiz = sizeof(*d); if(siz > sizeof(d->args)) mallocsiz += siz - sizeof(d->args); d = runtime·malloc(mallocsiz); d->fn = fn; d->siz = siz; d->pc = runtime·getcallerpc(&siz); if(thechar == '5') d->argp = (byte*)(&fn+2); // skip caller's saved link register else d->argp = (byte*)(&fn+1); runtime·memmove(d->args, d->argp, d->siz); d->link = g->defer; g->defer = d; // deferproc returns 0 normally. // a deferred func that stops a panic // makes the deferproc return 1. // the code the compiler generates always // checks the return value and jumps to the // end of the function if deferproc returns != 0. return 0; } // Run a deferred function if there is one. // The compiler inserts a call to this at the end of any // function which calls defer. // If there is a deferred function, this will call runtime·jmpdefer, // which will jump to the deferred function such that it appears // to have been called by the caller of deferreturn at the point // just before deferreturn was called. The effect is that deferreturn // is called again and again until there are no more deferred functions. // Cannot split the stack because we reuse the caller's frame to // call the deferred function. #pragma textflag 7 void runtime·deferreturn(uintptr arg0) { Defer *d; byte *argp, *fn; d = g->defer; if(d == nil) return; argp = (byte*)&arg0; if(d->argp != argp) return; runtime·memmove(argp, d->args, d->siz); g->defer = d->link; fn = d->fn; if(!d->nofree) runtime·free(d); runtime·jmpdefer(fn, argp); } // Run all deferred functions for the current goroutine. static void rundefer(void) { Defer *d; while((d = g->defer) != nil) { g->defer = d->link; reflect·call(d->fn, (byte*)d->args, d->siz); if(!d->nofree) runtime·free(d); } } // Free stack frames until we hit the last one // or until we find the one that contains the sp. static void unwindstack(G *gp, byte *sp) { Stktop *top; byte *stk; // Must be called from a different goroutine, usually m->g0. if(g == gp) runtime·throw("unwindstack on self"); while((top = (Stktop*)gp->stackbase) != nil && top->stackbase != nil) { stk = (byte*)gp->stackguard - StackGuard; if(stk <= sp && sp < (byte*)gp->stackbase) break; gp->stackbase = (uintptr)top->stackbase; gp->stackguard = (uintptr)top->stackguard; if(top->free != 0) runtime·stackfree(stk, top->free); } if(sp != nil && (sp < (byte*)gp->stackguard - StackGuard || (byte*)gp->stackbase < sp)) { runtime·printf("recover: %p not in [%p, %p]\n", sp, gp->stackguard - StackGuard, gp->stackbase); runtime·throw("bad unwindstack"); } } // Print all currently active panics. Used when crashing. static void printpanics(Panic *p) { if(p->link) { printpanics(p->link); runtime·printf("\t"); } runtime·printf("panic: "); runtime·printany(p->arg); if(p->recovered) runtime·printf(" [recovered]"); runtime·printf("\n"); } static void recovery(G*); // The implementation of the predeclared function panic. void runtime·panic(Eface e) { Defer *d; Panic *p; p = runtime·mal(sizeof *p); p->arg = e; p->link = g->panic; p->stackbase = (byte*)g->stackbase; g->panic = p; for(;;) { d = g->defer; if(d == nil) break; // take defer off list in case of recursive panic g->defer = d->link; g->ispanic = true; // rock for newstack, where reflect.call ends up reflect·call(d->fn, (byte*)d->args, d->siz); if(p->recovered) { g->panic = p->link; if(g->panic == nil) // must be done with signal g->sig = 0; runtime·free(p); // put recovering defer back on list // for scheduler to find. d->link = g->defer; g->defer = d; runtime·mcall(recovery); runtime·throw("recovery failed"); // mcall should not return } if(!d->nofree) runtime·free(d); } // ran out of deferred calls - old-school panic now runtime·startpanic(); printpanics(g->panic); runtime·dopanic(0); } // Unwind the stack after a deferred function calls recover // after a panic. Then arrange to continue running as though // the caller of the deferred function returned normally. static void recovery(G *gp) { Defer *d; // Rewind gp's stack; we're running on m->g0's stack. d = gp->defer; gp->defer = d->link; // Unwind to the stack frame with d's arguments in it. unwindstack(gp, d->argp); // Make the deferproc for this d return again, // this time returning 1. The calling function will // jump to the standard return epilogue. // The -2*sizeof(uintptr) makes up for the // two extra words that are on the stack at // each call to deferproc. // (The pc we're returning to does pop pop // before it tests the return value.) // On the arm there are 2 saved LRs mixed in too. if(thechar == '5') gp->sched.sp = (uintptr)d->argp - 4*sizeof(uintptr); else gp->sched.sp = (uintptr)d->argp - 2*sizeof(uintptr); gp->sched.pc = d->pc; if(!d->nofree) runtime·free(d); runtime·gogo(&gp->sched, 1); } // The implementation of the predeclared function recover. // Cannot split the stack because it needs to reliably // find the stack segment of its caller. #pragma textflag 7 void runtime·recover(byte *argp, Eface ret) { Stktop *top, *oldtop; Panic *p; // Must be a panic going on. if((p = g->panic) == nil || p->recovered) goto nomatch; // Frame must be at the top of the stack segment, // because each deferred call starts a new stack // segment as a side effect of using reflect.call. // (There has to be some way to remember the // variable argument frame size, and the segment // code already takes care of that for us, so we // reuse it.) // // As usual closures complicate things: the fp that // the closure implementation function claims to have // is where the explicit arguments start, after the // implicit pointer arguments and PC slot. // If we're on the first new segment for a closure, // then fp == top - top->args is correct, but if // the closure has its own big argument frame and // allocated a second segment (see below), // the fp is slightly above top - top->args. // That condition can't happen normally though // (stack pointers go down, not up), so we can accept // any fp between top and top - top->args as // indicating the top of the segment. top = (Stktop*)g->stackbase; if(argp < (byte*)top - top->argsize || (byte*)top < argp) goto nomatch; // The deferred call makes a new segment big enough // for the argument frame but not necessarily big // enough for the function's local frame (size unknown // at the time of the call), so the function might have // made its own segment immediately. If that's the // case, back top up to the older one, the one that // reflect.call would have made for the panic. // // The fp comparison here checks that the argument // frame that was copied during the split (the top->args // bytes above top->fp) abuts the old top of stack. // This is a correct test for both closure and non-closure code. oldtop = (Stktop*)top->stackbase; if(oldtop != nil && top->argp == (byte*)oldtop - top->argsize) top = oldtop; // Now we have the segment that was created to // run this call. It must have been marked as a panic segment. if(!top->panic) goto nomatch; // Okay, this is the top frame of a deferred call // in response to a panic. It can see the panic argument. p->recovered = 1; ret = p->arg; FLUSH(&ret); return; nomatch: ret.type = nil; ret.data = nil; FLUSH(&ret); } // Put on gfree list. Sched must be locked. static void gfput(G *g) { if(g->stackguard - StackGuard != g->stack0) runtime·throw("invalid stack in gfput"); g->schedlink = runtime·sched.gfree; runtime·sched.gfree = g; } // Get from gfree list. Sched must be locked. static G* gfget(void) { G *g; g = runtime·sched.gfree; if(g) runtime·sched.gfree = g->schedlink; return g; } void runtime·Breakpoint(void) { runtime·breakpoint(); } void runtime·Goexit(void) { rundefer(); runtime·goexit(); } void runtime·Gosched(void) { runtime·gosched(); } // Implementation of runtime.GOMAXPROCS. // delete when scheduler is stronger int32 runtime·gomaxprocsfunc(int32 n) { int32 ret; uint32 v; schedlock(); ret = runtime·gomaxprocs; if(n <= 0) n = ret; if(n > maxgomaxprocs) n = maxgomaxprocs; runtime·gomaxprocs = n; if(runtime·gomaxprocs > 1) runtime·singleproc = false; if(runtime·gcwaiting != 0) { if(atomic_mcpumax(runtime·sched.atomic) != 1) runtime·throw("invalid mcpumax during gc"); schedunlock(); return ret; } setmcpumax(n); // If there are now fewer allowed procs // than procs running, stop. v = runtime·atomicload(&runtime·sched.atomic); if(atomic_mcpu(v) > n) { schedunlock(); runtime·gosched(); return ret; } // handle more procs matchmg(); schedunlock(); return ret; } void runtime·LockOSThread(void) { if(m == &runtime·m0 && runtime·sched.init) { runtime·sched.lockmain = true; return; } m->lockedg = g; g->lockedm = m; } void runtime·UnlockOSThread(void) { if(m == &runtime·m0 && runtime·sched.init) { runtime·sched.lockmain = false; return; } m->lockedg = nil; g->lockedm = nil; } bool runtime·lockedOSThread(void) { return g->lockedm != nil && m->lockedg != nil; } // for testing of callbacks void runtime·golockedOSThread(bool ret) { ret = runtime·lockedOSThread(); FLUSH(&ret); } // for testing of wire, unwire void runtime·mid(uint32 ret) { ret = m->id; FLUSH(&ret); } void runtime·NumGoroutine(int32 ret) { ret = runtime·sched.gcount; FLUSH(&ret); } int32 runtime·gcount(void) { return runtime·sched.gcount; } int32 runtime·mcount(void) { return runtime·sched.mcount; } void runtime·badmcall(void) // called from assembly { runtime·throw("runtime: mcall called on m->g0 stack"); } void runtime·badmcall2(void) // called from assembly { runtime·throw("runtime: mcall function returned"); } static struct { Lock; void (*fn)(uintptr*, int32); int32 hz; uintptr pcbuf[100]; } prof; // Called if we receive a SIGPROF signal. void runtime·sigprof(uint8 *pc, uint8 *sp, uint8 *lr, G *gp) { int32 n; if(prof.fn == nil || prof.hz == 0) return; runtime·lock(&prof); if(prof.fn == nil) { runtime·unlock(&prof); return; } n = runtime·gentraceback(pc, sp, lr, gp, 0, prof.pcbuf, nelem(prof.pcbuf)); if(n > 0) prof.fn(prof.pcbuf, n); runtime·unlock(&prof); } // Arrange to call fn with a traceback hz times a second. void runtime·setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz) { // Force sane arguments. if(hz < 0) hz = 0; if(hz == 0) fn = nil; if(fn == nil) hz = 0; // Stop profiler on this cpu so that it is safe to lock prof. // if a profiling signal came in while we had prof locked, // it would deadlock. runtime·resetcpuprofiler(0); runtime·lock(&prof); prof.fn = fn; prof.hz = hz; runtime·unlock(&prof); runtime·lock(&runtime·sched); runtime·sched.profilehz = hz; runtime·unlock(&runtime·sched); if(hz != 0) runtime·resetcpuprofiler(hz); } void (*libcgo_setenv)(byte**); // Update the C environment if cgo is loaded. // Called from syscall.Setenv. void syscall·setenv_c(String k, String v) { byte *arg[2]; if(libcgo_setenv == nil) return; arg[0] = runtime·malloc(k.len + 1); runtime·memmove(arg[0], k.str, k.len); arg[0][k.len] = 0; arg[1] = runtime·malloc(v.len + 1); runtime·memmove(arg[1], v.str, v.len); arg[1][v.len] = 0; runtime·asmcgocall((void*)libcgo_setenv, arg); runtime·free(arg[0]); runtime·free(arg[1]); }