Parallel GC needs to know in advance how many helper threads will be there.
Hopefully it's the last patch before I can tackle parallel sweep phase.
The benchmarks are unaffected.
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/6200064
Not a complete fix for issue 3342, but fixes the trivial case.
There may still be a race in the instants before and after
a scavenger-induced garbage collection.
Intended to be "obviously safe": a call to runtime·gosched
before main.main is no different than a call to runtime.Gosched
at the beginning of main.main, and it is (or had better be)
safe to call runtime.Gosched at any point during main.
Update #3342.
R=iant
CC=golang-dev
https://golang.org/cl/5919052
Breaks closure test when GOMAXPROCS=2 or more.
««« original CL description
runtime: restore deadlock detection in the simplest case.
Fixes#3342.
R=iant, r, dave, rsc
CC=golang-dev, remy
https://golang.org/cl/5844051
»»»
R=rsc
CC=golang-dev
https://golang.org/cl/5924045
There was a small window during program initialization
where a signal could come in before the handling mechanisms
were set up to handle it. Delay the signal-handler installation
until we're ready for the signals.
Fixes#3314.
R=golang-dev, dsymonds, mikioh.mikioh
CC=golang-dev
https://golang.org/cl/5833049
Work around profiling kernel bug with signal masks.
Still broken on 64-bit Snow Leopard kernel,
but I think we can ignore that one and let people
upgrade to Lion.
Add new trivial tools addr2line and objdump to take
the place of the GNU tools of the same name, since
those are not installed on OS X.
Adapt pprof to invoke 'go tool addr2line' and
'go tool objdump' if the system tools do not exist.
Clean up disassembly of base register on amd64.
Fixes#2008.
R=golang-dev, bradfitz, mikioh.mikioh, r, iant
CC=golang-dev
https://golang.org/cl/5697066
morebuf holds a pc/sp from the last stack split or
reflect.call or panic/recover. If the pc is a closure,
the reference will keep it from being collected.
moreargp holds a pointer to the arguments from the
last stack split or reflect.call or panic/recover.
Normally it is a stack pointer and thus not of interest,
but in the case of reflect.call it is an allocated argument
list and holds up the arguments to the call.
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/5674109
The m->cret word holds the C return value when returning
across a stack split boundary. It was not being cleared after
use, which means that the return value (if a C function)
or else the value of AX/R0 at the time of the last stack unsplit
was being kept alive longer than necessary. Clear it.
I think the effect here should be very small, but worth fixing
anyway.
R=golang-dev, bradfitz
CC=golang-dev
https://golang.org/cl/5677092
Periodically browse MHeap's freelists for long unused spans and release them if any.
Current hardcoded settings:
- GC is forced if none occured over the last 2 minutes.
- spans are handed back after 5 minutes of uselessness.
SysUnused (for Unix) is a wrapper on madvise MADV_DONTNEED on Linux and MADV_FREE on BSDs.
R=rsc, dvyukov, remyoudompheng
CC=golang-dev
https://golang.org/cl/5451057
It is possible that Linux and Windows copy the FP control word
from the parent thread when creating a new thread. Empirically,
Darwin does not. Reset the FP control world in all cases.
Enable the floating-point strconv test.
Fixes#2917 (again).
R=golang-dev, r, iant
CC=golang-dev
https://golang.org/cl/5660047
Same idea as heap profile: how did each thread get created?
Low memory (256 bytes per OS thread), high reward for
programs that suddenly have many threads running.
Fixes#1477.
R=golang-dev, r, dvyukov
CC=golang-dev
https://golang.org/cl/5639059
This patch adds a function to get the current cpu ticks. This is
deemed to be 'sufficiently random' to use to seed fastrand to mitigate
the algorithmic complexity attacks on the hash table implementation.
On AMD64 we use the RDTSC instruction. For 386, this instruction,
while valid, is not recognized by 8a so I've inserted the opcode by
hand. For ARM, this routine is currently stubbed to return a constant
0 value.
Future work: update 8a to recognize RDTSC.
Fixes#2630.
R=rsc
CC=golang-dev
https://golang.org/cl/5606048
Collapse the arch,os-specific directories into the main directory
by renaming xxx/foo.c to foo_xxx.c, and so on.
There are no substantial edits here, except to the Makefile.
The assumption is that the Go tool will #define GOOS_darwin
and GOARCH_amd64 and will make any file named something
like signals_darwin.h available as signals_GOOS.h during the
build. This replaces what used to be done with -I$(GOOS).
There is still work to be done to make runtime build with
standard tools, but this is a big step. After this we will have
to write a script to generate all the generated files so they
can be checked in (instead of generated during the build).
R=r, iant, r, lucio.dere
CC=golang-dev
https://golang.org/cl/5490053
The environment is needed by package time, which
we want not to depend on os (so that os can use
time.Time), so push down into syscall.
Delete syscall.Sleep, now unnecessary.
The package os environment API is preserved;
it is only the implementation that is moving to syscall.
Delete os.Envs, which was undocumented,
uninitialized on Windows and Plan 9, and
not maintained by Setenv and Clearenv.
Code can call os.Environ instead.
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/5370091
This looks like it is just moving some code from
time to runtime (and translating it to C), but the
runtime can do a better job managing the goroutines,
and it needs this functionality for its own maintenance
(for example, for the garbage collector to hand back
unused memory to the OS on a time delay).
Might as well have just one copy of the timer logic,
and runtime can't depend on time, so vice versa.
It also unifies Sleep, NewTicker, and NewTimer behind
one mechanism, so that there are no claims that one
is more efficient than another. (For example, today
people recommend using time.After instead of time.Sleep
to avoid blocking an OS thread.)
Fixes#1644.
Fixes#1731.
Fixes#2190.
R=golang-dev, r, hectorchu, iant, iant, jsing, alex.brainman, dvyukov
CC=golang-dev
https://golang.org/cl/5334051
We only guarantee that the main goroutine runs on the
main OS thread for initialization. Programs that wish to
preserve that property for main.main can call runtime.LockOSThread.
This is what programs used to do before we unleashed
goroutines during init, so it is both a simple fix and keeps
existing programs working.
R=iant, r, dave, dvyukov
CC=golang-dev
https://golang.org/cl/5309070
Fixes#2337.
Unfortunate sequence of events is:
1. maxcpu=2, mcpu=1, grunning=1
2. starttheworld creates an extra M:
maxcpu=2, mcpu=2, grunning=1
4. the goroutine calls runtime.GOMAXPROCS(1)
maxcpu=1, mcpu=2, grunning=1
5. since it sees mcpu>maxcpu, it calls gosched()
6. schedule() deschedules the goroutine:
maxcpu=1, mcpu=1, grunning=0
7. schedule() call getnextandunlock() which
fails to pick up the goroutine again,
because canaddcpu() fails, because mcpu==maxcpu
8. then it sees that grunning==0,
reports deadlock and terminates
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/5191044
Running test/garbage/parser.out.
On a 4-core Lenovo X201s (Linux):
31.12u 0.60s 31.74r 1 cpu, no atomics
32.27u 0.58s 32.86r 1 cpu, atomic instructions
33.04u 0.83s 27.47r 2 cpu
On a 16-core Xeon (Linux):
33.08u 0.65s 33.80r 1 cpu, no atomics
34.87u 1.12s 29.60r 2 cpu
36.00u 1.87s 28.43r 3 cpu
36.46u 2.34s 27.10r 4 cpu
38.28u 3.85s 26.92r 5 cpu
37.72u 5.25s 26.73r 6 cpu
39.63u 7.11s 26.95r 7 cpu
39.67u 8.10s 26.68r 8 cpu
On a 2-core MacBook Pro Core 2 Duo 2.26 (circa 2009, MacBookPro5,5):
39.43u 1.45s 41.27r 1 cpu, no atomics
43.98u 2.95s 38.69r 2 cpu
On a 2-core Mac Mini Core 2 Duo 1.83 (circa 2008; Macmini2,1):
48.81u 2.12s 51.76r 1 cpu, no atomics
57.15u 4.72s 51.54r 2 cpu
The handoff algorithm is really only good for two cores.
Beyond that we will need to so something more sophisticated,
like have each core hand off to the next one, around a circle.
Even so, the code is a good checkpoint; for now we'll limit the
number of gc procs to at most 2.
R=dvyukov
CC=golang-dev
https://golang.org/cl/4641082
Make the stack traces more readable for new
Go programmers while preserving their utility for old hands.
- Change status number [4] to string.
- Elide frames in runtime package (internal details).
- Swap file:line and arguments.
- Drop 'created by' for main goroutine.
- Show goroutines in order of allocation:
implies main goroutine first if nothing else.
There is no option to get the extra frames back.
Uncomment 'return 1' at the bottom of symtab.c.
$ 6.out
throw: all goroutines are asleep - deadlock!
goroutine 1 [chan send]:
main.main()
/Users/rsc/g/go/src/pkg/runtime/x.go:22 +0x8a
goroutine 2 [select (no cases)]:
main.sel()
/Users/rsc/g/go/src/pkg/runtime/x.go:11 +0x18
created by main.main
/Users/rsc/g/go/src/pkg/runtime/x.go:19 +0x23
goroutine 3 [chan receive]:
main.recv(0xf8400010a0, 0x0)
/Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e
created by main.main
/Users/rsc/g/go/src/pkg/runtime/x.go:20 +0x50
goroutine 4 [chan receive (nil chan)]:
main.recv(0x0, 0x0)
/Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e
created by main.main
/Users/rsc/g/go/src/pkg/runtime/x.go:21 +0x66
$
$ 6.out index
panic: runtime error: index out of range
goroutine 1 [running]:
main.main()
/Users/rsc/g/go/src/pkg/runtime/x.go:25 +0xb9
$
$ 6.out nil
panic: runtime error: invalid memory address or nil pointer dereference
[signal 0xb code=0x1 addr=0x0 pc=0x22ca]
goroutine 1 [running]:
main.main()
/Users/rsc/g/go/src/pkg/runtime/x.go:28 +0x211
$
$ 6.out panic
panic: panic
goroutine 1 [running]:
main.main()
/Users/rsc/g/go/src/pkg/runtime/x.go:30 +0x101
$
R=golang-dev, qyzhai, n13m3y3r, r
CC=golang-dev
https://golang.org/cl/4907048
Allocate Defer on stack during cgo calls, as suggested
by dvyukov. Also includes some comment corrections.
benchmark old,ns/op new,ns/op
BenchmarkCgoCall 669 330
(Intel Xeon CPU 1.80GHz * 4, Linux 386)
R=dvyukov, rsc
CC=golang-dev
https://golang.org/cl/4910041
The corruption can occur when GOMAXPROCS
is changed from >1 to 1, since GOMAXPROCS=1
does not imply there is only 1 goroutine running,
other goroutines can still be not parked after
the change.
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/4873050
Replace cas with xadd in scheduler.
Suggested by Dmitriy in last code review.
Verified with Promela model.
When there's actual contention for the atomic word,
this avoids the looping that compare-and-swap requires.
benchmark old ns/op new ns/op delta
runtime_test.BenchmarkSyscall 32 26 -17.08%
runtime_test.BenchmarkSyscall-2 155 59 -61.81%
runtime_test.BenchmarkSyscall-3 112 52 -52.95%
runtime_test.BenchmarkSyscall-4 94 48 -48.57%
runtime_test.BenchmarkSyscallWork 871 872 +0.11%
runtime_test.BenchmarkSyscallWork-2 481 477 -0.83%
runtime_test.BenchmarkSyscallWork-3 338 335 -0.89%
runtime_test.BenchmarkSyscallWork-4 263 256 -2.66%
R=golang-dev, iant
CC=golang-dev
https://golang.org/cl/4800047
Used to use mcpu+msyscall but that's
problematic for packing into a single
atomic word. The running goroutine count
(where running == Go code or syscall)
can be maintained separately, always
manipulated under lock.
R=golang-dev, bradfitz
CC=golang-dev
https://golang.org/cl/4767041
runtime.goidgen can be quite frequently modified and
shares cache line with the following variables,
it leads to false sharing.
50c6b0 b nfname
50c6b4 b nfunc
50c6b8 b nfunc$17
50c6bc b nhist$17
50c6c0 B runtime.checking
50c6c4 B runtime.gcwaiting
50c6c8 B runtime.goidgen
50c6cc B runtime.gomaxprocs
50c6d0 B runtime.panicking
50c6d4 B strconv.IntSize
50c6d8 B src/pkg/runtime/_xtest_.ss
50c6e0 B src/pkg/runtime/_xtest_.stop
50c6e8 b addrfree
50c6f0 b addrmem
50c6f8 b argv
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/4673054