Add a Read function to Rand which reads random bytes into a buffer.
Fixes#8330
Change-Id: I85b90277b8be9287c6697def8dbefe0029b6ee06
Reviewed-on: https://go-review.googlesource.com/14522
Reviewed-by: Rob Pike <r@golang.org>
Block comments appear after a block in the HTML documentation generated by
godoc. Words like "following" should be avoided.
Change-Id: Iedfad67f4b8b9c84f128b98b9b06fa76919af388
Reviewed-on: https://go-review.googlesource.com/14357
Reviewed-by: Rob Pike <r@golang.org>
For primes which are 3 mod 4, using Tonelli-Shanks is slower
and more complicated than using the identity
a**((p+1)/4) mod p == sqrt(a)
For 2^450-2^225-1 and 2^10860-2^5430-1, which are 3 mod 4:
BenchmarkModSqrt225_TonelliTri 1000 1135375 ns/op
BenchmarkModSqrt225_3Mod4 10000 156009 ns/op
BenchmarkModSqrt5430_Tonelli 1 3448851386 ns/op
BenchmarkModSqrt5430_3Mod4 2 914616710 ns/op
~2.6x to 7x faster.
Fixes#11437 (which is a prime choice of issues to fix)
Change-Id: I813fb29454160483ec29825469e0370d517850c2
Reviewed-on: https://go-review.googlesource.com/11522
Reviewed-by: Adam Langley <agl@golang.org>
Even though the umul/uquo functions expect two valid, finite big.Floats
arguments, SetString was calling them with possibly Inf values, which
resulted in bogus return values.
Replace umul and udiv calls with Mul and Quo calls to fix this. Also,
fix two wrong tests.
See relevant issue on issue tracker for a detailed explanation.
Fixes#11341
Change-Id: Ie35222763a57a2d712a5f5f7baec75cab8189a53
Reviewed-on: https://go-review.googlesource.com/13778
Reviewed-by: Robert Griesemer <gri@golang.org>
This is not a functional change.
Also:
- minor cleanups, better comments
- uniform spelling of noun "zeros" (per OED)
Fixes#11277.
Change-Id: I1726f358ce15907bd2410f646b02cf8b11b919cd
Reviewed-on: https://go-review.googlesource.com/11267
Reviewed-by: Alan Donovan <adonovan@google.com>
Reviewed-by: Robert Griesemer <gri@golang.org>
Urge users of math/rand to consider using crypto/rand when doing
security-sensitive work.
Related to issue #11871. While we haven't reached consensus on how
to make the package inherently safer, everyone agrees that the docs
for math/rand can be improved.
Change-Id: I576a312e51b2a3445691da6b277c7b4717173197
Reviewed-on: https://go-review.googlesource.com/12900
Reviewed-by: Rob Pike <r@golang.org>
- Make Log2 exact for powers of two.
- Fix error tolerance function to make tolerance
a function of the correct (expected) value.
Fixes#9066.
Change-Id: I0320a93ce4130deed1c7b7685627d51acb7bc56d
Reviewed-on: https://go-review.googlesource.com/12230
Reviewed-by: Ian Lance Taylor <iant@golang.org>
The previous commit (git 2ae77376) just did golang.org. This one
includes golang.org subdomains like blog, play, and build.
Change-Id: I4469f7b307ae2a12ea89323422044e604c5133ae
Reviewed-on: https://go-review.googlesource.com/12071
Reviewed-by: Rob Pike <r@golang.org>
The one in misc/makerelease/makerelease.go is particularly bad and
probably warrants rotating our keys.
I didn't update old weekly notes, and reverted some changes involving
test code for now, since we're late in the Go 1.5 freeze. Otherwise,
the rest are all auto-generated changes, and all manually reviewed.
Change-Id: Ia2753576ab5d64826a167d259f48a2f50508792d
Reviewed-on: https://go-review.googlesource.com/12048
Reviewed-by: Rob Pike <r@golang.org>
All of the architectures except ppc64 have only "RET" for the return
mnemonic. ppc64 used to have only "RETURN", but commit cf06ea6
introduced RET as a synonym for RETURN to make ppc64 consistent with
the other architectures. However, that commit was never followed up to
make the code itself consistent by eliminating uses of RETURN.
This commit replaces all uses of RETURN in the ppc64 assembly with
RET.
This was done with
sed -i 's/\<RETURN\>/RET/' **/*_ppc64x.s
plus one manual change to syscall/asm.s.
Change-Id: I3f6c8d2be157df8841d48de988ee43f3e3087995
Reviewed-on: https://go-review.googlesource.com/10672
Reviewed-by: Rob Pike <r@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: Minux Ma <minux@golang.org>
- (*Float).Scan conflicted with fmt.Scanner.Scan; it was also only used
internally. Removed it, as well as the companion ScanFloat function.
- (*Float).Parse (and thus ParseFloat) can now also parse infinities.
As a result, more code could be simplified.
- Fixed a bug in rounding (round may implicitly be called for infinite
values). Found via existing test cases, after simplifying some code.
- Added more test cases.
Fixes issue #10938.
Change-Id: I1df97821654f034965ba8b82b272e52e6dc427f1
Reviewed-on: https://go-review.googlesource.com/10498
Reviewed-by: Alan Donovan <adonovan@google.com>
This paves the way for a fmt-compatible (*Float).Format method.
A better name then Text is still desirable (suggestions welcome).
This is partly fixing issue #10938.
Change-Id: I59c20a8cee11f5dba059fe0f38b414fe75f2ab13
Reviewed-on: https://go-review.googlesource.com/10493
Reviewed-by: Alan Donovan <adonovan@google.com>
A decimal represented 0.0 with a 0-length mantissa and undefined
exponent, but the formatting code assumes a valid zero exponent
if the float value is 0.0. The code worked because we allocate a
new decimal value each time and because there's no rounding that
lead to 0.0.
Change-Id: Ifd771d7709de83b87fdbf141786286b4c3e13d4f
Reviewed-on: https://go-review.googlesource.com/10448
Reviewed-by: Alan Donovan <adonovan@google.com>
- factor out handling of sign
- rename bstring, pstring to fmtB, fmtP consistent with fmtE, fmtF
- move all float-to-string conversion functions into ftoa.go
- no functional changes
Change-Id: I5970ecb874dc9c387630b59147d90bda16a5d8e6
Reviewed-on: https://go-review.googlesource.com/10387
Reviewed-by: Alan Donovan <adonovan@google.com>
Float.Format supports the 'b' and 'p' format, both of which print
a binary ('p') exponent. The 'b' format always printed a sign ('+'
or '-') for the exponent; the 'p' format only printed a negative
sign for the exponent. This change makes the two consistent. It
also makes the 'p' format easier to read if the exponent is >= 0.
Also:
- Comments added elsewhere.
Change-Id: Ifd2e01bdafb3043345972ca22a90248d055bd29b
Reviewed-on: https://go-review.googlesource.com/10359
Reviewed-by: Alan Donovan <adonovan@google.com>
- This change uses the same code as for Float32 and fixes the case
of a number that gets rounded up to the smallest denormal.
- Enabled correspoding test case.
Change-Id: I8aac874a566cd727863a82717854f603fbdc26c6
Reviewed-on: https://go-review.googlesource.com/10352
Reviewed-by: Alan Donovan <adonovan@google.com>
- structure the Float64 conversion tests the same way as for Float32
- add additional test cases, including one that exposes a current issue
(currently disabled, same issue as was fixed for Float32)
The Float64 fix will be in a subsequent change for easier reviewing.
Change-Id: I95dc9e8d1f6b6073a98c7bc2289e6d3248fc3420
Reviewed-on: https://go-review.googlesource.com/10351
Reviewed-by: Alan Donovan <adonovan@google.com>
The existing code was incorrect for numbers that after rounding would
become the smallest denormal float32 (instead the result was 0). This
caused all.bash to fail if Float32() were used in the compiler for
constant arithmetic (there's currently a work-around - see also issue
10321.
This change fixes the implementation of Float.Float32 and adds
corresponding test cases. Float32 and Float64 diverge at this point.
For ease of review, this change only fixes Float32. Float64 will be
made to match in a subsequent change.
Fixes#10321.
Change-Id: Iccafe37c1593a4946bc552e4ad2045f69be62d80
Reviewed-on: https://go-review.googlesource.com/10350
Reviewed-by: Alan Donovan <adonovan@google.com>
On Haswell I measure anywhere between 2X to 3.5X speedup for RSA.
I believe other architectures will also greatly improve.
In the future may be upgraded by dedicated assembly routine.
Built-in benchmarks i5-4278U turbo off:
benchmark old ns/op new ns/op delta
BenchmarkRSA2048Decrypt 6696649 3073769 -54.10%
Benchmark3PrimeRSA2048Decrypt 4472340 1669080 -62.68%
Change-Id: I17df84f85e34208f990665f9f90ea671695b2add
Reviewed-on: https://go-review.googlesource.com/9253
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
Reviewed-by: Vlad Krasnov <vlad@cloudflare.com>
Run-TryBot: Adam Langley <agl@golang.org>
This change adds Int.ModSqrt to compute modular square-roots via the
standard Tonelli-Shanks algorithm, and the Jacobi function that this and
many other modular-arithmetic algorithms depend on.
This is needed by change 1883 (https://golang.org/cl/1883), to add
support for ANSI-standard compressed encoding of elliptic curve points.
Change-Id: Icc4805001bba0b3cb7200e0b0a7f87b14a9e9439
Reviewed-on: https://go-review.googlesource.com/1886
Reviewed-by: Adam Langley <agl@golang.org>
There was no way to get to the error message before.
Change-Id: I4aa9d3d9f468c33f9996295bafcbed097de0389f
Reviewed-on: https://go-review.googlesource.com/8660
Reviewed-by: Alan Donovan <adonovan@google.com>
Fixed bug that caused Exp(x, y, m) ( i.e. x**y (mod m) ) to return x
instead of x (mod m) when y == 1. See issue page on github for more
details.
Added test case
Fixes#9826
Change-Id: Ibabb58275a20c4231c9474199b7f1c10e54241ce
Reviewed-on: https://go-review.googlesource.com/8409
Reviewed-by: Robert Griesemer <gri@golang.org>