1
0
mirror of https://github.com/golang/go synced 2024-11-24 01:50:11 -07:00

math/big: fix Float.Float32 conversion for denormal corner cases

The existing code was incorrect for numbers that after rounding would
become the smallest denormal float32 (instead the result was 0). This
caused all.bash to fail if Float32() were used in the compiler for
constant arithmetic (there's currently a work-around - see also issue
10321.

This change fixes the implementation of Float.Float32 and adds
corresponding test cases. Float32 and Float64 diverge at this point.
For ease of review, this change only fixes Float32. Float64 will be
made to match in a subsequent change.

Fixes #10321.

Change-Id: Iccafe37c1593a4946bc552e4ad2045f69be62d80
Reviewed-on: https://go-review.googlesource.com/10350
Reviewed-by: Alan Donovan <adonovan@google.com>
This commit is contained in:
Robert Griesemer 2015-05-21 17:00:37 -07:00
parent 84cfba17c2
commit 79afb43a0a
2 changed files with 100 additions and 70 deletions

View File

@ -853,9 +853,6 @@ func (x *Float) Int64() (int64, Accuracy) {
panic("unreachable")
}
// TODO(gri) Float32 and Float64 are very similar internally but for the
// floatxx parameters and some conversions. Should factor out shared code.
// Float32 returns the float32 value nearest to x. If x is too small to be
// represented by a float32 (|x| < math.SmallestNonzeroFloat32), the result
// is (0, Below) or (-0, Above), respectively, depending on the sign of x.
@ -880,64 +877,70 @@ func (x *Float) Float32() (float32, Accuracy) {
emax = bias // 127 largest unbiased exponent (normal)
)
// Float mantissae m have an explicit msb and are in the range 0.5 <= m < 1.0.
// floatxx mantissae have an implicit msb and are in the range 1.0 <= m < 2.0.
// For a given mantissa m, we need to add 1 to a floatxx exponent to get the
// corresponding Float exponent.
// (see also implementation of math.Ldexp for similar code)
// Float mantissa m is 0.5 <= m < 1.0; compute exponent for floatxx mantissa.
e := x.exp - 1 // exponent for mantissa m with 1.0 <= m < 2.0
p := mbits + 1 // precision of normal float
if x.exp < dmin+1 {
// underflow
if x.neg {
var z float32
return -z, Above
// If the exponent is too small, we may have a denormal number
// in which case we have fewer mantissa bits available: reduce
// precision accordingly.
if e < emin {
p -= emin - int(e)
// Make sure we have at least 1 bit so that we don't
// lose numbers rounded up to the smallest denormal.
if p < 1 {
p = 1
}
return 0.0, Below
}
// x.exp >= dmin+1
// round
var r Float
r.prec = mbits + 1 // +1 for implicit msb
if x.exp < emin+1 {
// denormal number - round to fewer bits
r.prec = uint32(x.exp - dmin)
}
r.prec = uint32(p)
r.Set(x)
e = r.exp - 1
// Rounding may have caused r to overflow to ±Inf
// (rounding never causes underflows to 0).
if r.form == inf {
r.exp = emax + 2 // cause overflow below
e = emax + 1 // cause overflow below
}
if r.exp > emax+1 {
// If the exponent is too large, overflow to ±Inf.
if e > emax {
// overflow
if x.neg {
return float32(math.Inf(-1)), Below
}
return float32(math.Inf(+1)), Above
}
// dmin+1 <= r.exp <= emax+1
var s uint32
if r.neg {
s = 1 << (fbits - 1)
// Determine sign, biased exponent, and mantissa.
var sign, bexp, mant uint32
if x.neg {
sign = 1 << (fbits - 1)
}
m := high32(r.mant) >> ebits & (1<<mbits - 1) // cut off msb (implicit 1 bit)
// Rounding may have caused a denormal number to
// become normal. Check again.
c := float32(1.0)
if r.exp < emin+1 {
if e < emin {
// denormal number
r.exp += mbits
c = 1.0 / (1 << mbits) // 2**-mbits
if e < dmin {
// underflow to ±0
if x.neg {
var z float32
return -z, Above
}
return 0.0, Below
}
// bexp = 0
mant = high32(r.mant) >> (fbits - r.prec)
} else {
// normal number: emin <= e <= emax
bexp = uint32(e+bias) << mbits
mant = high32(r.mant) >> ebits & (1<<mbits - 1) // cut off msb (implicit 1 bit)
}
// emin+1 <= r.exp <= emax+1
e := uint32(r.exp-emin) << mbits
return c * math.Float32frombits(s|e|m), r.acc
return math.Float32frombits(sign | bexp | mant), r.acc
case zero:
if x.neg {
@ -956,6 +959,10 @@ func (x *Float) Float32() (float32, Accuracy) {
panic("unreachable")
}
// TODO(gri) Use same algorithm for Float64 as for Float32. The Float64 code
// is incorrect for some corner cases (numbers that get rounded up to smallest
// denormal - test cases are missing).
// Float64 returns the float64 value nearest to x. If x is too small to be
// represented by a float64 (|x| < math.SmallestNonzeroFloat64), the result
// is (0, Below) or (-0, Above), respectively, depending on the sign of x.

View File

@ -203,6 +203,12 @@ func alike(x, y *Float) bool {
return x.Cmp(y) == 0 && x.Signbit() == y.Signbit()
}
func alike32(x, y float32) bool {
// we can ignore NaNs
return x == y && math.Signbit(float64(x)) == math.Signbit(float64(y))
}
func TestFloatMantExp(t *testing.T) {
for _, test := range []struct {
x string
@ -828,52 +834,69 @@ func TestFloatFloat32(t *testing.T) {
out float32
acc Accuracy
}{
{"-Inf", float32(math.Inf(-1)), Exact},
{"-0x1.ffffff0p2147483646", float32(-math.Inf(+1)), Below}, // overflow in rounding
{"-1e10000", float32(math.Inf(-1)), Below}, // overflow
{"-0x1p128", float32(math.Inf(-1)), Below}, // overflow
{"-0x1.ffffff0p127", float32(-math.Inf(+1)), Below}, // overflow
{"-0x1.fffffe8p127", -math.MaxFloat32, Above},
{"-0x1.fffffe0p127", -math.MaxFloat32, Exact},
{"-12345.000000000000000000001", -12345, Above},
{"-12345.0", -12345, Exact},
{"-1.000000000000000000001", -1, Above},
{"-1", -1, Exact},
{"-0x0.000002p-126", -math.SmallestNonzeroFloat32, Exact},
{"-0x0.000002p-127", -0, Above}, // underflow
{"-1e-1000", -0, Above}, // underflow
{"0", 0, Exact},
{"1e-1000", 0, Below}, // underflow
{"0x0.000002p-127", 0, Below}, // underflow
{"0x0.000002p-126", math.SmallestNonzeroFloat32, Exact},
// underflow
{"1e-1000", 0, Below},
{"0x0.000002p-127", 0, Below},
{"0x.0000010p-126", 0, Below},
// denormals
{"1.401298464e-45", math.SmallestNonzeroFloat32, Above}, // rounded up to smallest denormal
{"0x.ffffff8p-149", math.SmallestNonzeroFloat32, Above}, // rounded up to smallest denormal
{"0x.0000018p-126", math.SmallestNonzeroFloat32, Above}, // rounded up to smallest denormal
{"0x.0000020p-126", math.SmallestNonzeroFloat32, Exact},
{"0x.8p-148", math.SmallestNonzeroFloat32, Exact},
{"1p-149", math.SmallestNonzeroFloat32, Exact},
{"0x.fffffep-126", math.Float32frombits(0x7fffff), Exact}, // largest denormal
// normals
{"0x.ffffffp-126", math.Float32frombits(0x00800000), Above}, // rounded up to smallest normal
{"1p-126", math.Float32frombits(0x00800000), Exact}, // smallest normal
{"0x1.fffffep-126", math.Float32frombits(0x00ffffff), Exact},
{"0x1.ffffffp-126", math.Float32frombits(0x01000000), Above}, // rounded up
{"1", 1, Exact},
{"1.000000000000000000001", 1, Below},
{"12345.0", 12345, Exact},
{"12345.000000000000000000001", 12345, Below},
{"0x1.fffffe0p127", math.MaxFloat32, Exact},
{"0x1.fffffe8p127", math.MaxFloat32, Below},
{"0x1.ffffff0p127", float32(math.Inf(+1)), Above}, // overflow
{"0x1p128", float32(math.Inf(+1)), Above}, // overflow
{"1e10000", float32(math.Inf(+1)), Above}, // overflow
// overflow
{"0x1.ffffff0p127", float32(math.Inf(+1)), Above},
{"0x1p128", float32(math.Inf(+1)), Above},
{"1e10000", float32(math.Inf(+1)), Above},
{"0x1.ffffff0p2147483646", float32(math.Inf(+1)), Above}, // overflow in rounding
{"+Inf", float32(math.Inf(+1)), Exact},
// inf
{"Inf", float32(math.Inf(+1)), Exact},
} {
// conversion should match strconv where syntax is agreeable
if f, err := strconv.ParseFloat(test.x, 32); err == nil && float32(f) != test.out {
t.Errorf("%s: got %g; want %g (incorrect test data)", test.x, f, test.out)
}
for i := 0; i < 2; i++ {
// test both signs
tx, tout, tacc := test.x, test.out, test.acc
if i != 0 {
tx = "-" + tx
tout = -tout
tacc = -tacc
}
x := makeFloat(test.x)
out, acc := x.Float32()
if out != test.out || acc != test.acc {
t.Errorf("%s: got %g (%#x, %s); want %g (%#x, %s)", test.x, out, math.Float32bits(out), acc, test.out, math.Float32bits(test.out), test.acc)
}
// conversion should match strconv where syntax is agreeable
if f, err := strconv.ParseFloat(tx, 32); err == nil && !alike32(float32(f), tout) {
t.Errorf("%s: got %g; want %g (incorrect test data)", tx, f, tout)
}
// test that x.SetFloat64(float64(f)).Float32() == f
var x2 Float
out2, acc2 := x2.SetFloat64(float64(out)).Float32()
if out2 != out || acc2 != Exact {
t.Errorf("idempotency test: got %g (%s); want %g (Exact)", out2, acc2, out)
x := makeFloat(tx)
out, acc := x.Float32()
if !alike32(out, tout) || acc != tacc {
t.Errorf("%s: got %g (%#x, %s); want %g (%#x, %s)", tx, out, math.Float32bits(out), acc, test.out, math.Float32bits(test.out), tacc)
}
// test that x.SetFloat64(float64(f)).Float32() == f
var x2 Float
out2, acc2 := x2.SetFloat64(float64(out)).Float32()
if !alike32(out2, out) || acc2 != Exact {
t.Errorf("idempotency test: got %g (%s); want %g (Exact)", out2, acc2, out)
}
}
}
}