mirror of
https://github.com/golang/go
synced 2024-11-12 09:20:22 -07:00
math/big: use optimized formula in ModSqrt for 3 mod 4 primes
For primes which are 3 mod 4, using Tonelli-Shanks is slower and more complicated than using the identity a**((p+1)/4) mod p == sqrt(a) For 2^450-2^225-1 and 2^10860-2^5430-1, which are 3 mod 4: BenchmarkModSqrt225_TonelliTri 1000 1135375 ns/op BenchmarkModSqrt225_3Mod4 10000 156009 ns/op BenchmarkModSqrt5430_Tonelli 1 3448851386 ns/op BenchmarkModSqrt5430_3Mod4 2 914616710 ns/op ~2.6x to 7x faster. Fixes #11437 (which is a prime choice of issues to fix) Change-Id: I813fb29454160483ec29825469e0370d517850c2 Reviewed-on: https://go-review.googlesource.com/11522 Reviewed-by: Adam Langley <agl@golang.org>
This commit is contained in:
parent
fac1039615
commit
ea0491b70a
@ -640,23 +640,23 @@ func Jacobi(x, y *Int) int {
|
||||
}
|
||||
}
|
||||
|
||||
// ModSqrt sets z to a square root of x mod p if such a square root exists, and
|
||||
// returns z. The modulus p must be an odd prime. If x is not a square mod p,
|
||||
// ModSqrt leaves z unchanged and returns nil. This function panics if p is
|
||||
// not an odd integer.
|
||||
func (z *Int) ModSqrt(x, p *Int) *Int {
|
||||
switch Jacobi(x, p) {
|
||||
case -1:
|
||||
return nil // x is not a square mod p
|
||||
case 0:
|
||||
return z.SetInt64(0) // sqrt(0) mod p = 0
|
||||
case 1:
|
||||
break
|
||||
}
|
||||
if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
|
||||
x = new(Int).Mod(x, p)
|
||||
}
|
||||
// modSqrt3Mod4 uses the identity
|
||||
// (a^((p+1)/4))^2 mod p
|
||||
// == u^(p+1) mod p
|
||||
// == u^2 mod p
|
||||
// to calculate the square root of any quadratic residue mod p quickly for 3
|
||||
// mod 4 primes.
|
||||
func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {
|
||||
z.Set(p) // z = p
|
||||
z.Add(z, intOne) // z = p + 1
|
||||
z.Rsh(z, 2) // z = (p + 1) / 4
|
||||
z.Exp(x, z, p) // z = x^z mod p
|
||||
return z
|
||||
}
|
||||
|
||||
// modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square
|
||||
// root of a quadratic residue modulo any prime.
|
||||
func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {
|
||||
// Break p-1 into s*2^e such that s is odd.
|
||||
var s Int
|
||||
s.Sub(p, intOne)
|
||||
@ -703,6 +703,31 @@ func (z *Int) ModSqrt(x, p *Int) *Int {
|
||||
}
|
||||
}
|
||||
|
||||
// ModSqrt sets z to a square root of x mod p if such a square root exists, and
|
||||
// returns z. The modulus p must be an odd prime. If x is not a square mod p,
|
||||
// ModSqrt leaves z unchanged and returns nil. This function panics if p is
|
||||
// not an odd integer.
|
||||
func (z *Int) ModSqrt(x, p *Int) *Int {
|
||||
switch Jacobi(x, p) {
|
||||
case -1:
|
||||
return nil // x is not a square mod p
|
||||
case 0:
|
||||
return z.SetInt64(0) // sqrt(0) mod p = 0
|
||||
case 1:
|
||||
break
|
||||
}
|
||||
if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
|
||||
x = new(Int).Mod(x, p)
|
||||
}
|
||||
|
||||
// Check whether p is 3 mod 4, and if so, use the faster algorithm.
|
||||
if len(p.abs) > 0 && p.abs[0]%4 == 3 {
|
||||
return z.modSqrt3Mod4Prime(x, p)
|
||||
}
|
||||
// Otherwise, use Tonelli-Shanks.
|
||||
return z.modSqrtTonelliShanks(x, p)
|
||||
}
|
||||
|
||||
// Lsh sets z = x << n and returns z.
|
||||
func (z *Int) Lsh(x *Int, n uint) *Int {
|
||||
z.abs = z.abs.shl(x.abs, n)
|
||||
|
@ -1185,6 +1185,53 @@ func BenchmarkBitsetNegOrig(b *testing.B) {
|
||||
}
|
||||
}
|
||||
|
||||
// tri generates the trinomial 2**(n*2) - 2**n - 1, which is always 3 mod 4 and
|
||||
// 7 mod 8, so that 2 is always a quadratic residue.
|
||||
func tri(n uint) *Int {
|
||||
x := NewInt(1)
|
||||
x.Lsh(x, n)
|
||||
x2 := new(Int).Lsh(x, n)
|
||||
x2.Sub(x2, x)
|
||||
x2.Sub(x2, intOne)
|
||||
return x2
|
||||
}
|
||||
|
||||
func BenchmarkModSqrt225_Tonelli(b *testing.B) {
|
||||
p := tri(225)
|
||||
x := NewInt(2)
|
||||
for i := 0; i < b.N; i++ {
|
||||
x.SetUint64(2)
|
||||
x.modSqrtTonelliShanks(x, p)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkModSqrt224_3Mod4(b *testing.B) {
|
||||
p := tri(225)
|
||||
x := new(Int).SetUint64(2)
|
||||
for i := 0; i < b.N; i++ {
|
||||
x.SetUint64(2)
|
||||
x.modSqrt3Mod4Prime(x, p)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkModSqrt5430_Tonelli(b *testing.B) {
|
||||
p := tri(5430)
|
||||
x := new(Int).SetUint64(2)
|
||||
for i := 0; i < b.N; i++ {
|
||||
x.SetUint64(2)
|
||||
x.modSqrtTonelliShanks(x, p)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkModSqrt5430_3Mod4(b *testing.B) {
|
||||
p := tri(5430)
|
||||
x := new(Int).SetUint64(2)
|
||||
for i := 0; i < b.N; i++ {
|
||||
x.SetUint64(2)
|
||||
x.modSqrt3Mod4Prime(x, p)
|
||||
}
|
||||
}
|
||||
|
||||
func TestBitwise(t *testing.T) {
|
||||
x := new(Int)
|
||||
y := new(Int)
|
||||
|
Loading…
Reference in New Issue
Block a user