1
0
mirror of https://github.com/golang/go synced 2024-11-12 09:20:22 -07:00

math/big: use optimized formula in ModSqrt for 3 mod 4 primes

For primes which are 3 mod 4, using Tonelli-Shanks is slower
and more complicated than using the identity

     a**((p+1)/4) mod p == sqrt(a)

For 2^450-2^225-1 and 2^10860-2^5430-1, which are 3 mod 4:

BenchmarkModSqrt225_TonelliTri      1000     1135375 ns/op
BenchmarkModSqrt225_3Mod4          10000      156009 ns/op
BenchmarkModSqrt5430_Tonelli           1  3448851386 ns/op
BenchmarkModSqrt5430_3Mod4             2   914616710 ns/op

~2.6x to 7x faster.

Fixes #11437 (which is a prime choice of issues to fix)

Change-Id: I813fb29454160483ec29825469e0370d517850c2
Reviewed-on: https://go-review.googlesource.com/11522
Reviewed-by: Adam Langley <agl@golang.org>
This commit is contained in:
David Leon Gil 2015-06-26 10:29:45 -07:00 committed by Adam Langley
parent fac1039615
commit ea0491b70a
2 changed files with 88 additions and 16 deletions

View File

@ -640,23 +640,23 @@ func Jacobi(x, y *Int) int {
}
}
// ModSqrt sets z to a square root of x mod p if such a square root exists, and
// returns z. The modulus p must be an odd prime. If x is not a square mod p,
// ModSqrt leaves z unchanged and returns nil. This function panics if p is
// not an odd integer.
func (z *Int) ModSqrt(x, p *Int) *Int {
switch Jacobi(x, p) {
case -1:
return nil // x is not a square mod p
case 0:
return z.SetInt64(0) // sqrt(0) mod p = 0
case 1:
break
}
if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
x = new(Int).Mod(x, p)
}
// modSqrt3Mod4 uses the identity
// (a^((p+1)/4))^2 mod p
// == u^(p+1) mod p
// == u^2 mod p
// to calculate the square root of any quadratic residue mod p quickly for 3
// mod 4 primes.
func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {
z.Set(p) // z = p
z.Add(z, intOne) // z = p + 1
z.Rsh(z, 2) // z = (p + 1) / 4
z.Exp(x, z, p) // z = x^z mod p
return z
}
// modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square
// root of a quadratic residue modulo any prime.
func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {
// Break p-1 into s*2^e such that s is odd.
var s Int
s.Sub(p, intOne)
@ -703,6 +703,31 @@ func (z *Int) ModSqrt(x, p *Int) *Int {
}
}
// ModSqrt sets z to a square root of x mod p if such a square root exists, and
// returns z. The modulus p must be an odd prime. If x is not a square mod p,
// ModSqrt leaves z unchanged and returns nil. This function panics if p is
// not an odd integer.
func (z *Int) ModSqrt(x, p *Int) *Int {
switch Jacobi(x, p) {
case -1:
return nil // x is not a square mod p
case 0:
return z.SetInt64(0) // sqrt(0) mod p = 0
case 1:
break
}
if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
x = new(Int).Mod(x, p)
}
// Check whether p is 3 mod 4, and if so, use the faster algorithm.
if len(p.abs) > 0 && p.abs[0]%4 == 3 {
return z.modSqrt3Mod4Prime(x, p)
}
// Otherwise, use Tonelli-Shanks.
return z.modSqrtTonelliShanks(x, p)
}
// Lsh sets z = x << n and returns z.
func (z *Int) Lsh(x *Int, n uint) *Int {
z.abs = z.abs.shl(x.abs, n)

View File

@ -1185,6 +1185,53 @@ func BenchmarkBitsetNegOrig(b *testing.B) {
}
}
// tri generates the trinomial 2**(n*2) - 2**n - 1, which is always 3 mod 4 and
// 7 mod 8, so that 2 is always a quadratic residue.
func tri(n uint) *Int {
x := NewInt(1)
x.Lsh(x, n)
x2 := new(Int).Lsh(x, n)
x2.Sub(x2, x)
x2.Sub(x2, intOne)
return x2
}
func BenchmarkModSqrt225_Tonelli(b *testing.B) {
p := tri(225)
x := NewInt(2)
for i := 0; i < b.N; i++ {
x.SetUint64(2)
x.modSqrtTonelliShanks(x, p)
}
}
func BenchmarkModSqrt224_3Mod4(b *testing.B) {
p := tri(225)
x := new(Int).SetUint64(2)
for i := 0; i < b.N; i++ {
x.SetUint64(2)
x.modSqrt3Mod4Prime(x, p)
}
}
func BenchmarkModSqrt5430_Tonelli(b *testing.B) {
p := tri(5430)
x := new(Int).SetUint64(2)
for i := 0; i < b.N; i++ {
x.SetUint64(2)
x.modSqrtTonelliShanks(x, p)
}
}
func BenchmarkModSqrt5430_3Mod4(b *testing.B) {
p := tri(5430)
x := new(Int).SetUint64(2)
for i := 0; i < b.N; i++ {
x.SetUint64(2)
x.modSqrt3Mod4Prime(x, p)
}
}
func TestBitwise(t *testing.T) {
x := new(Int)
y := new(Int)