1
0
mirror of https://github.com/golang/go synced 2024-11-14 20:30:35 -07:00
go/misc/cgo/test/basic.go

160 lines
2.7 KiB
Go
Raw Normal View History

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// Basic test cases for cgo.
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
package cgotest
/*
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <errno.h>
#define SHIFT(x, y) ((x)<<(y))
#define KILO SHIFT(1, 10)
#define UINT32VAL 0xc008427bU
enum E {
Enum1 = 1,
Enum2 = 2,
};
typedef unsigned char cgo_uuid_t[20];
void uuid_generate(cgo_uuid_t x) {
x[0] = 0;
}
struct S {
int x;
};
extern enum E myConstFunc(struct S* const ctx, int const id, struct S **const filter);
enum E myConstFunc(struct S *const ctx, int const id, struct S **const filter) { return 0; }
// issue 1222
typedef union {
long align;
} xxpthread_mutex_t;
struct ibv_async_event {
union {
int x;
} element;
};
struct ibv_context {
xxpthread_mutex_t mutex;
};
int add(int x, int y) {
return x+y;
};
*/
import "C"
import (
"runtime"
"syscall"
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
"testing"
"unsafe"
)
const EINVAL = C.EINVAL /* test #define */
var KILO = C.KILO
func uuidgen() {
var uuid C.cgo_uuid_t
C.uuid_generate(&uuid[0])
}
func Strtol(s string, base int) (int, error) {
p := C.CString(s)
n, err := C.strtol(p, nil, C.int(base))
C.free(unsafe.Pointer(p))
return int(n), err
}
func Atol(s string) int {
p := C.CString(s)
n := C.atol(p)
C.free(unsafe.Pointer(p))
return int(n)
}
func testConst(t *testing.T) {
C.myConstFunc(nil, 0, nil)
}
func testEnum(t *testing.T) {
if C.Enum1 != 1 || C.Enum2 != 2 {
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
t.Error("bad enum", C.Enum1, C.Enum2)
}
}
func testAtol(t *testing.T) {
l := Atol("123")
if l != 123 {
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
t.Error("Atol 123: ", l)
}
}
func testErrno(t *testing.T) {
p := C.CString("no-such-file")
m := C.CString("r")
f, err := C.fopen(p, m)
C.free(unsafe.Pointer(p))
C.free(unsafe.Pointer(m))
if err == nil {
C.fclose(f)
t.Fatalf("C.fopen: should fail")
}
if err != syscall.ENOENT {
t.Fatalf("C.fopen: unexpected error: %v", err)
}
}
func testMultipleAssign(t *testing.T) {
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
p := C.CString("234")
n, m := C.strtol(p, nil, 345), C.strtol(p, nil, 10)
if runtime.GOOS == "openbsd" {
// Bug in OpenBSD strtol(3) - base > 36 succeeds.
if (n != 0 && n != 239089) || m != 234 {
t.Fatal("Strtol x2: ", n, m)
}
} else if n != 0 || m != 234 {
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
t.Fatal("Strtol x2: ", n, m)
}
C.free(unsafe.Pointer(p))
}
var (
cuint = (C.uint)(0)
culong C.ulong
cchar C.char
)
type Context struct {
ctx *C.struct_ibv_context
}
func benchCgoCall(b *testing.B) {
const x = C.int(2)
const y = C.int(3)
for i := 0; i < b.N; i++ {
C.add(x, y)
}
}
// Issue 2470.
func testUnsignedInt(t *testing.T) {
a := (int64)(C.UINT32VAL)
b := (int64)(0xc008427b)
if a != b {
t.Errorf("Incorrect unsigned int - got %x, want %x", a, b)
}
}