1
0
mirror of https://github.com/golang/go synced 2024-11-21 14:34:41 -07:00

cgo: various bug fixes

* remember #defined names, so that C.stdout can refer
  to the real name (on OS X) __stdoutp.
* better handling of #defined constant expressions
* allow n, err = C.strtol("asdf", 0, 123) to get errno as os.Error
* write all output files to current directory
* don't require gcc output if there was no input

Fixes #533.
Fixes #709.
Fixes #756.

R=r
CC=dho, golang-dev, iant
https://golang.org/cl/1734047
This commit is contained in:
Russ Cox 2010-07-14 17:17:53 -07:00
parent e8fcf60093
commit 0432f289f7
13 changed files with 1321 additions and 732 deletions

View File

@ -6,7 +6,9 @@ include ../../../src/Make.$(GOARCH)
TARG=stdio
CGOFILES=\
file.go
align.go\
file.go\
test.go\
CLEANFILES+=hello fib chain run.out

78
misc/cgo/stdio/align.go Normal file
View File

@ -0,0 +1,78 @@
package stdio
/*
#include <stdio.h>
typedef unsigned char Uint8;
typedef unsigned short Uint16;
typedef enum {
MOD1 = 0x0000,
MODX = 0x8000
} SDLMod;
typedef enum {
A = 1,
B = 322,
SDLK_LAST
} SDLKey;
typedef struct SDL_keysym {
Uint8 scancode;
SDLKey sym;
SDLMod mod;
Uint16 unicode;
} SDL_keysym;
typedef struct SDL_KeyboardEvent {
Uint8 typ;
Uint8 which;
Uint8 state;
SDL_keysym keysym;
} SDL_KeyboardEvent;
void makeEvent(SDL_KeyboardEvent *event) {
unsigned char *p;
int i;
p = (unsigned char*)event;
for (i=0; i<sizeof *event; i++) {
p[i] = i;
}
}
int same(SDL_KeyboardEvent* e, Uint8 typ, Uint8 which, Uint8 state, Uint8 scan, SDLKey sym, SDLMod mod, Uint16 uni) {
return e->typ == typ && e->which == which && e->state == state && e->keysym.scancode == scan && e->keysym.sym == sym && e->keysym.mod == mod && e->keysym.unicode == uni;
}
void cTest(SDL_KeyboardEvent *event) {
printf("C: %#x %#x %#x %#x %#x %#x %#x\n", event->typ, event->which, event->state,
event->keysym.scancode, event->keysym.sym, event->keysym.mod, event->keysym.unicode);
fflush(stdout);
}
*/
import "C"
import (
"fmt"
"syscall"
)
func TestAlign() {
if syscall.ARCH == "amd64" {
// alignment is known to be broken on amd64.
// http://code.google.com/p/go/issues/detail?id=609
return
}
var evt C.SDL_KeyboardEvent
C.makeEvent(&evt)
if C.same(&evt, evt.typ, evt.which, evt.state, evt.keysym.scancode, evt.keysym.sym, evt.keysym.mod, evt.keysym.unicode) == 0 {
fmt.Println("*** bad alignment")
C.cTest(&evt)
fmt.Printf("Go: %#x %#x %#x %#x %#x %#x %#x\n",
evt.typ, evt.which, evt.state, evt.keysym.scancode,
evt.keysym.sym, evt.keysym.mod, evt.keysym.unicode)
fmt.Println(evt)
}
}

View File

@ -22,7 +22,7 @@ func link(left chan<- int, right <-chan int) {
runtime.LockOSThread()
for {
v := <-right
stdio.Puts(strconv.Itoa(v))
stdio.Stdout.WriteString(strconv.Itoa(v) + "\n")
left <- 1+v
}
}
@ -38,6 +38,6 @@ func main() {
for i := 0; i < R; i++ {
right <- 0
x := <-leftmost
stdio.Puts(strconv.Itoa(x))
stdio.Stdout.WriteString(strconv.Itoa(x) + "\n")
}
}

View File

@ -26,7 +26,7 @@ func fibber(c, out chan int64, i int64) {
}
for {
j := <-c
stdio.Puts(strconv.Itoa64(j))
stdio.Stdout.WriteString(strconv.Itoa64(j) + "\n")
out <- j
<-out
i += j

View File

@ -10,33 +10,31 @@ see ../gmp/gmp.go.
package stdio
// TODO(rsc): Remove fflushstdout when C.fflush(C.stdout) works in cgo.
/*
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <errno.h>
void fflushstdout(void) { fflush(stdout); }
char* greeting = "hello, world";
*/
import "C"
import "unsafe"
/*
type File C.FILE
var Stdout = (*File)(C.stdout)
var Stderr = (*File)(C.stderr)
func (f *File) WriteString(s string) {
p := C.CString(s);
C.fputs(p, (*C.FILE)(f));
C.free(p);
}
*/
func Puts(s string) {
p := C.CString(s)
C.puts(p)
C.fputs(p, (*C.FILE)(f))
C.free(unsafe.Pointer(p))
C.fflushstdout()
f.Flush()
}
func (f *File) Flush() {
C.fflush((*C.FILE)(f))
}
var Greeting = C.GoString(C.greeting)

View File

@ -4,9 +4,26 @@
package main
import "stdio"
import (
"os"
"stdio"
)
func main() {
// stdio.Stdout.WriteString("hello, world\n");
stdio.Puts("hello, world")
stdio.Stdout.WriteString(stdio.Greeting + "\n")
l := stdio.Atol("123")
if l != 123 {
println("Atol 123: ", l)
panic("bad atol")
}
n, err := stdio.Strtol("asdf", 123)
if n != 0 || err != os.EINVAL {
println("Strtol: ", n, err)
panic("bad atoi2")
}
stdio.TestAlign()
stdio.TestEnum()
}

91
misc/cgo/stdio/test.go Normal file
View File

@ -0,0 +1,91 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains test cases for cgo.
package stdio
/*
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <errno.h>
#define SHIFT(x, y) ((x)<<(y))
#define KILO SHIFT(1, 10)
enum {
Enum1 = 1,
Enum2 = 2,
};
*/
import "C"
import (
"os"
"unsafe"
)
const EINVAL = C.EINVAL /* test #define */
var KILO = C.KILO
func Size(name string) (int64, os.Error) {
var st C.struct_stat
p := C.CString(name)
_, err := C.stat(p, &st)
C.free(unsafe.Pointer(p))
if err != nil {
return 0, err
}
return int64(C.ulong(st.st_size)), nil
}
func Strtol(s string, base int) (int, os.Error) {
p := C.CString(s)
n, err := C.strtol(p, nil, C.int(base))
C.free(unsafe.Pointer(p))
return int(n), err
}
func Atol(s string) int {
p := C.CString(s)
n := C.atol(p)
C.free(unsafe.Pointer(p))
return int(n)
}
func TestEnum() {
if C.Enum1 != 1 || C.Enum2 != 2 {
println("bad enum", C.Enum1, C.Enum2)
}
}
func TestAtol() {
l := Atol("123")
if l != 123 {
println("Atol 123: ", l)
panic("bad atol")
}
}
func TestErrno() {
n, err := Strtol("asdf", 123)
if n != 0 || err != os.EINVAL {
println("Strtol: ", n, err)
panic("bad atoi2")
}
}
var (
uint = (C.uint)(0)
ulong C.ulong
char C.char
)
func Test() {
TestAlign()
TestAtol()
TestEnum()
TestErrno()
}

View File

@ -16,59 +16,8 @@ import (
"strings"
)
// A Cref refers to an expression of the form C.xxx in the AST.
type Cref struct {
Name string
Expr *ast.Expr
Context string // "type", "expr", "const", or "call"
TypeName bool // whether xxx is a C type name
Type *Type // the type of xxx
FuncType *FuncType
}
// A ExpFunc is an exported function, callable from C.
type ExpFunc struct {
Func *ast.FuncDecl
ExpName string // name to use from C
}
// A Prog collects information about a cgo program.
type Prog struct {
AST *ast.File // parsed AST
Preamble string // C preamble (doc comment on import "C")
PackagePath string
Package string
Crefs []*Cref
Typedef map[string]ast.Expr
Vardef map[string]*Type
Funcdef map[string]*FuncType
Enumdef map[string]int64
Constdef map[string]string
ExpFuncs []*ExpFunc
PtrSize int64
GccOptions []string
OutDefs map[string]bool
}
// A Type collects information about a type in both the C and Go worlds.
type Type struct {
Size int64
Align int64
C string
Go ast.Expr
EnumValues map[string]int64
}
// A FuncType collects information about a function type in both the C and Go worlds.
type FuncType struct {
Params []*Type
Result *Type
Go *ast.FuncType
}
func openProg(name string, p *Prog) {
var err os.Error
p.AST, err = parser.ParseFile(name, nil, nil, parser.ParseComments)
func parse(name string, flags uint) *ast.File {
ast1, err := parser.ParseFile(name, nil, nil, flags)
if err != nil {
if list, ok := err.(scanner.ErrorList); ok {
// If err is a scanner.ErrorList, its String will print just
@ -82,16 +31,60 @@ func openProg(name string, p *Prog) {
}
fatal("parsing %s: %s", name, err)
}
p.Package = p.AST.Name.Name()
return ast1
}
// Find the import "C" line and get any extra C preamble.
// Delete the import "C" line along the way.
// ReadGo populates f with information learned from reading the
// Go source file with the given file name. It gathers the C preamble
// attached to the import "C" comment, a list of references to C.xxx,
// a list of exported functions, and the actual AST, to be rewritten and
// printed.
func (f *File) ReadGo(name string) {
// Two different parses: once with comments, once without.
// The printer is not good enough at printing comments in the
// right place when we start editing the AST behind its back,
// so we use ast1 to look for the doc comments on import "C"
// and on exported functions, and we use ast2 for translating
// and reprinting.
ast1 := parse(name, parser.ParseComments)
ast2 := parse(name, 0)
f.Package = ast1.Name.Name()
f.Name = make(map[string]*Name)
// In ast1, find the import "C" line and get any extra C preamble.
sawC := false
w := 0
for _, decl := range p.AST.Decls {
for _, decl := range ast1.Decls {
d, ok := decl.(*ast.GenDecl)
if !ok {
p.AST.Decls[w] = decl
continue
}
for _, spec := range d.Specs {
s, ok := spec.(*ast.ImportSpec)
if !ok || string(s.Path.Value) != `"C"` {
continue
}
sawC = true
if s.Name != nil {
error(s.Path.Pos(), `cannot rename import "C"`)
}
if s.Doc != nil {
f.Preamble += doc.CommentText(s.Doc) + "\n"
} else if len(d.Specs) == 1 && d.Doc != nil {
f.Preamble += doc.CommentText(d.Doc) + "\n"
}
}
}
if !sawC {
error(noPos, `cannot find import "C"`)
}
// In ast2, strip the import "C" line.
w := 0
for _, decl := range ast2.Decls {
d, ok := decl.(*ast.GenDecl)
if !ok {
ast2.Decls[w] = decl
w++
continue
}
@ -101,247 +94,85 @@ func openProg(name string, p *Prog) {
if !ok || string(s.Path.Value) != `"C"` {
d.Specs[ws] = spec
ws++
continue
}
sawC = true
if s.Name != nil {
error(s.Path.Pos(), `cannot rename import "C"`)
}
if s.Doc != nil {
p.Preamble += doc.CommentText(s.Doc) + "\n"
} else if len(d.Specs) == 1 && d.Doc != nil {
p.Preamble += doc.CommentText(d.Doc) + "\n"
}
}
if ws == 0 {
continue
}
d.Specs = d.Specs[0:ws]
p.AST.Decls[w] = d
ast2.Decls[w] = d
w++
}
p.AST.Decls = p.AST.Decls[0:w]
if !sawC {
error(noPos, `cannot find import "C"`)
}
ast2.Decls = ast2.Decls[0:w]
// Accumulate pointers to uses of C.x.
if p.Crefs == nil {
p.Crefs = make([]*Cref, 0, 8)
if f.Ref == nil {
f.Ref = make([]*Ref, 0, 8)
}
walk(p.AST, p, "prog")
f.walk(ast2, "prog", (*File).saveRef)
// Accumulate exported functions.
// The comments are only on ast1 but we need to
// save the function bodies from ast2.
// The first walk fills in ExpFunc, and the
// second walk changes the entries to
// refer to ast2 instead.
f.walk(ast1, "prog", (*File).saveExport)
f.walk(ast2, "prog", (*File).saveExport2)
f.AST = ast2
}
func walk(x interface{}, p *Prog, context string) {
switch n := x.(type) {
case *ast.Expr:
if sel, ok := (*n).(*ast.SelectorExpr); ok {
// For now, assume that the only instance of capital C is
// when used as the imported package identifier.
// The parser should take care of scoping in the future,
// so that we will be able to distinguish a "top-level C"
// from a local C.
if l, ok := sel.X.(*ast.Ident); ok && l.Name() == "C" {
i := len(p.Crefs)
if i >= cap(p.Crefs) {
new := make([]*Cref, 2*i)
for j, v := range p.Crefs {
new[j] = v
}
p.Crefs = new
// Save references to C.xxx for later processing.
func (f *File) saveRef(x interface{}, context string) {
n, ok := x.(*ast.Expr)
if !ok {
return
}
if sel, ok := (*n).(*ast.SelectorExpr); ok {
// For now, assume that the only instance of capital C is
// when used as the imported package identifier.
// The parser should take care of scoping in the future,
// so that we will be able to distinguish a "top-level C"
// from a local C.
if l, ok := sel.X.(*ast.Ident); ok && l.Name() == "C" {
i := len(f.Ref)
if i >= cap(f.Ref) {
new := make([]*Ref, 2*i)
for j, v := range f.Ref {
new[j] = v
}
p.Crefs = p.Crefs[0 : i+1]
p.Crefs[i] = &Cref{
Name: sel.Sel.Name(),
Expr: n,
Context: context,
}
break
f.Ref = new
}
}
walk(*n, p, context)
// everything else just recurs
default:
error(noPos, "unexpected type %T in walk", x)
panic("unexpected type")
case nil:
// These are ordered and grouped to match ../../pkg/go/ast/ast.go
case *ast.Field:
walk(&n.Type, p, "type")
case *ast.FieldList:
for _, f := range n.List {
walk(f, p, context)
}
case *ast.BadExpr:
case *ast.Ident:
case *ast.Ellipsis:
case *ast.BasicLit:
case *ast.FuncLit:
walk(n.Type, p, "type")
walk(n.Body, p, "stmt")
case *ast.CompositeLit:
walk(&n.Type, p, "type")
walk(n.Elts, p, "expr")
case *ast.ParenExpr:
walk(&n.X, p, context)
case *ast.SelectorExpr:
walk(&n.X, p, "selector")
case *ast.IndexExpr:
walk(&n.X, p, "expr")
walk(&n.Index, p, "expr")
case *ast.SliceExpr:
walk(&n.X, p, "expr")
walk(&n.Index, p, "expr")
if n.End != nil {
walk(&n.End, p, "expr")
}
case *ast.TypeAssertExpr:
walk(&n.X, p, "expr")
walk(&n.Type, p, "type")
case *ast.CallExpr:
walk(&n.Fun, p, "call")
walk(n.Args, p, "expr")
case *ast.StarExpr:
walk(&n.X, p, context)
case *ast.UnaryExpr:
walk(&n.X, p, "expr")
case *ast.BinaryExpr:
walk(&n.X, p, "expr")
walk(&n.Y, p, "expr")
case *ast.KeyValueExpr:
walk(&n.Key, p, "expr")
walk(&n.Value, p, "expr")
case *ast.ArrayType:
walk(&n.Len, p, "expr")
walk(&n.Elt, p, "type")
case *ast.StructType:
walk(n.Fields, p, "field")
case *ast.FuncType:
walk(n.Params, p, "field")
if n.Results != nil {
walk(n.Results, p, "field")
}
case *ast.InterfaceType:
walk(n.Methods, p, "field")
case *ast.MapType:
walk(&n.Key, p, "type")
walk(&n.Value, p, "type")
case *ast.ChanType:
walk(&n.Value, p, "type")
case *ast.BadStmt:
case *ast.DeclStmt:
walk(n.Decl, p, "decl")
case *ast.EmptyStmt:
case *ast.LabeledStmt:
walk(n.Stmt, p, "stmt")
case *ast.ExprStmt:
walk(&n.X, p, "expr")
case *ast.IncDecStmt:
walk(&n.X, p, "expr")
case *ast.AssignStmt:
walk(n.Lhs, p, "expr")
walk(n.Rhs, p, "expr")
case *ast.GoStmt:
walk(n.Call, p, "expr")
case *ast.DeferStmt:
walk(n.Call, p, "expr")
case *ast.ReturnStmt:
walk(n.Results, p, "expr")
case *ast.BranchStmt:
case *ast.BlockStmt:
walk(n.List, p, "stmt")
case *ast.IfStmt:
walk(n.Init, p, "stmt")
walk(&n.Cond, p, "expr")
walk(n.Body, p, "stmt")
walk(n.Else, p, "stmt")
case *ast.CaseClause:
walk(n.Values, p, "expr")
walk(n.Body, p, "stmt")
case *ast.SwitchStmt:
walk(n.Init, p, "stmt")
walk(&n.Tag, p, "expr")
walk(n.Body, p, "stmt")
case *ast.TypeCaseClause:
walk(n.Types, p, "type")
walk(n.Body, p, "stmt")
case *ast.TypeSwitchStmt:
walk(n.Init, p, "stmt")
walk(n.Assign, p, "stmt")
walk(n.Body, p, "stmt")
case *ast.CommClause:
walk(n.Lhs, p, "expr")
walk(n.Rhs, p, "expr")
walk(n.Body, p, "stmt")
case *ast.SelectStmt:
walk(n.Body, p, "stmt")
case *ast.ForStmt:
walk(n.Init, p, "stmt")
walk(&n.Cond, p, "expr")
walk(n.Post, p, "stmt")
walk(n.Body, p, "stmt")
case *ast.RangeStmt:
walk(&n.Key, p, "expr")
walk(&n.Value, p, "expr")
walk(&n.X, p, "expr")
walk(n.Body, p, "stmt")
case *ast.ImportSpec:
case *ast.ValueSpec:
walk(&n.Type, p, "type")
walk(n.Values, p, "expr")
case *ast.TypeSpec:
walk(&n.Type, p, "type")
case *ast.BadDecl:
case *ast.GenDecl:
walk(n.Specs, p, "spec")
case *ast.FuncDecl:
if n.Recv != nil {
walk(n.Recv, p, "field")
}
walk(n.Type, p, "type")
if n.Body != nil {
walk(n.Body, p, "stmt")
}
checkExpFunc(n, p)
case *ast.File:
walk(n.Decls, p, "decl")
case *ast.Package:
for _, f := range n.Files {
walk(f, p, "file")
}
case []ast.Decl:
for _, d := range n {
walk(d, p, context)
}
case []ast.Expr:
for i := range n {
walk(&n[i], p, context)
}
case []ast.Stmt:
for _, s := range n {
walk(s, p, context)
}
case []ast.Spec:
for _, s := range n {
walk(s, p, context)
if context == "as2" {
context = "expr"
}
goname := sel.Sel.Name()
name := f.Name[goname]
if name == nil {
name = &Name{
Go: goname,
}
f.Name[goname] = name
}
f.Ref = f.Ref[0 : i+1]
f.Ref[i] = &Ref{
Name: name,
Expr: n,
Context: context,
}
return
}
}
}
// If a function should be exported add it to ExpFuncs.
func checkExpFunc(n *ast.FuncDecl, p *Prog) {
// If a function should be exported add it to ExpFunc.
func (f *File) saveExport(x interface{}, context string) {
n, ok := x.(*ast.FuncDecl)
if !ok {
return
}
if n.Doc == nil {
return
}
@ -355,22 +186,226 @@ func checkExpFunc(n *ast.FuncDecl, p *Prog) {
error(c.Position, "export missing name")
}
if p.ExpFuncs == nil {
p.ExpFuncs = make([]*ExpFunc, 0, 8)
if f.ExpFunc == nil {
f.ExpFunc = make([]*ExpFunc, 0, 8)
}
i := len(p.ExpFuncs)
if i >= cap(p.ExpFuncs) {
new := make([]*ExpFunc, 2*i)
for j, v := range p.ExpFuncs {
new[j] = v
}
p.ExpFuncs = new
i := len(f.ExpFunc)
if i >= cap(f.ExpFunc) {
new := make([]*ExpFunc, i, 2*i)
copy(new, f.ExpFunc)
f.ExpFunc = new
}
p.ExpFuncs = p.ExpFuncs[0 : i+1]
p.ExpFuncs[i] = &ExpFunc{
f.ExpFunc = f.ExpFunc[0 : i+1]
f.ExpFunc[i] = &ExpFunc{
Func: n,
ExpName: name,
}
break
}
}
// Make f.ExpFunc[i] point at the Func from this AST instead of the other one.
func (f *File) saveExport2(x interface{}, context string) {
n, ok := x.(*ast.FuncDecl)
if !ok {
return
}
for _, exp := range f.ExpFunc {
if exp.Func.Name.Name() == n.Name.Name() {
exp.Func = n
break
}
}
}
// walk walks the AST x, calling visit(f, x, context) for each node.
func (f *File) walk(x interface{}, context string, visit func(*File, interface{}, string)) {
visit(f, x, context)
switch n := x.(type) {
case *ast.Expr:
f.walk(*n, context, visit)
// everything else just recurs
default:
error(noPos, "unexpected type %T in walk", x, visit)
panic("unexpected type")
case nil:
// These are ordered and grouped to match ../../pkg/go/ast/ast.go
case *ast.Field:
f.walk(&n.Type, "type", visit)
case *ast.FieldList:
for _, field := range n.List {
f.walk(field, context, visit)
}
case *ast.BadExpr:
case *ast.Ident:
case *ast.Ellipsis:
case *ast.BasicLit:
case *ast.FuncLit:
f.walk(n.Type, "type", visit)
f.walk(n.Body, "stmt", visit)
case *ast.CompositeLit:
f.walk(&n.Type, "type", visit)
f.walk(n.Elts, "expr", visit)
case *ast.ParenExpr:
f.walk(&n.X, context, visit)
case *ast.SelectorExpr:
f.walk(&n.X, "selector", visit)
case *ast.IndexExpr:
f.walk(&n.X, "expr", visit)
f.walk(&n.Index, "expr", visit)
case *ast.SliceExpr:
f.walk(&n.X, "expr", visit)
f.walk(&n.Index, "expr", visit)
if n.End != nil {
f.walk(&n.End, "expr", visit)
}
case *ast.TypeAssertExpr:
f.walk(&n.X, "expr", visit)
f.walk(&n.Type, "type", visit)
case *ast.CallExpr:
if context == "as2" {
f.walk(&n.Fun, "call2", visit)
} else {
f.walk(&n.Fun, "call", visit)
}
f.walk(n.Args, "expr", visit)
case *ast.StarExpr:
f.walk(&n.X, context, visit)
case *ast.UnaryExpr:
f.walk(&n.X, "expr", visit)
case *ast.BinaryExpr:
f.walk(&n.X, "expr", visit)
f.walk(&n.Y, "expr", visit)
case *ast.KeyValueExpr:
f.walk(&n.Key, "expr", visit)
f.walk(&n.Value, "expr", visit)
case *ast.ArrayType:
f.walk(&n.Len, "expr", visit)
f.walk(&n.Elt, "type", visit)
case *ast.StructType:
f.walk(n.Fields, "field", visit)
case *ast.FuncType:
f.walk(n.Params, "field", visit)
if n.Results != nil {
f.walk(n.Results, "field", visit)
}
case *ast.InterfaceType:
f.walk(n.Methods, "field", visit)
case *ast.MapType:
f.walk(&n.Key, "type", visit)
f.walk(&n.Value, "type", visit)
case *ast.ChanType:
f.walk(&n.Value, "type", visit)
case *ast.BadStmt:
case *ast.DeclStmt:
f.walk(n.Decl, "decl", visit)
case *ast.EmptyStmt:
case *ast.LabeledStmt:
f.walk(n.Stmt, "stmt", visit)
case *ast.ExprStmt:
f.walk(&n.X, "expr", visit)
case *ast.IncDecStmt:
f.walk(&n.X, "expr", visit)
case *ast.AssignStmt:
f.walk(n.Lhs, "expr", visit)
if len(n.Lhs) == 2 {
f.walk(n.Rhs, "as2", visit)
} else {
f.walk(n.Rhs, "expr", visit)
}
case *ast.GoStmt:
f.walk(n.Call, "expr", visit)
case *ast.DeferStmt:
f.walk(n.Call, "expr", visit)
case *ast.ReturnStmt:
f.walk(n.Results, "expr", visit)
case *ast.BranchStmt:
case *ast.BlockStmt:
f.walk(n.List, "stmt", visit)
case *ast.IfStmt:
f.walk(n.Init, "stmt", visit)
f.walk(&n.Cond, "expr", visit)
f.walk(n.Body, "stmt", visit)
f.walk(n.Else, "stmt", visit)
case *ast.CaseClause:
f.walk(n.Values, "expr", visit)
f.walk(n.Body, "stmt", visit)
case *ast.SwitchStmt:
f.walk(n.Init, "stmt", visit)
f.walk(&n.Tag, "expr", visit)
f.walk(n.Body, "stmt", visit)
case *ast.TypeCaseClause:
f.walk(n.Types, "type", visit)
f.walk(n.Body, "stmt", visit)
case *ast.TypeSwitchStmt:
f.walk(n.Init, "stmt", visit)
f.walk(n.Assign, "stmt", visit)
f.walk(n.Body, "stmt", visit)
case *ast.CommClause:
f.walk(n.Lhs, "expr", visit)
f.walk(n.Rhs, "expr", visit)
f.walk(n.Body, "stmt", visit)
case *ast.SelectStmt:
f.walk(n.Body, "stmt", visit)
case *ast.ForStmt:
f.walk(n.Init, "stmt", visit)
f.walk(&n.Cond, "expr", visit)
f.walk(n.Post, "stmt", visit)
f.walk(n.Body, "stmt", visit)
case *ast.RangeStmt:
f.walk(&n.Key, "expr", visit)
f.walk(&n.Value, "expr", visit)
f.walk(&n.X, "expr", visit)
f.walk(n.Body, "stmt", visit)
case *ast.ImportSpec:
case *ast.ValueSpec:
f.walk(&n.Type, "type", visit)
f.walk(n.Values, "expr", visit)
case *ast.TypeSpec:
f.walk(&n.Type, "type", visit)
case *ast.BadDecl:
case *ast.GenDecl:
f.walk(n.Specs, "spec", visit)
case *ast.FuncDecl:
if n.Recv != nil {
f.walk(n.Recv, "field", visit)
}
f.walk(n.Type, "type", visit)
if n.Body != nil {
f.walk(n.Body, "stmt", visit)
}
case *ast.File:
f.walk(n.Decls, "decl", visit)
case *ast.Package:
for _, file := range n.Files {
f.walk(file, "file", visit)
}
case []ast.Decl:
for _, d := range n {
f.walk(d, context, visit)
}
case []ast.Expr:
for i := range n {
f.walk(&n[i], context, visit)
}
case []ast.Stmt:
for _, s := range n {
f.walk(s, context, visit)
}
case []ast.Spec:
for _, s := range n {
f.walk(s, context, visit)
}
}
}

View File

@ -23,6 +23,19 @@ the package. For example:
// #include <errno.h>
import "C"
C identifiers or field names that are keywords in Go can be
accessed by prefixing them with an underscore: if x points at
a C struct with a field named "type", x._type accesses the field.
To access a struct, union, or enum type directly, prefix it with
struct_, union_, or enum_, as in C.struct_stat.
Any C function that returns a value may be called in a multiple
assignment context to retrieve both the return value and the
C errno variable as an os.Error. For example:
n, err := C.atoi("abc")
Cgo transforms the input file into four output files: two Go source
files, a C file for 6c (or 8c or 5c), and a C file for gcc.

View File

@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Annotate Crefs in Prog with C types by parsing gcc debug output.
// Annotate Ref in Prog with C types by parsing gcc debug output.
// Conversion of debug output to Go types.
package main
@ -12,6 +12,7 @@ import (
"debug/dwarf"
"debug/elf"
"debug/macho"
"flag"
"fmt"
"go/ast"
"go/parser"
@ -21,12 +22,64 @@ import (
"strings"
)
func (p *Prog) loadDebugInfo() {
var b bytes.Buffer
var debugDefine = flag.Bool("debug-define", false, "print relevant #defines")
var debugGcc = flag.Bool("debug-gcc", false, "print gcc invocations")
var nameToC = map[string]string{
"schar": "signed char",
"uchar": "unsigned char",
"ushort": "unsigned short",
"uint": "unsigned int",
"ulong": "unsigned long",
"longlong": "long long",
"ulonglong": "unsigned long long",
}
// cname returns the C name to use for C.s.
// The expansions are listed in nameToC and also
// struct_foo becomes "struct foo", and similarly for
// union and enum.
func cname(s string) string {
if t, ok := nameToC[s]; ok {
return t
}
if strings.HasPrefix(s, "struct_") {
return "struct " + s[len("struct_"):]
}
if strings.HasPrefix(s, "union_") {
return "union " + s[len("union_"):]
}
if strings.HasPrefix(s, "enum_") {
return "enum " + s[len("enum_"):]
}
return s
}
// Translate rewrites f.AST, the original Go input, to remove
// references to the imported package C, replacing them with
// references to the equivalent Go types, functions, and variables.
func (p *Package) Translate(f *File) {
for _, cref := range f.Ref {
// Convert C.ulong to C.unsigned long, etc.
cref.Name.C = cname(cref.Name.Go)
}
p.loadDefines(f)
needType := p.guessKinds(f)
if len(needType) > 0 {
p.loadDWARF(f, needType)
}
p.rewriteRef(f)
}
// loadDefines coerces gcc into spitting out the #defines in use
// in the file f and saves relevant renamings in f.Name[name].Define.
func (p *Package) loadDefines(f *File) {
var b bytes.Buffer
b.WriteString(builtinProlog)
b.WriteString(f.Preamble)
stdout := p.gccDefines(b.Bytes())
b.WriteString(p.Preamble)
stdout := p.gccPostProc(b.Bytes())
defines := make(map[string]string)
for _, line := range strings.Split(stdout, "\n", -1) {
if len(line) < 9 || line[0:7] != "#define" {
continue
@ -48,68 +101,107 @@ func (p *Prog) loadDebugInfo() {
val = strings.TrimSpace(line[tabIndex:])
}
// Only allow string, character, and numeric constants. Ignoring #defines for
// symbols allows those symbols to be referenced in Go, as they will be
// translated by gcc later.
_, err := strconv.Atoi(string(val[0]))
if err == nil || val[0] == '\'' || val[0] == '"' {
defines[key] = val
}
}
// Construct a slice of unique names from p.Crefs.
m := make(map[string]int)
for _, c := range p.Crefs {
// If we've already found this name as a define, it is not a Cref.
if val, ok := defines[c.Name]; ok {
_, err := parser.ParseExpr("", val, nil)
if err != nil {
fmt.Fprintf(os.Stderr, "The value in C.%s does not parse as a Go expression; cannot use.\n", c.Name)
os.Exit(2)
if n := f.Name[key]; n != nil {
if *debugDefine {
fmt.Fprintf(os.Stderr, "#define %s %s\n", key, val)
}
c.Context = "const"
c.TypeName = false
p.Constdef[c.Name] = val
continue
n.Define = val
}
m[c.Name] = -1
}
names := make([]string, 0, len(m))
for name, _ := range m {
i := len(names)
names = names[0 : i+1]
names[i] = name
m[name] = i
}
}
// guessKinds tricks gcc into revealing the kind of each
// name xxx for the references C.xxx in the Go input.
// The kind is either a constant, type, or variable.
func (p *Package) guessKinds(f *File) []*Name {
// Coerce gcc into telling us whether each name is
// a type, a value, or undeclared. We compile a function
// containing the line:
// name;
// If name is a type, gcc will print:
// x.c:2: warning: useless type name in empty declaration
// cgo-test:2: warning: useless type name in empty declaration
// If name is a value, gcc will print
// x.c:2: warning: statement with no effect
// cgo-test:2: warning: statement with no effect
// If name is undeclared, gcc will print
// x.c:2: error: 'name' undeclared (first use in this function)
// cgo-test:2: error: 'name' undeclared (first use in this function)
// A line number directive causes the line number to
// correspond to the index in the names array.
b.Reset()
b.WriteString(p.Preamble)
//
// The line also has an enum declaration:
// name; enum { _cgo_enum_1 = name };
// If name is not a constant, gcc will print:
// cgo-test:4: error: enumerator value for '_cgo_enum_4' is not an integer constant
// we assume lines without that error are constants.
// Make list of names that need sniffing, type lookup.
toSniff := make([]*Name, 0, len(f.Name))
needType := make([]*Name, 0, len(f.Name))
for _, n := range f.Name {
// If we've already found this name as a #define
// and we can translate it as a constant value, do so.
if n.Define != "" {
ok := false
if _, err := strconv.Atoi(n.Define); err == nil {
ok = true
} else if n.Define[0] == '"' || n.Define[0] == '\'' {
_, err := parser.ParseExpr("", n.Define, nil)
if err == nil {
ok = true
}
}
if ok {
n.Kind = "const"
n.Const = n.Define
continue
}
if isName(n.Define) {
n.C = n.Define
}
}
// If this is a struct, union, or enum type name,
// record the kind but also that we need type information.
if strings.HasPrefix(n.C, "struct ") || strings.HasPrefix(n.C, "union ") || strings.HasPrefix(n.C, "enum ") {
n.Kind = "type"
i := len(needType)
needType = needType[0 : i+1]
needType[i] = n
continue
}
i := len(toSniff)
toSniff = toSniff[0 : i+1]
toSniff[i] = n
}
if len(toSniff) == 0 {
return needType
}
var b bytes.Buffer
b.WriteString(builtinProlog)
b.WriteString(f.Preamble)
b.WriteString("void f(void) {\n")
b.WriteString("#line 0 \"cgo-test\"\n")
for _, n := range names {
b.WriteString(n)
b.WriteString(";\n")
for i, n := range toSniff {
fmt.Fprintf(&b, "%s; enum { _cgo_enum_%d = %s }; /* cgo-test:%d */\n", n.C, i, n.C, i)
}
b.WriteString("}\n")
kind := make(map[string]string)
_, stderr := p.gccDebug(b.Bytes())
stderr := p.gccErrors(b.Bytes())
if stderr == "" {
fatal("gcc produced no output")
fatal("gcc produced no output\non input:\n%s", b.Bytes())
}
names := make([]*Name, len(toSniff))
copy(names, toSniff)
isConst := make([]bool, len(toSniff))
for i := range isConst {
isConst[i] = true // until proven otherwise
}
for _, line := range strings.Split(stderr, "\n", -1) {
if len(line) < 9 || line[0:9] != "cgo-test:" {
continue
@ -129,26 +221,50 @@ func (p *Prog) loadDebugInfo() {
continue
case strings.Index(line, ": useless type name in empty declaration") >= 0:
what = "type"
isConst[i] = false
case strings.Index(line, ": statement with no effect") >= 0:
what = "value"
what = "not-type" // const or func or var
case strings.Index(line, "undeclared") >= 0:
what = "error"
error(noPos, "%s", strings.TrimSpace(line[colon+1:]))
case strings.Index(line, "is not an integer constant") >= 0:
isConst[i] = false
continue
}
if old, ok := kind[names[i]]; ok && old != what {
error(noPos, "inconsistent gcc output about C.%s", names[i])
n := toSniff[i]
if n == nil {
continue
}
kind[names[i]] = what
}
for _, n := range names {
if _, ok := kind[n]; !ok {
error(noPos, "could not determine kind of name for C.%s", n)
}
}
toSniff[i] = nil
n.Kind = what
j := len(needType)
needType = needType[0 : j+1]
needType[j] = n
}
for i, b := range isConst {
if b {
names[i].Kind = "const"
}
}
for _, n := range toSniff {
if n == nil {
continue
}
if n.Kind != "" {
continue
}
error(noPos, "could not determine kind of name for C.%s", n.Go)
}
if nerrors > 0 {
fatal("failed to interpret gcc output:\n%s", stderr)
fatal("unresolved names")
}
return needType
}
// loadDWARF parses the DWARF debug information generated
// by gcc to learn the details of the constants, variables, and types
// being referred to as C.xxx.
func (p *Package) loadDWARF(f *File, names []*Name) {
// Extract the types from the DWARF section of an object
// from a well-formed C program. Gcc only generates DWARF info
// for symbols in the object file, so it is not enough to print the
@ -157,19 +273,24 @@ func (p *Prog) loadDebugInfo() {
// typeof(names[i]) *__cgo__i;
// for each entry in names and then dereference the type we
// learn for __cgo__i.
b.Reset()
b.WriteString(p.Preamble)
var b bytes.Buffer
b.WriteString(builtinProlog)
b.WriteString(f.Preamble)
for i, n := range names {
fmt.Fprintf(&b, "typeof(%s) *__cgo__%d;\n", n, i)
}
d, stderr := p.gccDebug(b.Bytes())
if d == nil {
fatal("gcc failed:\n%s\non input:\n%s", stderr, b.Bytes())
fmt.Fprintf(&b, "typeof(%s) *__cgo__%d;\n", n.C, i)
if n.Kind == "const" {
fmt.Fprintf(&b, "enum { __cgo_enum__%d = %s };\n", i, n.C)
}
}
d := p.gccDebug(b.Bytes())
// Scan DWARF info for top-level TagVariable entries with AttrName __cgo__i.
types := make([]dwarf.Type, len(names))
enums := make([]dwarf.Offset, len(names))
nameToIndex := make(map[*Name]int)
for i, n := range names {
nameToIndex[n] = i
}
r := d.Reader()
for {
e, err := r.Next()
@ -192,9 +313,11 @@ func (p *Prog) loadDebugInfo() {
}
if e.Tag == dwarf.TagEnumerator {
entryName := e.Val(dwarf.AttrName).(string)
i, ok := m[entryName]
if ok {
enums[i] = offset
if strings.HasPrefix(entryName, "__cgo_enum__") {
n, _ := strconv.Atoi(entryName[len("__cgo_enum__"):])
if 0 <= n && n < len(names) {
enums[n] = offset
}
}
}
}
@ -234,97 +357,205 @@ func (p *Prog) loadDebugInfo() {
}
}
// Record types and typedef information in Crefs.
// Record types and typedef information.
var conv typeConv
conv.Init(p.PtrSize)
for _, c := range p.Crefs {
i, ok := m[c.Name]
if !ok {
if _, ok := p.Constdef[c.Name]; !ok {
fatal("Cref %s is no longer around", c.Name)
}
continue
}
c.TypeName = kind[c.Name] == "type"
for i, n := range names {
f, fok := types[i].(*dwarf.FuncType)
if c.Context == "call" && !c.TypeName && fok {
c.FuncType = conv.FuncType(f)
if n.Kind != "type" && fok {
n.Kind = "func"
n.FuncType = conv.FuncType(f)
} else {
c.Type = conv.Type(types[i])
n.Type = conv.Type(types[i])
if enums[i] != 0 && n.Type.EnumValues != nil {
n.Kind = "const"
n.Const = strconv.Itoa64(n.Type.EnumValues[fmt.Sprintf("__cgo_enum__%d", i)])
}
}
}
p.Typedef = conv.typedef
f.Typedef = conv.typedef
}
func concat(a, b []string) []string {
c := make([]string, len(a)+len(b))
for i, s := range a {
c[i] = s
// rewriteRef rewrites all the C.xxx references in f.AST to refer to the
// Go equivalents, now that we have figured out the meaning of all
// the xxx.
func (p *Package) rewriteRef(f *File) {
// Assign mangled names.
for _, n := range f.Name {
if n.Kind == "not-type" {
n.Kind = "var"
}
if n.Mangle == "" {
n.Mangle = "_C" + n.Kind + "_" + n.Go
}
}
for i, s := range b {
c[i+len(a)] = s
// Now that we have all the name types filled in,
// scan through the Refs to identify the ones that
// are trying to do a ,err call. Also check that
// functions are only used in calls.
for _, r := range f.Ref {
var expr ast.Expr = ast.NewIdent(r.Name.Mangle) // default
switch r.Context {
case "call", "call2":
if r.Name.Kind != "func" {
if r.Name.Kind == "type" {
r.Context = "type"
expr = r.Name.Type.Go
break
}
error(r.Pos(), "call of non-function C.%s", r.Name.Go)
break
}
if r.Context == "call2" {
if r.Name.FuncType.Result == nil {
error(r.Pos(), "assignment count mismatch: 2 = 0")
}
// Invent new Name for the two-result function.
n := f.Name["2"+r.Name.Go]
if n == nil {
n = new(Name)
*n = *r.Name
n.AddError = true
n.Mangle = "_C2func_" + n.Go
f.Name["2"+r.Name.Go] = n
expr = ast.NewIdent(n.Mangle)
}
r.Name = n
break
}
case "expr":
if r.Name.Kind == "func" {
error(r.Pos(), "must call C.%s", r.Name.Go)
}
if r.Name.Kind == "type" {
// Okay - might be new(T)
expr = r.Name.Type.Go
}
if r.Name.Kind == "var" {
expr = &ast.StarExpr{X: expr}
}
case "type":
if r.Name.Kind != "type" {
error(r.Pos(), "expression C.%s used as type", r.Name.Go)
}
expr = r.Name.Type.Go
default:
if r.Name.Kind == "func" {
error(r.Pos(), "must call C.%s", r.Name.Go)
}
}
*r.Expr = expr
}
return c
}
// gccDebug runs gcc -gdwarf-2 over the C program stdin and
// returns the corresponding DWARF data and any messages
// printed to standard error.
func (p *Prog) gccDebug(stdin []byte) (*dwarf.Data, string) {
machine := "-m32"
// gccMachine returns the gcc -m flag to use, either "-m32" or "-m64".
func (p *Package) gccMachine() string {
if p.PtrSize == 8 {
machine = "-m64"
return "-m64"
}
return "-m32"
}
tmp := "_cgo_.o"
base := []string{
const gccTmp = "_cgo_.o"
// gccCmd returns the gcc command line to use for compiling
// the input.
func (p *Package) gccCmd() []string {
return []string{
"gcc",
machine,
p.gccMachine(),
"-Wall", // many warnings
"-Werror", // warnings are errors
"-o" + tmp, // write object to tmp
"-o" + gccTmp, // write object to tmp
"-gdwarf-2", // generate DWARF v2 debugging symbols
"-fno-eliminate-unused-debug-types", // gets rid of e.g. untyped enum otherwise
"-c", // do not link
"-xc", // input language is C
"-", // read input from standard input
}
_, stderr, ok := run(stdin, concat(base, p.GccOptions))
if !ok {
return nil, string(stderr)
}
}
// gccDebug runs gcc -gdwarf-2 over the C program stdin and
// returns the corresponding DWARF data and any messages
// printed to standard error.
func (p *Package) gccDebug(stdin []byte) *dwarf.Data {
runGcc(stdin, concat(p.gccCmd(), p.GccOptions))
// Try to parse f as ELF and Mach-O and hope one works.
var f interface {
DWARF() (*dwarf.Data, os.Error)
}
var err os.Error
if f, err = elf.Open(tmp); err != nil {
if f, err = macho.Open(tmp); err != nil {
fatal("cannot parse gcc output %s as ELF or Mach-O object", tmp)
if f, err = elf.Open(gccTmp); err != nil {
if f, err = macho.Open(gccTmp); err != nil {
fatal("cannot parse gcc output %s as ELF or Mach-O object", gccTmp)
}
}
d, err := f.DWARF()
if err != nil {
fatal("cannot load DWARF debug information from %s: %s", tmp, err)
fatal("cannot load DWARF debug information from %s: %s", gccTmp, err)
}
return d, ""
return d
}
func (p *Prog) gccPostProc(stdin []byte) string {
machine := "-m32"
if p.PtrSize == 8 {
machine = "-m64"
}
// gccDefines runs gcc -E -dM -xc - over the C program stdin
// and returns the corresponding standard output, which is the
// #defines that gcc encountered while processing the input
// and its included files.
func (p *Package) gccDefines(stdin []byte) string {
base := []string{"gcc", p.gccMachine(), "-E", "-dM", "-xc", "-"}
stdout, _ := runGcc(stdin, concat(base, p.GccOptions))
return stdout
}
base := []string{"gcc", machine, "-E", "-dM", "-xc", "-"}
stdout, stderr, ok := run(stdin, concat(base, p.GccOptions))
// gccErrors runs gcc over the C program stdin and returns
// the errors that gcc prints. That is, this function expects
// gcc to fail.
func (p *Package) gccErrors(stdin []byte) string {
// TODO(rsc): require failure
args := concat(p.gccCmd(), p.GccOptions)
if *debugGcc {
fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " "))
os.Stderr.Write(stdin)
fmt.Fprint(os.Stderr, "EOF\n")
}
stdout, stderr, _ := run(stdin, args)
if *debugGcc {
os.Stderr.Write(stdout)
os.Stderr.Write(stderr)
}
return string(stderr)
}
// runGcc runs the gcc command line args with stdin on standard input.
// If the command exits with a non-zero exit status, runGcc prints
// details about what was run and exits.
// Otherwise runGcc returns the data written to standard output and standard error.
// Note that for some of the uses we expect useful data back
// on standard error, but for those uses gcc must still exit 0.
func runGcc(stdin []byte, args []string) (string, string) {
if *debugGcc {
fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " "))
os.Stderr.Write(stdin)
fmt.Fprint(os.Stderr, "EOF\n")
}
stdout, stderr, ok := run(stdin, args)
if *debugGcc {
os.Stderr.Write(stdout)
os.Stderr.Write(stderr)
}
if !ok {
return string(stderr)
fmt.Fprint(os.Stderr, "Error running gcc:\n")
fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " "))
os.Stderr.Write(stdin)
fmt.Fprint(os.Stderr, "EOF\n")
os.Stderr.Write(stderr)
os.Exit(2)
}
return string(stdout)
return string(stdout), string(stderr)
}
// A typeConv is a translator from dwarf types to Go types
@ -388,7 +619,7 @@ func base(dt dwarf.Type) dwarf.Type {
}
// Map from dwarf text names to aliases we use in package "C".
var cnameMap = map[string]string{
var dwarfToName = map[string]string{
"long int": "long",
"long unsigned int": "ulong",
"unsigned int": "uint",
@ -415,6 +646,7 @@ func (c *typeConv) Type(dtype dwarf.Type) *Type {
t.C = dtype.Common().Name
t.EnumValues = nil
c.m[dtype] = t
if t.Size < 0 {
// Unsized types are [0]byte
t.Size = 0
@ -555,7 +787,7 @@ func (c *typeConv) Type(dtype dwarf.Type) *Type {
} else if t.C == "" {
t.C = dt.Kind + " " + tag
}
name := c.Ident("_C" + dt.Kind + "_" + tag)
name := c.Ident("_Ctype_" + dt.Kind + "_" + tag)
t.Go = name // publish before recursive calls
switch dt.Kind {
case "union", "class":
@ -583,7 +815,7 @@ func (c *typeConv) Type(dtype dwarf.Type) *Type {
t.Align = c.ptrSize
break
}
name := c.Ident("_C_" + dt.Name)
name := c.Ident("_Ctypedef_" + dt.Name)
t.Go = name // publish before recursive call
sub := c.Type(dt.Type)
t.Size = sub.Size
@ -628,11 +860,11 @@ func (c *typeConv) Type(dtype dwarf.Type) *Type {
case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.IntType, *dwarf.FloatType, *dwarf.UcharType, *dwarf.UintType:
s := dtype.Common().Name
if s != "" {
if ss, ok := cnameMap[s]; ok {
if ss, ok := dwarfToName[s]; ok {
s = ss
}
s = strings.Join(strings.Split(s, " ", -1), "") // strip spaces
name := c.Ident("_C_" + s)
name := c.Ident("_Ctype_" + s)
c.typedef[name.Name()] = t.Go
t.Go = name
}
@ -710,7 +942,9 @@ func (c *typeConv) FuncType(dtype *dwarf.FuncType) *FuncType {
}
// Identifier
func (c *typeConv) Ident(s string) *ast.Ident { return ast.NewIdent(s) }
func (c *typeConv) Ident(s string) *ast.Ident {
return ast.NewIdent(s)
}
// Opaque type of n bytes.
func (c *typeConv) Opaque(n int64) ast.Expr {
@ -736,13 +970,14 @@ func (c *typeConv) pad(fld []*ast.Field, size int64) []*ast.Field {
return fld
}
// Struct conversion
// Struct conversion: return Go and (6g) C syntax for type.
func (c *typeConv) Struct(dt *dwarf.StructType) (expr *ast.StructType, csyntax string, align int64) {
csyntax = "struct { "
var buf bytes.Buffer
buf.WriteString("struct {")
fld := make([]*ast.Field, 0, 2*len(dt.Field)+1) // enough for padding around every field
off := int64(0)
// Mangle struct fields that happen to be named Go keywords into
// Rename struct fields that happen to be named Go keywords into
// _{keyword}. Create a map from C ident -> Go ident. The Go ident will
// be mangled. Any existing identifier that already has the same name on
// the C-side will cause the Go-mangled version to be prefixed with _.
@ -783,7 +1018,10 @@ func (c *typeConv) Struct(dt *dwarf.StructType) (expr *ast.StructType, csyntax s
fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident(ident[f.Name])}, Type: t.Go}
off += t.Size
csyntax += t.C + " " + f.Name + "; "
buf.WriteString(t.C)
buf.WriteString(" ")
buf.WriteString(f.Name)
buf.WriteString("; ")
if t.Align > align {
align = t.Align
}
@ -795,7 +1033,8 @@ func (c *typeConv) Struct(dt *dwarf.StructType) (expr *ast.StructType, csyntax s
if off != dt.ByteSize {
fatal("struct size calculation error")
}
csyntax += "}"
buf.WriteString("}")
csyntax = buf.String()
expr = &ast.StructType{Fields: &ast.FieldList{List: fld}}
return
}

View File

@ -11,13 +11,91 @@
package main
import (
"flag"
"fmt"
"go/ast"
"go/token"
"os"
"reflect"
"strings"
)
func usage() { fmt.Fprint(os.Stderr, "usage: cgo [compiler options] file.go ...\n") }
// A Package collects information about the package we're going to write.
type Package struct {
PackageName string // name of package
PackagePath string
PtrSize int64
GccOptions []string
Written map[string]bool
Name map[string]*Name // accumulated Name from Files
Typedef map[string]ast.Expr // accumulated Typedef from Files
ExpFunc []*ExpFunc // accumulated ExpFunc from Files
Decl []ast.Decl
}
// A File collects information about a single Go input file.
type File struct {
AST *ast.File // parsed AST
Package string // Package name
Preamble string // C preamble (doc comment on import "C")
Ref []*Ref // all references to C.xxx in AST
ExpFunc []*ExpFunc // exported functions for this file
Name map[string]*Name // map from Go name to Name
Typedef map[string]ast.Expr // translations of all necessary types from C
}
// A Ref refers to an expression of the form C.xxx in the AST.
type Ref struct {
Name *Name
Expr *ast.Expr
Context string // "type", "expr", "call", or "call2"
}
func (r *Ref) Pos() token.Position {
return (*r.Expr).Pos()
}
// A Name collects information about C.xxx.
type Name struct {
Go string // name used in Go referring to package C
Mangle string // name used in generated Go
C string // name used in C
Define string // #define expansion
Kind string // "const", "type", "var", "func", "not-type"
Type *Type // the type of xxx
FuncType *FuncType
AddError bool
Const string // constant definition
}
// A ExpFunc is an exported function, callable from C.
// Such functions are identified in the Go input file
// by doc comments containing the line //export ExpName
type ExpFunc struct {
Func *ast.FuncDecl
ExpName string // name to use from C
}
// A Type collects information about a type in both the C and Go worlds.
type Type struct {
Size int64
Align int64
C string
Go ast.Expr
EnumValues map[string]int64
}
// A FuncType collects information about a function type in both the C and Go worlds.
type FuncType struct {
Params []*Type
Result *Type
Go *ast.FuncType
}
func usage() {
fmt.Fprint(os.Stderr, "usage: cgo [compiler options] file.go ...\n")
os.Exit(2)
}
var ptrSizeMap = map[string]int64{
"386": 4,
@ -25,43 +103,34 @@ var ptrSizeMap = map[string]int64{
"arm": 4,
}
var expandName = map[string]string{
"schar": "signed char",
"uchar": "unsigned char",
"ushort": "unsigned short",
"uint": "unsigned int",
"ulong": "unsigned long",
"longlong": "long long",
"ulonglong": "unsigned long long",
}
func main() {
args := os.Args
if len(args) < 2 {
flag.Usage = usage
flag.Parse()
args := flag.Args()
if len(args) < 1 {
usage()
os.Exit(2)
}
// Find first arg that looks like a go file and assume everything before
// that are options to pass to gcc.
var i int
for i = len(args) - 1; i > 0; i-- {
if !strings.HasSuffix(args[i], ".go") {
for i = len(args); i > 0; i-- {
if !strings.HasSuffix(args[i-1], ".go") {
break
}
}
i += 1
gccOptions, goFiles := args[1:i], args[i:]
if i == len(args) {
usage()
}
gccOptions, goFiles := args[0:i], args[i:]
arch := os.Getenv("GOARCH")
if arch == "" {
fatal("$GOARCH is not set")
}
ptrSize, ok := ptrSizeMap[arch]
if !ok {
fatal("unknown architecture %s", arch)
ptrSize := ptrSizeMap[arch]
if ptrSize == 0 {
fatal("unknown $GOARCH %q", arch)
}
// Clear locale variables so gcc emits English errors [sic].
@ -69,75 +138,88 @@ func main() {
os.Setenv("LC_ALL", "C")
os.Setenv("LC_CTYPE", "C")
p := new(Prog)
p.PtrSize = ptrSize
p.GccOptions = gccOptions
p.Vardef = make(map[string]*Type)
p.Funcdef = make(map[string]*FuncType)
p.Enumdef = make(map[string]int64)
p.Constdef = make(map[string]string)
p.OutDefs = make(map[string]bool)
p := &Package{
PtrSize: ptrSize,
GccOptions: gccOptions,
Written: make(map[string]bool),
}
for _, input := range goFiles {
// Reset p.Preamble so that we don't end up with conflicting headers / defines
p.Preamble = builtinProlog
openProg(input, p)
for _, cref := range p.Crefs {
// Convert C.ulong to C.unsigned long, etc.
if expand, ok := expandName[cref.Name]; ok {
cref.Name = expand
}
}
p.loadDebugInfo()
for _, cref := range p.Crefs {
f := new(File)
// Reset f.Preamble so that we don't end up with conflicting headers / defines
f.Preamble = ""
f.ReadGo(input)
p.Translate(f)
for _, cref := range f.Ref {
switch cref.Context {
case "const":
// This came from a #define and we'll output it later.
*cref.Expr = ast.NewIdent(cref.Name)
break
case "call":
if !cref.TypeName {
// Is an actual function call.
pos := (*cref.Expr).Pos()
*cref.Expr = &ast.Ident{Position: pos, Obj: ast.NewObj(ast.Err, pos, "_C_"+cref.Name)}
p.Funcdef[cref.Name] = cref.FuncType
case "call", "call2":
if cref.Name.Kind != "type" {
break
}
*cref.Expr = cref.Type.Go
case "expr":
if cref.TypeName {
error((*cref.Expr).Pos(), "type C.%s used as expression", cref.Name)
}
// If the expression refers to an enumerated value, then
// place the identifier for the value and add it to Enumdef so
// it will be declared as a constant in the later stage.
if cref.Type.EnumValues != nil {
*cref.Expr = ast.NewIdent(cref.Name)
p.Enumdef[cref.Name] = cref.Type.EnumValues[cref.Name]
break
}
// Reference to C variable.
// We declare a pointer and arrange to have it filled in.
*cref.Expr = &ast.StarExpr{X: ast.NewIdent("_C_" + cref.Name)}
p.Vardef[cref.Name] = cref.Type
case "type":
if !cref.TypeName {
error((*cref.Expr).Pos(), "expression C.%s used as type", cref.Name)
}
*cref.Expr = cref.Type.Go
*cref.Expr = cref.Name.Type.Go
}
}
if nerrors > 0 {
os.Exit(2)
}
pkg := p.Package
pkg := f.Package
if dir := os.Getenv("CGOPKGPATH"); dir != "" {
pkg = dir + "/" + pkg
}
p.PackagePath = pkg
p.writeOutput(input)
p.writeOutput(f, input)
p.Record(f)
}
p.writeDefs()
}
// Record what needs to be recorded about f.
func (p *Package) Record(f *File) {
if p.PackageName == "" {
p.PackageName = f.Package
} else if p.PackageName != f.Package {
error(noPos, "inconsistent package names: %s, %s", p.PackageName, f.Package)
}
if p.Typedef == nil {
p.Typedef = f.Typedef
} else {
for k, v := range f.Typedef {
if p.Typedef[k] == nil {
p.Typedef[k] = v
} else if !reflect.DeepEqual(p.Typedef[k], v) {
error(noPos, "inconsistent definitions for C type %s", k)
}
}
}
if p.Name == nil {
p.Name = f.Name
} else {
for k, v := range f.Name {
if p.Name[k] == nil {
p.Name[k] = v
} else if !reflect.DeepEqual(p.Name[k], v) {
error(noPos, "inconsistent definitions for C.%s", k)
}
}
}
if len(f.ExpFunc) > 0 {
n := len(p.ExpFunc)
ef := make([]*ExpFunc, n+len(f.ExpFunc))
copy(ef, p.ExpFunc)
copy(ef[n:], f.ExpFunc)
p.ExpFunc = ef
}
if len(f.AST.Decls) > 0 {
n := len(p.Decl)
d := make([]ast.Decl, n+len(f.AST.Decls))
copy(d, p.Decl)
copy(d[n:], f.AST.Decls)
p.Decl = d
}
}

View File

@ -5,6 +5,7 @@
package main
import (
"bytes"
"fmt"
"go/ast"
"go/printer"
@ -13,30 +14,9 @@ import (
"strings"
)
func creat(name string) *os.File {
f, err := os.Open(name, os.O_WRONLY|os.O_CREAT|os.O_TRUNC, 0666)
if err != nil {
fatal("%s", err)
}
return f
}
func slashToUnderscore(c int) int {
if c == '/' {
c = '_'
}
return c
}
// writeDefs creates output files to be compiled by 6g, 6c, and gcc.
// (The comments here say 6g and 6c but the code applies to the 8 and 5 tools too.)
func (p *Prog) writeDefs() {
pkgroot := os.Getenv("GOROOT") + "/pkg/" + os.Getenv("GOOS") + "_" + os.Getenv("GOARCH")
path := p.PackagePath
if !strings.HasPrefix(path, "/") {
path = pkgroot + "/" + path
}
func (p *Package) writeDefs() {
// The path for the shared object is slash-free so that ELF loaders
// will treat it as a relative path. We rewrite slashes to underscores.
sopath := "cgo_" + strings.Map(slashToUnderscore, p.PackagePath)
@ -53,108 +33,43 @@ func (p *Prog) writeDefs() {
// In a separate file so that the import of "unsafe" does not
// pollute the original file.
fmt.Fprintf(fgo2, "// Created by cgo - DO NOT EDIT\n")
fmt.Fprintf(fgo2, "package %s\n\n", p.Package)
fmt.Fprintf(fgo2, "package %s\n\n", p.PackageName)
fmt.Fprintf(fgo2, "import \"unsafe\"\n\n")
fmt.Fprintf(fgo2, "import \"os\"\n\n")
fmt.Fprintf(fgo2, "type _ unsafe.Pointer\n\n")
fmt.Fprintf(fgo2, "func _Cerrno(dst *os.Error, x int) { *dst = os.Errno(x) }\n")
for name, def := range p.Typedef {
fmt.Fprintf(fgo2, "type %s ", name)
printer.Fprint(fgo2, def)
fmt.Fprintf(fgo2, "\n")
}
fmt.Fprintf(fgo2, "type _C_void [0]byte\n")
fmt.Fprintf(fgo2, "type _Ctype_void [0]byte\n")
fmt.Fprintf(fc, cProlog, soprefix, soprefix, soprefix, soprefix, soprefix)
for name, def := range p.Vardef {
fmt.Fprintf(fc, "#pragma dynimport ·_C_%s %s \"%s%s.so\"\n", name, name, soprefix, sopath)
fmt.Fprintf(fgo2, "var _C_%s ", name)
printer.Fprint(fgo2, &ast.StarExpr{X: def.Go})
for _, n := range p.Name {
if n.Kind != "var" {
continue
}
fmt.Fprintf(fc, "#pragma dynimport ·%s %s \"%s%s.so\"\n", n.Mangle, n.C, soprefix, sopath)
fmt.Fprintf(fgo2, "var %s ", n.Mangle)
printer.Fprint(fgo2, &ast.StarExpr{X: n.Type.Go})
fmt.Fprintf(fgo2, "\n")
}
fmt.Fprintf(fc, "\n")
for name, value := range p.Constdef {
fmt.Fprintf(fgo2, "const %s = %s\n", name, value)
}
for name, value := range p.Enumdef {
fmt.Fprintf(fgo2, "const %s = %d\n", name, value)
for _, n := range p.Name {
if n.Const != "" {
fmt.Fprintf(fgo2, "const _Cconst_%s = %s\n", n.Go, n.Const)
}
}
fmt.Fprintf(fgo2, "\n")
for name, def := range p.Funcdef {
// Go func declaration.
d := &ast.FuncDecl{
Name: ast.NewIdent("_C_" + name),
Type: def.Go,
for _, n := range p.Name {
if n.FuncType != nil {
p.writeDefsFunc(fc, fgo2, n, soprefix, sopath)
}
printer.Fprint(fgo2, d)
fmt.Fprintf(fgo2, "\n")
if name == "CString" || name == "GoString" {
// The builtins are already defined in the C prolog.
continue
}
// Construct a gcc struct matching the 6c argument frame.
// Assumes that in gcc, char is 1 byte, short 2 bytes, int 4 bytes, long long 8 bytes.
// These assumptions are checked by the gccProlog.
// Also assumes that 6c convention is to word-align the
// input and output parameters.
structType := "struct {\n"
off := int64(0)
npad := 0
for i, t := range def.Params {
if off%t.Align != 0 {
pad := t.Align - off%t.Align
structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
structType += fmt.Sprintf("\t\t%s p%d;\n", t.C, i)
off += t.Size
}
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
if t := def.Result; t != nil {
if off%t.Align != 0 {
pad := t.Align - off%t.Align
structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
structType += fmt.Sprintf("\t\t%s r;\n", t.C)
off += t.Size
}
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
if len(def.Params) == 0 && def.Result == nil {
structType += "\t\tchar unused;\n" // avoid empty struct
off++
}
structType += "\t}"
argSize := off
// C wrapper calls into gcc, passing a pointer to the argument frame.
// Also emit #pragma to get a pointer to the gcc wrapper.
fmt.Fprintf(fc, "#pragma dynimport _cgo_%s _cgo_%s \"%s%s.so\"\n", name, name, soprefix, sopath)
fmt.Fprintf(fc, "void (*_cgo_%s)(void*);\n", name)
fmt.Fprintf(fc, "\n")
fmt.Fprintf(fc, "void\n")
fmt.Fprintf(fc, "·_C_%s(struct{uint8 x[%d];}p)\n", name, argSize)
fmt.Fprintf(fc, "{\n")
fmt.Fprintf(fc, "\tcgocall(_cgo_%s, &p);\n", name)
fmt.Fprintf(fc, "}\n")
fmt.Fprintf(fc, "\n")
}
p.writeExports(fgo2, fc)
@ -163,111 +78,200 @@ func (p *Prog) writeDefs() {
fc.Close()
}
// Construct a gcc struct matching the 6c argument frame.
// Assumes that in gcc, char is 1 byte, short 2 bytes, int 4 bytes, long long 8 bytes.
// These assumptions are checked by the gccProlog.
// Also assumes that 6c convention is to word-align the
// input and output parameters.
func (p *Package) structType(n *Name) (string, int64) {
var buf bytes.Buffer
fmt.Fprint(&buf, "struct {\n")
off := int64(0)
for i, t := range n.FuncType.Params {
if off%t.Align != 0 {
pad := t.Align - off%t.Align
fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad)
off += pad
}
fmt.Fprintf(&buf, "\t\t%s p%d;\n", t.C, i)
off += t.Size
}
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad)
off += pad
}
if t := n.FuncType.Result; t != nil {
if off%t.Align != 0 {
pad := t.Align - off%t.Align
fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad)
off += pad
}
fmt.Fprintf(&buf, "\t\t%s r;\n", t.C)
off += t.Size
}
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad)
off += pad
}
if n.AddError {
fmt.Fprint(&buf, "\t\tvoid *e[2]; /* os.Error */\n")
off += 2 * p.PtrSize
}
if off == 0 {
fmt.Fprintf(&buf, "\t\tchar unused;\n") // avoid empty struct
off++
}
fmt.Fprintf(&buf, "\t}\n")
return buf.String(), off
}
func (p *Package) writeDefsFunc(fc, fgo2 *os.File, n *Name, soprefix, sopath string) {
name := n.Go
gtype := n.FuncType.Go
if n.AddError {
// Add "os.Error" to return type list.
// Type list is known to be 0 or 1 element - it's a C function.
err := &ast.Field{Type: ast.NewIdent("os.Error")}
l := gtype.Results.List
if len(l) == 0 {
l = []*ast.Field{err}
} else {
l = []*ast.Field{l[0], err}
}
t := new(ast.FuncType)
*t = *gtype
t.Results = &ast.FieldList{List: l}
gtype = t
}
// Go func declaration.
d := &ast.FuncDecl{
Name: ast.NewIdent(n.Mangle),
Type: gtype,
}
printer.Fprint(fgo2, d)
fmt.Fprintf(fgo2, "\n")
if name == "CString" || name == "GoString" {
// The builtins are already defined in the C prolog.
return
}
var argSize int64
_, argSize = p.structType(n)
// C wrapper calls into gcc, passing a pointer to the argument frame.
// Also emit #pragma to get a pointer to the gcc wrapper.
fmt.Fprintf(fc, "#pragma dynimport _cgo%s _cgo%s \"%s%s.so\"\n", n.Mangle, n.Mangle, soprefix, sopath)
fmt.Fprintf(fc, "void (*_cgo%s)(void*);\n", n.Mangle)
fmt.Fprintf(fc, "\n")
fmt.Fprintf(fc, "void\n")
fmt.Fprintf(fc, "·%s(struct{uint8 x[%d];}p)\n", n.Mangle, argSize)
fmt.Fprintf(fc, "{\n")
fmt.Fprintf(fc, "\tcgocall(_cgo%s, &p);\n", n.Mangle)
if n.AddError {
// gcc leaves errno in first word of interface at end of p.
// check whether it is zero; if so, turn interface into nil.
// if not, turn interface into errno.
// Go init function initializes ·_Cerrno with an os.Errno
// for us to copy.
fmt.Fprintln(fc, ` {
int32 e;
void **v;
v = (void**)(&p+1) - 2; /* v = final two void* of p */
e = *(int32*)v;
v[0] = (void*)0xdeadbeef;
v[1] = (void*)0xdeadbeef;
if(e == 0) {
/* nil interface */
v[0] = 0;
v[1] = 0;
} else {
·_Cerrno(v, e); /* fill in v as os.Error for errno e */
}
}`)
}
fmt.Fprintf(fc, "}\n")
fmt.Fprintf(fc, "\n")
}
// writeOutput creates stubs for a specific source file to be compiled by 6g
// (The comments here say 6g and 6c but the code applies to the 8 and 5 tools too.)
func (p *Prog) writeOutput(srcfile string) {
func (p *Package) writeOutput(f *File, srcfile string) {
base := srcfile
if strings.HasSuffix(base, ".go") {
base = base[0 : len(base)-3]
}
base = strings.Map(slashToUnderscore, base)
fgo1 := creat(base + ".cgo1.go")
fgcc := creat(base + ".cgo2.c")
// Write Go output: Go input with rewrites of C.xxx to _C_xxx.
fmt.Fprintf(fgo1, "// Created by cgo - DO NOT EDIT\n")
fmt.Fprintf(fgo1, "//line %s:1\n", srcfile)
printer.Fprint(fgo1, p.AST)
printer.Fprint(fgo1, f.AST)
// While we process the vars and funcs, also write 6c and gcc output.
// Gcc output starts with the preamble.
fmt.Fprintf(fgcc, "%s\n", p.Preamble)
fmt.Fprintf(fgcc, "%s\n", f.Preamble)
fmt.Fprintf(fgcc, "%s\n", gccProlog)
for name, def := range p.Funcdef {
_, ok := p.OutDefs[name]
if name == "CString" || name == "GoString" || ok {
// The builtins are already defined in the C prolog, and we don't
// want to duplicate function definitions we've already done.
continue
for _, n := range f.Name {
if n.FuncType != nil {
p.writeOutputFunc(fgcc, n)
}
p.OutDefs[name] = true
// Construct a gcc struct matching the 6c argument frame.
// Assumes that in gcc, char is 1 byte, short 2 bytes, int 4 bytes, long long 8 bytes.
// These assumptions are checked by the gccProlog.
// Also assumes that 6c convention is to word-align the
// input and output parameters.
structType := "struct {\n"
off := int64(0)
npad := 0
for i, t := range def.Params {
if off%t.Align != 0 {
pad := t.Align - off%t.Align
structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
structType += fmt.Sprintf("\t\t%s p%d;\n", t.C, i)
off += t.Size
}
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
if t := def.Result; t != nil {
if off%t.Align != 0 {
pad := t.Align - off%t.Align
structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
structType += fmt.Sprintf("\t\t%s r;\n", t.C)
off += t.Size
}
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
if len(def.Params) == 0 && def.Result == nil {
structType += "\t\tchar unused;\n" // avoid empty struct
off++
}
structType += "\t}"
// Gcc wrapper unpacks the C argument struct
// and calls the actual C function.
fmt.Fprintf(fgcc, "void\n")
fmt.Fprintf(fgcc, "_cgo_%s(void *v)\n", name)
fmt.Fprintf(fgcc, "{\n")
fmt.Fprintf(fgcc, "\t%s *a = v;\n", structType)
fmt.Fprintf(fgcc, "\t")
if def.Result != nil {
fmt.Fprintf(fgcc, "a->r = ")
}
fmt.Fprintf(fgcc, "%s(", name)
for i := range def.Params {
if i > 0 {
fmt.Fprintf(fgcc, ", ")
}
fmt.Fprintf(fgcc, "a->p%d", i)
}
fmt.Fprintf(fgcc, ");\n")
fmt.Fprintf(fgcc, "}\n")
fmt.Fprintf(fgcc, "\n")
}
fgo1.Close()
fgcc.Close()
}
func (p *Package) writeOutputFunc(fgcc *os.File, n *Name) {
name := n.Mangle
if name == "_Cfunc_CString" || name == "_Cfunc_GoString" || p.Written[name] {
// The builtins are already defined in the C prolog, and we don't
// want to duplicate function definitions we've already done.
return
}
p.Written[name] = true
ctype, _ := p.structType(n)
// Gcc wrapper unpacks the C argument struct
// and calls the actual C function.
fmt.Fprintf(fgcc, "void\n")
fmt.Fprintf(fgcc, "_cgo%s(void *v)\n", n.Mangle)
fmt.Fprintf(fgcc, "{\n")
if n.AddError {
fmt.Fprintf(fgcc, "\tint e;\n") // assuming 32 bit (see comment above structType)
fmt.Fprintf(fgcc, "\terrno = 0;\n")
}
fmt.Fprintf(fgcc, "\t%s *a = v;\n", ctype)
fmt.Fprintf(fgcc, "\t")
if n.FuncType.Result != nil {
fmt.Fprintf(fgcc, "a->r = ")
}
fmt.Fprintf(fgcc, "%s(", n.C)
for i := range n.FuncType.Params {
if i > 0 {
fmt.Fprintf(fgcc, ", ")
}
fmt.Fprintf(fgcc, "a->p%d", i)
}
fmt.Fprintf(fgcc, ");\n")
if n.AddError {
fmt.Fprintf(fgcc, "\t*(int*)(a->e) = errno;\n")
}
fmt.Fprintf(fgcc, "}\n")
fmt.Fprintf(fgcc, "\n")
}
// Write out the various stubs we need to support functions exported
// from Go so that they are callable from C.
func (p *Prog) writeExports(fgo2, fc *os.File) {
if len(p.ExpFuncs) == 0 {
func (p *Package) writeExports(fgo2, fc *os.File) {
if len(p.ExpFunc) == 0 {
return
}
@ -280,17 +284,17 @@ func (p *Prog) writeExports(fgo2, fc *os.File) {
fmt.Fprintf(fgcc, "/* Created by cgo - DO NOT EDIT. */\n")
fmt.Fprintf(fgcc, "#include \"_cgo_export.h\"\n")
for _, exp := range p.ExpFuncs {
for _, exp := range p.ExpFunc {
fn := exp.Func
// Construct a gcc struct matching the 6c argument and
// result frame.
structType := "struct {\n"
ctype := "struct {\n"
off := int64(0)
npad := 0
if fn.Recv != nil {
t := p.cgoType(fn.Recv.List[0].Type)
structType += fmt.Sprintf("\t\t%s recv;\n", t.C)
ctype += fmt.Sprintf("\t\t%s recv;\n", t.C)
off += t.Size
}
fntype := fn.Type
@ -299,16 +303,16 @@ func (p *Prog) writeExports(fgo2, fc *os.File) {
t := p.cgoType(atype)
if off%t.Align != 0 {
pad := t.Align - off%t.Align
structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
structType += fmt.Sprintf("\t\t%s p%d;\n", t.C, i)
ctype += fmt.Sprintf("\t\t%s p%d;\n", t.C, i)
off += t.Size
})
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
@ -317,24 +321,24 @@ func (p *Prog) writeExports(fgo2, fc *os.File) {
t := p.cgoType(atype)
if off%t.Align != 0 {
pad := t.Align - off%t.Align
structType += fmt.Sprintf("\t\tchar __pad%d[%d]\n", npad, pad)
ctype += fmt.Sprintf("\t\tchar __pad%d[%d]\n", npad, pad)
off += pad
npad++
}
structType += fmt.Sprintf("\t\t%s r%d;\n", t.C, i)
ctype += fmt.Sprintf("\t\t%s r%d;\n", t.C, i)
off += t.Size
})
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
if structType == "struct {\n" {
structType += "\t\tchar unused;\n" // avoid empty struct
if ctype == "struct {\n" {
ctype += "\t\tchar unused;\n" // avoid empty struct
off++
}
structType += "\t}"
ctype += "\t}"
// Get the return type of the wrapper function
// compiled by gcc.
@ -373,7 +377,7 @@ func (p *Prog) writeExports(fgo2, fc *os.File) {
fmt.Fprintf(fgcc, "extern _cgoexp_%s(void *, int);\n", exp.ExpName)
fmt.Fprintf(fgcc, "\n%s\n", s)
fmt.Fprintf(fgcc, "{\n")
fmt.Fprintf(fgcc, "\t%s a;\n", structType)
fmt.Fprintf(fgcc, "\t%s a;\n", ctype)
if gccResult != "void" && (len(fntype.Results.List) > 1 || len(fntype.Results.List[0].Names) > 1) {
fmt.Fprintf(fgcc, "\t%s r;\n", gccResult)
}
@ -493,7 +497,7 @@ var goTypes = map[string]*Type{
}
// Map an ast type to a Type.
func (p *Prog) cgoType(e ast.Expr) *Type {
func (p *Package) cgoType(e ast.Expr) *Type {
switch t := e.(type) {
case *ast.StarExpr:
x := p.cgoType(t.X)
@ -515,7 +519,7 @@ func (p *Prog) cgoType(e ast.Expr) *Type {
case *ast.Ident:
// Look up the type in the top level declarations.
// TODO: Handle types defined within a function.
for _, d := range p.AST.Decls {
for _, d := range p.Decl {
gd, ok := d.(*ast.GenDecl)
if !ok || gd.Tok != token.TYPE {
continue
@ -568,6 +572,9 @@ typedef long long __cgo_long_long;
__cgo_size_assert(__cgo_long_long, 8)
__cgo_size_assert(float, 4)
__cgo_size_assert(double, 8)
#include <errno.h>
#include <string.h>
`
const builtinProlog = `
@ -586,15 +593,17 @@ const cProlog = `
#pragma dynimport _cgo_malloc _cgo_malloc "%slibcgo.so"
#pragma dynimport _cgo_free _cgo_free "%slibcgo.so"
void ·_Cerrno(void*, int32);
void
·_C_GoString(int8 *p, String s)
·_Cfunc_GoString(int8 *p, String s)
{
s = gostring((byte*)p);
FLUSH(&s);
}
void
·_C_CString(String s, int8 *p)
·_Cfunc_CString(String s, int8 *p)
{
p = cmalloc(s.len+1);
mcpy((byte*)p, s.str, s.len);

View File

@ -12,16 +12,6 @@ import (
"os"
)
// A ByteReaderAt implements io.ReadAt using a slice of bytes.
type ByteReaderAt []byte
func (r ByteReaderAt) ReadAt(p []byte, off int64) (n int, err os.Error) {
if off >= int64(len(r)) || off < 0 {
return 0, os.EOF
}
return copy(p, r[off:]), nil
}
// run runs the command argv, feeding in stdin on standard input.
// It returns the output to standard output and standard error.
// ok indicates whether the command exited successfully.
@ -92,3 +82,38 @@ func error(pos token.Position, msg string, args ...interface{}) {
fmt.Fprintf(os.Stderr, msg, args)
fmt.Fprintf(os.Stderr, "\n")
}
// isName returns true if s is a valid C identifier
func isName(s string) bool {
for i, v := range s {
if v != '_' && (v < 'A' || v > 'Z') && (v < 'a' || v > 'z') && (v < '0' || v > '9') {
return false
}
if i == 0 && '0' <= v && v <= '9' {
return false
}
}
return s != ""
}
func creat(name string) *os.File {
f, err := os.Open(name, os.O_WRONLY|os.O_CREAT|os.O_TRUNC, 0666)
if err != nil {
fatal("%s", err)
}
return f
}
func slashToUnderscore(c int) int {
if c == '/' {
c = '_'
}
return c
}
func concat(a, b []string) []string {
c := make([]string, len(a)+len(b))
copy(c, a)
copy(c[len(a):], b)
return c
}