1
0
mirror of https://github.com/golang/go synced 2024-09-29 22:34:33 -06:00
go/misc/cgo/test/issue1560.go

51 lines
1.2 KiB
Go
Raw Normal View History

runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cgotest
/*
// mysleep returns the absolute start time in ms.
long long mysleep(int seconds);
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// twoSleep returns the absolute start time of the first sleep
// in ms.
long long twoSleep(int);
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
*/
import "C"
import (
"testing"
"time"
)
var sleepDone = make(chan int64)
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// parallelSleep returns the absolute difference between the start time
// of the two sleeps.
func parallelSleep(n int) int64 {
t := int64(C.twoSleep(C.int(n))) - <-sleepDone
if t < 0 {
return -t
}
return t
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
}
//export BackgroundSleep
func BackgroundSleep(n int32) {
go func() {
sleepDone <- int64(C.mysleep(C.int(n)))
}()
}
func testParallelSleep(t *testing.T) {
sleepSec := 1
dt := time.Duration(parallelSleep(sleepSec)) * time.Millisecond
t.Logf("difference in start time for two sleep(%d) is %v", sleepSec, dt)
// bug used to run sleeps in serial, producing a 2*sleepSec-second delay.
// we detect if the start times of those sleeps are > 0.5*sleepSec-second.
if dt >= time.Duration(sleepSec)*time.Second/2 {
t.Fatalf("parallel %d-second sleeps slept for %f seconds", sleepSec, dt.Seconds())
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
}
}