1
0
mirror of https://github.com/golang/go synced 2024-11-19 18:34:43 -07:00
go/src/runtime/os_freebsd.go

313 lines
7.0 KiB
Go
Raw Normal View History

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"runtime/internal/sys"
"unsafe"
)
type mOS struct{}
//go:noescape
func thr_new(param *thrparam, size int32)
//go:noescape
func sigaltstack(new, old *stackt)
//go:noescape
func sigaction(sig int32, new, old *sigactiont)
//go:noescape
func sigprocmask(how int32, new, old *sigset)
//go:noescape
func setitimer(mode int32, new, old *itimerval)
//go:noescape
func sysctl(mib *uint32, miblen uint32, out *byte, size *uintptr, dst *byte, ndst uintptr) int32
//go:noescape
func getrlimit(kind int32, limit unsafe.Pointer) int32
func raise(sig int32)
func raiseproc(sig int32)
//go:noescape
func sys_umtx_op(addr *uint32, mode int32, val uint32, ptr2, ts *timespec) int32
func osyield()
// From FreeBSD's <sys/sysctl.h>
const (
_CTL_HW = 6
_HW_NCPU = 3
)
var sigset_all = sigset{[4]uint32{^uint32(0), ^uint32(0), ^uint32(0), ^uint32(0)}}
func getncpu() int32 {
mib := [2]uint32{_CTL_HW, _HW_NCPU}
out := uint32(0)
nout := unsafe.Sizeof(out)
ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0)
if ret >= 0 {
return int32(out)
}
return 1
}
// FreeBSD's umtx_op syscall is effectively the same as Linux's futex, and
// thus the code is largely similar. See Linux implementation
// and lock_futex.go for comments.
//go:nosplit
func futexsleep(addr *uint32, val uint32, ns int64) {
[dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack Scalararg and ptrarg are not "signal safe". Go code filling them out can be interrupted by a signal, and then the signal handler runs, and if it also ends up in Go code that uses scalararg or ptrarg, now the old values have been smashed. For the pieces of code that do need to run in a signal handler, we introduced onM_signalok, which is really just onM except that the _signalok is meant to convey that the caller asserts that scalarg and ptrarg will be restored to their old values after the call (instead of the usual behavior, zeroing them). Scalararg and ptrarg are also untyped and therefore error-prone. Go code can always pass a closure instead of using scalararg and ptrarg; they were only really necessary for C code. And there's no more C code. For all these reasons, delete scalararg and ptrarg, converting the few remaining references to use closures. Once those are gone, there is no need for a distinction between onM and onM_signalok, so replace both with a single function equivalent to the current onM_signalok (that is, it can be called on any of the curg, g0, and gsignal stacks). The name onM and the phrase 'm stack' are misnomers, because on most system an M has two system stacks: the main thread stack and the signal handling stack. Correct the misnomer by naming the replacement function systemstack. Fix a few references to "M stack" in code. The main motivation for this change is to eliminate scalararg/ptrarg. Rick and I have already seen them cause problems because the calling sequence m.ptrarg[0] = p is a heap pointer assignment, so it gets a write barrier. The write barrier also uses onM, so it has all the same problems as if it were being invoked by a signal handler. We worked around this by saving and restoring the old values and by calling onM_signalok, but there's no point in keeping this nice home for bugs around any longer. This CL also changes funcline to return the file name as a result instead of filling in a passed-in *string. (The *string signature is left over from when the code was written in and called from C.) That's arguably an unrelated change, except that once I had done the ptrarg/scalararg/onM cleanup I started getting false positives about the *string argument escaping (not allowed in package runtime). The compiler is wrong, but the easiest fix is to write the code like Go code instead of like C code. I am a bit worried that the compiler is wrong because of some use of uninitialized memory in the escape analysis. If that's the reason, it will go away when we convert the compiler to Go. (And if not, we'll debug it the next time.) LGTM=khr R=r, khr CC=austin, golang-codereviews, iant, rlh https://golang.org/cl/174950043
2014-11-12 12:54:31 -07:00
systemstack(func() {
futexsleep1(addr, val, ns)
})
}
func futexsleep1(addr *uint32, val uint32, ns int64) {
var tsp *timespec
if ns >= 0 {
var ts timespec
ts.tv_nsec = 0
ts.set_sec(int64(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec)))))
tsp = &ts
}
ret := sys_umtx_op(addr, _UMTX_OP_WAIT_UINT_PRIVATE, val, nil, tsp)
if ret >= 0 || ret == -_EINTR {
return
}
print("umtx_wait addr=", addr, " val=", val, " ret=", ret, "\n")
*(*int32)(unsafe.Pointer(uintptr(0x1005))) = 0x1005
}
//go:nosplit
func futexwakeup(addr *uint32, cnt uint32) {
ret := sys_umtx_op(addr, _UMTX_OP_WAKE_PRIVATE, cnt, nil, nil)
if ret >= 0 {
return
}
[dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack Scalararg and ptrarg are not "signal safe". Go code filling them out can be interrupted by a signal, and then the signal handler runs, and if it also ends up in Go code that uses scalararg or ptrarg, now the old values have been smashed. For the pieces of code that do need to run in a signal handler, we introduced onM_signalok, which is really just onM except that the _signalok is meant to convey that the caller asserts that scalarg and ptrarg will be restored to their old values after the call (instead of the usual behavior, zeroing them). Scalararg and ptrarg are also untyped and therefore error-prone. Go code can always pass a closure instead of using scalararg and ptrarg; they were only really necessary for C code. And there's no more C code. For all these reasons, delete scalararg and ptrarg, converting the few remaining references to use closures. Once those are gone, there is no need for a distinction between onM and onM_signalok, so replace both with a single function equivalent to the current onM_signalok (that is, it can be called on any of the curg, g0, and gsignal stacks). The name onM and the phrase 'm stack' are misnomers, because on most system an M has two system stacks: the main thread stack and the signal handling stack. Correct the misnomer by naming the replacement function systemstack. Fix a few references to "M stack" in code. The main motivation for this change is to eliminate scalararg/ptrarg. Rick and I have already seen them cause problems because the calling sequence m.ptrarg[0] = p is a heap pointer assignment, so it gets a write barrier. The write barrier also uses onM, so it has all the same problems as if it were being invoked by a signal handler. We worked around this by saving and restoring the old values and by calling onM_signalok, but there's no point in keeping this nice home for bugs around any longer. This CL also changes funcline to return the file name as a result instead of filling in a passed-in *string. (The *string signature is left over from when the code was written in and called from C.) That's arguably an unrelated change, except that once I had done the ptrarg/scalararg/onM cleanup I started getting false positives about the *string argument escaping (not allowed in package runtime). The compiler is wrong, but the easiest fix is to write the code like Go code instead of like C code. I am a bit worried that the compiler is wrong because of some use of uninitialized memory in the escape analysis. If that's the reason, it will go away when we convert the compiler to Go. (And if not, we'll debug it the next time.) LGTM=khr R=r, khr CC=austin, golang-codereviews, iant, rlh https://golang.org/cl/174950043
2014-11-12 12:54:31 -07:00
systemstack(func() {
print("umtx_wake_addr=", addr, " ret=", ret, "\n")
})
}
func thr_start()
// May run with m.p==nil, so write barriers are not allowed.
//go:nowritebarrier
func newosproc(mp *m, stk unsafe.Pointer) {
if false {
print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " thr_start=", funcPC(thr_start), " id=", mp.id, " ostk=", &mp, "\n")
}
// NOTE(rsc): This code is confused. stackbase is the top of the stack
// and is equal to stk. However, it's working, so I'm not changing it.
param := thrparam{
start_func: funcPC(thr_start),
arg: unsafe.Pointer(mp),
stack_base: mp.g0.stack.hi,
stack_size: uintptr(stk) - mp.g0.stack.hi,
child_tid: unsafe.Pointer(&mp.procid),
parent_tid: nil,
tls_base: unsafe.Pointer(&mp.tls[0]),
tls_size: unsafe.Sizeof(mp.tls),
}
var oset sigset
sigprocmask(_SIG_SETMASK, &sigset_all, &oset)
// TODO: Check for error.
thr_new(&param, int32(unsafe.Sizeof(param)))
sigprocmask(_SIG_SETMASK, &oset, nil)
}
func osinit() {
ncpu = getncpu()
}
var urandom_dev = []byte("/dev/urandom\x00")
//go:nosplit
func getRandomData(r []byte) {
fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
n := read(fd, unsafe.Pointer(&r[0]), int32(len(r)))
closefd(fd)
extendRandom(r, int(n))
}
func goenvs() {
goenvs_unix()
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
func mpreinit(mp *m) {
mp.gsignal = malg(32 * 1024)
mp.gsignal.m = mp
}
//go:nosplit
runtime: don't always unblock all signals Ian proposed an improved way of handling signals masks in Go, motivated by a problem where the Android java runtime expects certain signals to be blocked for all JVM threads. Discussion here https://groups.google.com/forum/#!topic/golang-dev/_TSCkQHJt6g Ian's text is used in the following: A Go program always needs to have the synchronous signals enabled. These are the signals for which _SigPanic is set in sigtable, namely SIGSEGV, SIGBUS, SIGFPE. A Go program that uses the os/signal package, and calls signal.Notify, needs to have at least one thread which is not blocking that signal, but it doesn't matter much which one. Unix programs do not change signal mask across execve. They inherit signal masks across fork. The shell uses this fact to some extent; for example, the job control signals (SIGTTIN, SIGTTOU, SIGTSTP) are blocked for commands run due to backquote quoting or $(). Our current position on signal masks was not thought out. We wandered into step by step, e.g., http://golang.org/cl/7323067 . This CL does the following: Introduce a new platform hook, msigsave, that saves the signal mask of the current thread to m.sigsave. Call msigsave from needm and newm. In minit grab set up the signal mask from m.sigsave and unblock the essential synchronous signals, and SIGILL, SIGTRAP, SIGPROF, SIGSTKFLT (for systems that have it). In unminit, restore the signal mask from m.sigsave. The first time that os/signal.Notify is called, start a new thread whose only purpose is to update its signal mask to make sure signals for signal.Notify are unblocked on at least one thread. The effect on Go programs will be that if they are invoked with some non-synchronous signals blocked, those signals will normally be ignored. Previously, those signals would mostly be ignored. A change in behaviour will occur for programs started with any of these signals blocked, if they receive the signal: SIGHUP, SIGINT, SIGQUIT, SIGABRT, SIGTERM. Previously those signals would always cause a crash (unless using the os/signal package); with this change, they will be ignored if the program is started with the signal blocked (and does not use the os/signal package). ./all.bash completes successfully on linux/amd64. OpenBSD is missing the implementation. Change-Id: I188098ba7eb85eae4c14861269cc466f2aa40e8c Reviewed-on: https://go-review.googlesource.com/10173 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-05-18 03:00:24 -06:00
func msigsave(mp *m) {
sigprocmask(_SIG_SETMASK, nil, &mp.sigmask)
runtime: don't always unblock all signals Ian proposed an improved way of handling signals masks in Go, motivated by a problem where the Android java runtime expects certain signals to be blocked for all JVM threads. Discussion here https://groups.google.com/forum/#!topic/golang-dev/_TSCkQHJt6g Ian's text is used in the following: A Go program always needs to have the synchronous signals enabled. These are the signals for which _SigPanic is set in sigtable, namely SIGSEGV, SIGBUS, SIGFPE. A Go program that uses the os/signal package, and calls signal.Notify, needs to have at least one thread which is not blocking that signal, but it doesn't matter much which one. Unix programs do not change signal mask across execve. They inherit signal masks across fork. The shell uses this fact to some extent; for example, the job control signals (SIGTTIN, SIGTTOU, SIGTSTP) are blocked for commands run due to backquote quoting or $(). Our current position on signal masks was not thought out. We wandered into step by step, e.g., http://golang.org/cl/7323067 . This CL does the following: Introduce a new platform hook, msigsave, that saves the signal mask of the current thread to m.sigsave. Call msigsave from needm and newm. In minit grab set up the signal mask from m.sigsave and unblock the essential synchronous signals, and SIGILL, SIGTRAP, SIGPROF, SIGSTKFLT (for systems that have it). In unminit, restore the signal mask from m.sigsave. The first time that os/signal.Notify is called, start a new thread whose only purpose is to update its signal mask to make sure signals for signal.Notify are unblocked on at least one thread. The effect on Go programs will be that if they are invoked with some non-synchronous signals blocked, those signals will normally be ignored. Previously, those signals would mostly be ignored. A change in behaviour will occur for programs started with any of these signals blocked, if they receive the signal: SIGHUP, SIGINT, SIGQUIT, SIGABRT, SIGTERM. Previously those signals would always cause a crash (unless using the os/signal package); with this change, they will be ignored if the program is started with the signal blocked (and does not use the os/signal package). ./all.bash completes successfully on linux/amd64. OpenBSD is missing the implementation. Change-Id: I188098ba7eb85eae4c14861269cc466f2aa40e8c Reviewed-on: https://go-review.googlesource.com/10173 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-05-18 03:00:24 -06:00
}
//go:nosplit
func msigrestore(sigmask sigset) {
sigprocmask(_SIG_SETMASK, &sigmask, nil)
}
//go:nosplit
func sigblock() {
sigprocmask(_SIG_SETMASK, &sigset_all, nil)
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, cannot allocate memory.
func minit() {
_g_ := getg()
// m.procid is a uint64, but thr_new writes a uint32 on 32-bit systems.
// Fix it up. (Only matters on big-endian, but be clean anyway.)
if sys.PtrSize == 4 {
_g_.m.procid = uint64(*(*uint32)(unsafe.Pointer(&_g_.m.procid)))
}
// Initialize signal handling.
var st stackt
sigaltstack(nil, &st)
if st.ss_flags&_SS_DISABLE != 0 {
signalstack(&_g_.m.gsignal.stack)
_g_.m.newSigstack = true
} else {
// Use existing signal stack.
stsp := uintptr(unsafe.Pointer(st.ss_sp))
_g_.m.gsignal.stack.lo = stsp
_g_.m.gsignal.stack.hi = stsp + st.ss_size
_g_.m.gsignal.stackguard0 = stsp + _StackGuard
_g_.m.gsignal.stackguard1 = stsp + _StackGuard
_g_.m.gsignal.stackAlloc = st.ss_size
_g_.m.newSigstack = false
}
runtime: don't always unblock all signals Ian proposed an improved way of handling signals masks in Go, motivated by a problem where the Android java runtime expects certain signals to be blocked for all JVM threads. Discussion here https://groups.google.com/forum/#!topic/golang-dev/_TSCkQHJt6g Ian's text is used in the following: A Go program always needs to have the synchronous signals enabled. These are the signals for which _SigPanic is set in sigtable, namely SIGSEGV, SIGBUS, SIGFPE. A Go program that uses the os/signal package, and calls signal.Notify, needs to have at least one thread which is not blocking that signal, but it doesn't matter much which one. Unix programs do not change signal mask across execve. They inherit signal masks across fork. The shell uses this fact to some extent; for example, the job control signals (SIGTTIN, SIGTTOU, SIGTSTP) are blocked for commands run due to backquote quoting or $(). Our current position on signal masks was not thought out. We wandered into step by step, e.g., http://golang.org/cl/7323067 . This CL does the following: Introduce a new platform hook, msigsave, that saves the signal mask of the current thread to m.sigsave. Call msigsave from needm and newm. In minit grab set up the signal mask from m.sigsave and unblock the essential synchronous signals, and SIGILL, SIGTRAP, SIGPROF, SIGSTKFLT (for systems that have it). In unminit, restore the signal mask from m.sigsave. The first time that os/signal.Notify is called, start a new thread whose only purpose is to update its signal mask to make sure signals for signal.Notify are unblocked on at least one thread. The effect on Go programs will be that if they are invoked with some non-synchronous signals blocked, those signals will normally be ignored. Previously, those signals would mostly be ignored. A change in behaviour will occur for programs started with any of these signals blocked, if they receive the signal: SIGHUP, SIGINT, SIGQUIT, SIGABRT, SIGTERM. Previously those signals would always cause a crash (unless using the os/signal package); with this change, they will be ignored if the program is started with the signal blocked (and does not use the os/signal package). ./all.bash completes successfully on linux/amd64. OpenBSD is missing the implementation. Change-Id: I188098ba7eb85eae4c14861269cc466f2aa40e8c Reviewed-on: https://go-review.googlesource.com/10173 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-05-18 03:00:24 -06:00
// restore signal mask from m.sigmask and unblock essential signals
nmask := _g_.m.sigmask
runtime: don't always unblock all signals Ian proposed an improved way of handling signals masks in Go, motivated by a problem where the Android java runtime expects certain signals to be blocked for all JVM threads. Discussion here https://groups.google.com/forum/#!topic/golang-dev/_TSCkQHJt6g Ian's text is used in the following: A Go program always needs to have the synchronous signals enabled. These are the signals for which _SigPanic is set in sigtable, namely SIGSEGV, SIGBUS, SIGFPE. A Go program that uses the os/signal package, and calls signal.Notify, needs to have at least one thread which is not blocking that signal, but it doesn't matter much which one. Unix programs do not change signal mask across execve. They inherit signal masks across fork. The shell uses this fact to some extent; for example, the job control signals (SIGTTIN, SIGTTOU, SIGTSTP) are blocked for commands run due to backquote quoting or $(). Our current position on signal masks was not thought out. We wandered into step by step, e.g., http://golang.org/cl/7323067 . This CL does the following: Introduce a new platform hook, msigsave, that saves the signal mask of the current thread to m.sigsave. Call msigsave from needm and newm. In minit grab set up the signal mask from m.sigsave and unblock the essential synchronous signals, and SIGILL, SIGTRAP, SIGPROF, SIGSTKFLT (for systems that have it). In unminit, restore the signal mask from m.sigsave. The first time that os/signal.Notify is called, start a new thread whose only purpose is to update its signal mask to make sure signals for signal.Notify are unblocked on at least one thread. The effect on Go programs will be that if they are invoked with some non-synchronous signals blocked, those signals will normally be ignored. Previously, those signals would mostly be ignored. A change in behaviour will occur for programs started with any of these signals blocked, if they receive the signal: SIGHUP, SIGINT, SIGQUIT, SIGABRT, SIGTERM. Previously those signals would always cause a crash (unless using the os/signal package); with this change, they will be ignored if the program is started with the signal blocked (and does not use the os/signal package). ./all.bash completes successfully on linux/amd64. OpenBSD is missing the implementation. Change-Id: I188098ba7eb85eae4c14861269cc466f2aa40e8c Reviewed-on: https://go-review.googlesource.com/10173 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-05-18 03:00:24 -06:00
for i := range sigtable {
if sigtable[i].flags&_SigUnblock != 0 {
nmask.__bits[(i-1)/32] &^= 1 << ((uint32(i) - 1) & 31)
}
}
sigprocmask(_SIG_SETMASK, &nmask, nil)
}
// Called from dropm to undo the effect of an minit.
//go:nosplit
func unminit() {
if getg().m.newSigstack {
signalstack(nil)
}
}
func memlimit() uintptr {
/*
TODO: Convert to Go when something actually uses the result.
Rlimit rl;
extern byte runtime·text[], runtime·end[];
uintptr used;
if(runtime·getrlimit(RLIMIT_AS, &rl) != 0)
return 0;
if(rl.rlim_cur >= 0x7fffffff)
return 0;
// Estimate our VM footprint excluding the heap.
// Not an exact science: use size of binary plus
// some room for thread stacks.
used = runtime·end - runtime·text + (64<<20);
if(used >= rl.rlim_cur)
return 0;
// If there's not at least 16 MB left, we're probably
// not going to be able to do much. Treat as no limit.
rl.rlim_cur -= used;
if(rl.rlim_cur < (16<<20))
return 0;
return rl.rlim_cur - used;
*/
return 0
}
func sigtramp()
type sigactiont struct {
sa_handler uintptr
sa_flags int32
sa_mask sigset
}
//go:nosplit
//go:nowritebarrierrec
func setsig(i int32, fn uintptr, restart bool) {
var sa sigactiont
sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK
if restart {
sa.sa_flags |= _SA_RESTART
}
sa.sa_mask = sigset_all
if fn == funcPC(sighandler) {
fn = funcPC(sigtramp)
}
sa.sa_handler = fn
sigaction(i, &sa, nil)
}
//go:nosplit
//go:nowritebarrierrec
func setsigstack(i int32) {
throw("setsigstack")
}
//go:nosplit
//go:nowritebarrierrec
func getsig(i int32) uintptr {
var sa sigactiont
sigaction(i, nil, &sa)
if sa.sa_handler == funcPC(sigtramp) {
return funcPC(sighandler)
}
return sa.sa_handler
}
//go:nosplit
func signalstack(s *stack) {
var st stackt
if s == nil {
st.ss_flags = _SS_DISABLE
} else {
st.ss_sp = s.lo
st.ss_size = s.hi - s.lo
st.ss_flags = 0
}
sigaltstack(&st, nil)
}
//go:nosplit
//go:nowritebarrierrec
runtime: don't always unblock all signals Ian proposed an improved way of handling signals masks in Go, motivated by a problem where the Android java runtime expects certain signals to be blocked for all JVM threads. Discussion here https://groups.google.com/forum/#!topic/golang-dev/_TSCkQHJt6g Ian's text is used in the following: A Go program always needs to have the synchronous signals enabled. These are the signals for which _SigPanic is set in sigtable, namely SIGSEGV, SIGBUS, SIGFPE. A Go program that uses the os/signal package, and calls signal.Notify, needs to have at least one thread which is not blocking that signal, but it doesn't matter much which one. Unix programs do not change signal mask across execve. They inherit signal masks across fork. The shell uses this fact to some extent; for example, the job control signals (SIGTTIN, SIGTTOU, SIGTSTP) are blocked for commands run due to backquote quoting or $(). Our current position on signal masks was not thought out. We wandered into step by step, e.g., http://golang.org/cl/7323067 . This CL does the following: Introduce a new platform hook, msigsave, that saves the signal mask of the current thread to m.sigsave. Call msigsave from needm and newm. In minit grab set up the signal mask from m.sigsave and unblock the essential synchronous signals, and SIGILL, SIGTRAP, SIGPROF, SIGSTKFLT (for systems that have it). In unminit, restore the signal mask from m.sigsave. The first time that os/signal.Notify is called, start a new thread whose only purpose is to update its signal mask to make sure signals for signal.Notify are unblocked on at least one thread. The effect on Go programs will be that if they are invoked with some non-synchronous signals blocked, those signals will normally be ignored. Previously, those signals would mostly be ignored. A change in behaviour will occur for programs started with any of these signals blocked, if they receive the signal: SIGHUP, SIGINT, SIGQUIT, SIGABRT, SIGTERM. Previously those signals would always cause a crash (unless using the os/signal package); with this change, they will be ignored if the program is started with the signal blocked (and does not use the os/signal package). ./all.bash completes successfully on linux/amd64. OpenBSD is missing the implementation. Change-Id: I188098ba7eb85eae4c14861269cc466f2aa40e8c Reviewed-on: https://go-review.googlesource.com/10173 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-05-18 03:00:24 -06:00
func updatesigmask(m [(_NSIG + 31) / 32]uint32) {
var mask sigset
copy(mask.__bits[:], m[:])
sigprocmask(_SIG_SETMASK, &mask, nil)
}
func unblocksig(sig int32) {
var mask sigset
mask.__bits[(sig-1)/32] |= 1 << ((uint32(sig) - 1) & 31)
sigprocmask(_SIG_UNBLOCK, &mask, nil)
}