// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "runtime/internal/sys" "unsafe" ) type mOS struct{} //go:noescape func thr_new(param *thrparam, size int32) //go:noescape func sigaltstack(new, old *stackt) //go:noescape func sigaction(sig int32, new, old *sigactiont) //go:noescape func sigprocmask(how int32, new, old *sigset) //go:noescape func setitimer(mode int32, new, old *itimerval) //go:noescape func sysctl(mib *uint32, miblen uint32, out *byte, size *uintptr, dst *byte, ndst uintptr) int32 //go:noescape func getrlimit(kind int32, limit unsafe.Pointer) int32 func raise(sig int32) func raiseproc(sig int32) //go:noescape func sys_umtx_op(addr *uint32, mode int32, val uint32, ptr2, ts *timespec) int32 func osyield() // From FreeBSD's const ( _CTL_HW = 6 _HW_NCPU = 3 ) var sigset_all = sigset{[4]uint32{^uint32(0), ^uint32(0), ^uint32(0), ^uint32(0)}} func getncpu() int32 { mib := [2]uint32{_CTL_HW, _HW_NCPU} out := uint32(0) nout := unsafe.Sizeof(out) ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0) if ret >= 0 { return int32(out) } return 1 } // FreeBSD's umtx_op syscall is effectively the same as Linux's futex, and // thus the code is largely similar. See Linux implementation // and lock_futex.go for comments. //go:nosplit func futexsleep(addr *uint32, val uint32, ns int64) { systemstack(func() { futexsleep1(addr, val, ns) }) } func futexsleep1(addr *uint32, val uint32, ns int64) { var tsp *timespec if ns >= 0 { var ts timespec ts.tv_nsec = 0 ts.set_sec(int64(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec))))) tsp = &ts } ret := sys_umtx_op(addr, _UMTX_OP_WAIT_UINT_PRIVATE, val, nil, tsp) if ret >= 0 || ret == -_EINTR { return } print("umtx_wait addr=", addr, " val=", val, " ret=", ret, "\n") *(*int32)(unsafe.Pointer(uintptr(0x1005))) = 0x1005 } //go:nosplit func futexwakeup(addr *uint32, cnt uint32) { ret := sys_umtx_op(addr, _UMTX_OP_WAKE_PRIVATE, cnt, nil, nil) if ret >= 0 { return } systemstack(func() { print("umtx_wake_addr=", addr, " ret=", ret, "\n") }) } func thr_start() // May run with m.p==nil, so write barriers are not allowed. //go:nowritebarrier func newosproc(mp *m, stk unsafe.Pointer) { if false { print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " thr_start=", funcPC(thr_start), " id=", mp.id, " ostk=", &mp, "\n") } // NOTE(rsc): This code is confused. stackbase is the top of the stack // and is equal to stk. However, it's working, so I'm not changing it. param := thrparam{ start_func: funcPC(thr_start), arg: unsafe.Pointer(mp), stack_base: mp.g0.stack.hi, stack_size: uintptr(stk) - mp.g0.stack.hi, child_tid: unsafe.Pointer(&mp.procid), parent_tid: nil, tls_base: unsafe.Pointer(&mp.tls[0]), tls_size: unsafe.Sizeof(mp.tls), } var oset sigset sigprocmask(_SIG_SETMASK, &sigset_all, &oset) // TODO: Check for error. thr_new(¶m, int32(unsafe.Sizeof(param))) sigprocmask(_SIG_SETMASK, &oset, nil) } func osinit() { ncpu = getncpu() } var urandom_dev = []byte("/dev/urandom\x00") //go:nosplit func getRandomData(r []byte) { fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) closefd(fd) extendRandom(r, int(n)) } func goenvs() { goenvs_unix() } // Called to initialize a new m (including the bootstrap m). // Called on the parent thread (main thread in case of bootstrap), can allocate memory. func mpreinit(mp *m) { mp.gsignal = malg(32 * 1024) mp.gsignal.m = mp } //go:nosplit func msigsave(mp *m) { sigprocmask(_SIG_SETMASK, nil, &mp.sigmask) } //go:nosplit func msigrestore(sigmask sigset) { sigprocmask(_SIG_SETMASK, &sigmask, nil) } //go:nosplit func sigblock() { sigprocmask(_SIG_SETMASK, &sigset_all, nil) } // Called to initialize a new m (including the bootstrap m). // Called on the new thread, cannot allocate memory. func minit() { _g_ := getg() // m.procid is a uint64, but thr_new writes a uint32 on 32-bit systems. // Fix it up. (Only matters on big-endian, but be clean anyway.) if sys.PtrSize == 4 { _g_.m.procid = uint64(*(*uint32)(unsafe.Pointer(&_g_.m.procid))) } // Initialize signal handling. var st stackt sigaltstack(nil, &st) if st.ss_flags&_SS_DISABLE != 0 { signalstack(&_g_.m.gsignal.stack) _g_.m.newSigstack = true } else { // Use existing signal stack. stsp := uintptr(unsafe.Pointer(st.ss_sp)) _g_.m.gsignal.stack.lo = stsp _g_.m.gsignal.stack.hi = stsp + st.ss_size _g_.m.gsignal.stackguard0 = stsp + _StackGuard _g_.m.gsignal.stackguard1 = stsp + _StackGuard _g_.m.gsignal.stackAlloc = st.ss_size _g_.m.newSigstack = false } // restore signal mask from m.sigmask and unblock essential signals nmask := _g_.m.sigmask for i := range sigtable { if sigtable[i].flags&_SigUnblock != 0 { nmask.__bits[(i-1)/32] &^= 1 << ((uint32(i) - 1) & 31) } } sigprocmask(_SIG_SETMASK, &nmask, nil) } // Called from dropm to undo the effect of an minit. //go:nosplit func unminit() { if getg().m.newSigstack { signalstack(nil) } } func memlimit() uintptr { /* TODO: Convert to Go when something actually uses the result. Rlimit rl; extern byte runtime·text[], runtime·end[]; uintptr used; if(runtime·getrlimit(RLIMIT_AS, &rl) != 0) return 0; if(rl.rlim_cur >= 0x7fffffff) return 0; // Estimate our VM footprint excluding the heap. // Not an exact science: use size of binary plus // some room for thread stacks. used = runtime·end - runtime·text + (64<<20); if(used >= rl.rlim_cur) return 0; // If there's not at least 16 MB left, we're probably // not going to be able to do much. Treat as no limit. rl.rlim_cur -= used; if(rl.rlim_cur < (16<<20)) return 0; return rl.rlim_cur - used; */ return 0 } func sigtramp() type sigactiont struct { sa_handler uintptr sa_flags int32 sa_mask sigset } //go:nosplit //go:nowritebarrierrec func setsig(i int32, fn uintptr, restart bool) { var sa sigactiont sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK if restart { sa.sa_flags |= _SA_RESTART } sa.sa_mask = sigset_all if fn == funcPC(sighandler) { fn = funcPC(sigtramp) } sa.sa_handler = fn sigaction(i, &sa, nil) } //go:nosplit //go:nowritebarrierrec func setsigstack(i int32) { throw("setsigstack") } //go:nosplit //go:nowritebarrierrec func getsig(i int32) uintptr { var sa sigactiont sigaction(i, nil, &sa) if sa.sa_handler == funcPC(sigtramp) { return funcPC(sighandler) } return sa.sa_handler } //go:nosplit func signalstack(s *stack) { var st stackt if s == nil { st.ss_flags = _SS_DISABLE } else { st.ss_sp = s.lo st.ss_size = s.hi - s.lo st.ss_flags = 0 } sigaltstack(&st, nil) } //go:nosplit //go:nowritebarrierrec func updatesigmask(m [(_NSIG + 31) / 32]uint32) { var mask sigset copy(mask.__bits[:], m[:]) sigprocmask(_SIG_SETMASK, &mask, nil) } func unblocksig(sig int32) { var mask sigset mask.__bits[(sig-1)/32] |= 1 << ((uint32(sig) - 1) & 31) sigprocmask(_SIG_UNBLOCK, &mask, nil) }