mirror of
https://github.com/golang/go
synced 2024-11-20 03:34:40 -07:00
f5d494bbdf
Currently its possible for the garbage collector to observe uninitialized memory or stale heap bitmap bits on weakly ordered architectures such as ARM and PPC. On such architectures, the stores that zero newly allocated memory and initialize its heap bitmap may move after a store in user code that makes the allocated object observable by the garbage collector. To fix this, add a "publication barrier" (also known as an "export barrier") before returning from mallocgc. This is a store/store barrier that ensures any write done by user code that makes the returned object observable to the garbage collector will be ordered after the initialization performed by mallocgc. No barrier is necessary on the reading side because of the data dependency between loading the pointer and loading the contents of the object. Fixes one of the issues raised in #9984. Change-Id: Ia3d96ad9c5fc7f4d342f5e05ec0ceae700cd17c8 Reviewed-on: https://go-review.googlesource.com/11083 Reviewed-by: Rick Hudson <rlh@golang.org> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Minux Ma <minux@golang.org> Reviewed-by: Martin Capitanio <capnm9@gmail.com> Reviewed-by: Russ Cox <rsc@golang.org>
1729 lines
39 KiB
ArmAsm
1729 lines
39 KiB
ArmAsm
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
#include "go_asm.h"
|
|
#include "go_tls.h"
|
|
#include "funcdata.h"
|
|
#include "textflag.h"
|
|
|
|
TEXT runtime·rt0_go(SB),NOSPLIT,$0
|
|
// copy arguments forward on an even stack
|
|
MOVQ DI, AX // argc
|
|
MOVQ SI, BX // argv
|
|
SUBQ $(4*8+7), SP // 2args 2auto
|
|
ANDQ $~15, SP
|
|
MOVQ AX, 16(SP)
|
|
MOVQ BX, 24(SP)
|
|
|
|
// create istack out of the given (operating system) stack.
|
|
// _cgo_init may update stackguard.
|
|
MOVQ $runtime·g0(SB), DI
|
|
LEAQ (-64*1024+104)(SP), BX
|
|
MOVQ BX, g_stackguard0(DI)
|
|
MOVQ BX, g_stackguard1(DI)
|
|
MOVQ BX, (g_stack+stack_lo)(DI)
|
|
MOVQ SP, (g_stack+stack_hi)(DI)
|
|
|
|
// find out information about the processor we're on
|
|
MOVQ $0, AX
|
|
CPUID
|
|
CMPQ AX, $0
|
|
JE nocpuinfo
|
|
|
|
// Figure out how to serialize RDTSC.
|
|
// On Intel processors LFENCE is enough. AMD requires MFENCE.
|
|
// Don't know about the rest, so let's do MFENCE.
|
|
CMPL BX, $0x756E6547 // "Genu"
|
|
JNE notintel
|
|
CMPL DX, $0x49656E69 // "ineI"
|
|
JNE notintel
|
|
CMPL CX, $0x6C65746E // "ntel"
|
|
JNE notintel
|
|
MOVB $1, runtime·lfenceBeforeRdtsc(SB)
|
|
notintel:
|
|
|
|
MOVQ $1, AX
|
|
CPUID
|
|
MOVL CX, runtime·cpuid_ecx(SB)
|
|
MOVL DX, runtime·cpuid_edx(SB)
|
|
nocpuinfo:
|
|
|
|
// if there is an _cgo_init, call it.
|
|
MOVQ _cgo_init(SB), AX
|
|
TESTQ AX, AX
|
|
JZ needtls
|
|
// g0 already in DI
|
|
MOVQ DI, CX // Win64 uses CX for first parameter
|
|
MOVQ $setg_gcc<>(SB), SI
|
|
CALL AX
|
|
|
|
// update stackguard after _cgo_init
|
|
MOVQ $runtime·g0(SB), CX
|
|
MOVQ (g_stack+stack_lo)(CX), AX
|
|
ADDQ $const__StackGuard, AX
|
|
MOVQ AX, g_stackguard0(CX)
|
|
MOVQ AX, g_stackguard1(CX)
|
|
|
|
CMPL runtime·iswindows(SB), $0
|
|
JEQ ok
|
|
needtls:
|
|
// skip TLS setup on Plan 9
|
|
CMPL runtime·isplan9(SB), $1
|
|
JEQ ok
|
|
// skip TLS setup on Solaris
|
|
CMPL runtime·issolaris(SB), $1
|
|
JEQ ok
|
|
|
|
LEAQ runtime·tls0(SB), DI
|
|
CALL runtime·settls(SB)
|
|
|
|
// store through it, to make sure it works
|
|
get_tls(BX)
|
|
MOVQ $0x123, g(BX)
|
|
MOVQ runtime·tls0(SB), AX
|
|
CMPQ AX, $0x123
|
|
JEQ 2(PC)
|
|
MOVL AX, 0 // abort
|
|
ok:
|
|
// set the per-goroutine and per-mach "registers"
|
|
get_tls(BX)
|
|
LEAQ runtime·g0(SB), CX
|
|
MOVQ CX, g(BX)
|
|
LEAQ runtime·m0(SB), AX
|
|
|
|
// save m->g0 = g0
|
|
MOVQ CX, m_g0(AX)
|
|
// save m0 to g0->m
|
|
MOVQ AX, g_m(CX)
|
|
|
|
CLD // convention is D is always left cleared
|
|
CALL runtime·check(SB)
|
|
|
|
MOVL 16(SP), AX // copy argc
|
|
MOVL AX, 0(SP)
|
|
MOVQ 24(SP), AX // copy argv
|
|
MOVQ AX, 8(SP)
|
|
CALL runtime·args(SB)
|
|
CALL runtime·osinit(SB)
|
|
CALL runtime·schedinit(SB)
|
|
|
|
// create a new goroutine to start program
|
|
MOVQ $runtime·mainPC(SB), AX // entry
|
|
PUSHQ AX
|
|
PUSHQ $0 // arg size
|
|
CALL runtime·newproc(SB)
|
|
POPQ AX
|
|
POPQ AX
|
|
|
|
// start this M
|
|
CALL runtime·mstart(SB)
|
|
|
|
MOVL $0xf1, 0xf1 // crash
|
|
RET
|
|
|
|
DATA runtime·mainPC+0(SB)/8,$runtime·main(SB)
|
|
GLOBL runtime·mainPC(SB),RODATA,$8
|
|
|
|
TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
|
|
BYTE $0xcc
|
|
RET
|
|
|
|
TEXT runtime·asminit(SB),NOSPLIT,$0-0
|
|
// No per-thread init.
|
|
RET
|
|
|
|
/*
|
|
* go-routine
|
|
*/
|
|
|
|
// void gosave(Gobuf*)
|
|
// save state in Gobuf; setjmp
|
|
TEXT runtime·gosave(SB), NOSPLIT, $0-8
|
|
MOVQ buf+0(FP), AX // gobuf
|
|
LEAQ buf+0(FP), BX // caller's SP
|
|
MOVQ BX, gobuf_sp(AX)
|
|
MOVQ 0(SP), BX // caller's PC
|
|
MOVQ BX, gobuf_pc(AX)
|
|
MOVQ $0, gobuf_ret(AX)
|
|
MOVQ $0, gobuf_ctxt(AX)
|
|
MOVQ BP, gobuf_bp(AX)
|
|
get_tls(CX)
|
|
MOVQ g(CX), BX
|
|
MOVQ BX, gobuf_g(AX)
|
|
RET
|
|
|
|
// void gogo(Gobuf*)
|
|
// restore state from Gobuf; longjmp
|
|
TEXT runtime·gogo(SB), NOSPLIT, $0-8
|
|
MOVQ buf+0(FP), BX // gobuf
|
|
MOVQ gobuf_g(BX), DX
|
|
MOVQ 0(DX), CX // make sure g != nil
|
|
get_tls(CX)
|
|
MOVQ DX, g(CX)
|
|
MOVQ gobuf_sp(BX), SP // restore SP
|
|
MOVQ gobuf_ret(BX), AX
|
|
MOVQ gobuf_ctxt(BX), DX
|
|
MOVQ gobuf_bp(BX), BP
|
|
MOVQ $0, gobuf_sp(BX) // clear to help garbage collector
|
|
MOVQ $0, gobuf_ret(BX)
|
|
MOVQ $0, gobuf_ctxt(BX)
|
|
MOVQ $0, gobuf_bp(BX)
|
|
MOVQ gobuf_pc(BX), BX
|
|
JMP BX
|
|
|
|
// func mcall(fn func(*g))
|
|
// Switch to m->g0's stack, call fn(g).
|
|
// Fn must never return. It should gogo(&g->sched)
|
|
// to keep running g.
|
|
TEXT runtime·mcall(SB), NOSPLIT, $0-8
|
|
MOVQ fn+0(FP), DI
|
|
|
|
get_tls(CX)
|
|
MOVQ g(CX), AX // save state in g->sched
|
|
MOVQ 0(SP), BX // caller's PC
|
|
MOVQ BX, (g_sched+gobuf_pc)(AX)
|
|
LEAQ fn+0(FP), BX // caller's SP
|
|
MOVQ BX, (g_sched+gobuf_sp)(AX)
|
|
MOVQ AX, (g_sched+gobuf_g)(AX)
|
|
MOVQ BP, (g_sched+gobuf_bp)(AX)
|
|
|
|
// switch to m->g0 & its stack, call fn
|
|
MOVQ g(CX), BX
|
|
MOVQ g_m(BX), BX
|
|
MOVQ m_g0(BX), SI
|
|
CMPQ SI, AX // if g == m->g0 call badmcall
|
|
JNE 3(PC)
|
|
MOVQ $runtime·badmcall(SB), AX
|
|
JMP AX
|
|
MOVQ SI, g(CX) // g = m->g0
|
|
MOVQ (g_sched+gobuf_sp)(SI), SP // sp = m->g0->sched.sp
|
|
PUSHQ AX
|
|
MOVQ DI, DX
|
|
MOVQ 0(DI), DI
|
|
CALL DI
|
|
POPQ AX
|
|
MOVQ $runtime·badmcall2(SB), AX
|
|
JMP AX
|
|
RET
|
|
|
|
// systemstack_switch is a dummy routine that systemstack leaves at the bottom
|
|
// of the G stack. We need to distinguish the routine that
|
|
// lives at the bottom of the G stack from the one that lives
|
|
// at the top of the system stack because the one at the top of
|
|
// the system stack terminates the stack walk (see topofstack()).
|
|
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
|
|
RET
|
|
|
|
// func systemstack(fn func())
|
|
TEXT runtime·systemstack(SB), NOSPLIT, $0-8
|
|
MOVQ fn+0(FP), DI // DI = fn
|
|
get_tls(CX)
|
|
MOVQ g(CX), AX // AX = g
|
|
MOVQ g_m(AX), BX // BX = m
|
|
|
|
MOVQ m_gsignal(BX), DX // DX = gsignal
|
|
CMPQ AX, DX
|
|
JEQ noswitch
|
|
|
|
MOVQ m_g0(BX), DX // DX = g0
|
|
CMPQ AX, DX
|
|
JEQ noswitch
|
|
|
|
MOVQ m_curg(BX), R8
|
|
CMPQ AX, R8
|
|
JEQ switch
|
|
|
|
// Bad: g is not gsignal, not g0, not curg. What is it?
|
|
MOVQ $runtime·badsystemstack(SB), AX
|
|
CALL AX
|
|
|
|
switch:
|
|
// save our state in g->sched. Pretend to
|
|
// be systemstack_switch if the G stack is scanned.
|
|
MOVQ $runtime·systemstack_switch(SB), SI
|
|
MOVQ SI, (g_sched+gobuf_pc)(AX)
|
|
MOVQ SP, (g_sched+gobuf_sp)(AX)
|
|
MOVQ AX, (g_sched+gobuf_g)(AX)
|
|
MOVQ BP, (g_sched+gobuf_bp)(AX)
|
|
|
|
// switch to g0
|
|
MOVQ DX, g(CX)
|
|
MOVQ (g_sched+gobuf_sp)(DX), BX
|
|
// make it look like mstart called systemstack on g0, to stop traceback
|
|
SUBQ $8, BX
|
|
MOVQ $runtime·mstart(SB), DX
|
|
MOVQ DX, 0(BX)
|
|
MOVQ BX, SP
|
|
|
|
// call target function
|
|
MOVQ DI, DX
|
|
MOVQ 0(DI), DI
|
|
CALL DI
|
|
|
|
// switch back to g
|
|
get_tls(CX)
|
|
MOVQ g(CX), AX
|
|
MOVQ g_m(AX), BX
|
|
MOVQ m_curg(BX), AX
|
|
MOVQ AX, g(CX)
|
|
MOVQ (g_sched+gobuf_sp)(AX), SP
|
|
MOVQ $0, (g_sched+gobuf_sp)(AX)
|
|
RET
|
|
|
|
noswitch:
|
|
// already on m stack, just call directly
|
|
MOVQ DI, DX
|
|
MOVQ 0(DI), DI
|
|
CALL DI
|
|
RET
|
|
|
|
/*
|
|
* support for morestack
|
|
*/
|
|
|
|
// Called during function prolog when more stack is needed.
|
|
//
|
|
// The traceback routines see morestack on a g0 as being
|
|
// the top of a stack (for example, morestack calling newstack
|
|
// calling the scheduler calling newm calling gc), so we must
|
|
// record an argument size. For that purpose, it has no arguments.
|
|
TEXT runtime·morestack(SB),NOSPLIT,$0-0
|
|
// Cannot grow scheduler stack (m->g0).
|
|
get_tls(CX)
|
|
MOVQ g(CX), BX
|
|
MOVQ g_m(BX), BX
|
|
MOVQ m_g0(BX), SI
|
|
CMPQ g(CX), SI
|
|
JNE 2(PC)
|
|
INT $3
|
|
|
|
// Cannot grow signal stack (m->gsignal).
|
|
MOVQ m_gsignal(BX), SI
|
|
CMPQ g(CX), SI
|
|
JNE 2(PC)
|
|
INT $3
|
|
|
|
// Called from f.
|
|
// Set m->morebuf to f's caller.
|
|
MOVQ 8(SP), AX // f's caller's PC
|
|
MOVQ AX, (m_morebuf+gobuf_pc)(BX)
|
|
LEAQ 16(SP), AX // f's caller's SP
|
|
MOVQ AX, (m_morebuf+gobuf_sp)(BX)
|
|
get_tls(CX)
|
|
MOVQ g(CX), SI
|
|
MOVQ SI, (m_morebuf+gobuf_g)(BX)
|
|
|
|
// Set g->sched to context in f.
|
|
MOVQ 0(SP), AX // f's PC
|
|
MOVQ AX, (g_sched+gobuf_pc)(SI)
|
|
MOVQ SI, (g_sched+gobuf_g)(SI)
|
|
LEAQ 8(SP), AX // f's SP
|
|
MOVQ AX, (g_sched+gobuf_sp)(SI)
|
|
MOVQ DX, (g_sched+gobuf_ctxt)(SI)
|
|
MOVQ BP, (g_sched+gobuf_bp)(SI)
|
|
|
|
// Call newstack on m->g0's stack.
|
|
MOVQ m_g0(BX), BX
|
|
MOVQ BX, g(CX)
|
|
MOVQ (g_sched+gobuf_sp)(BX), SP
|
|
CALL runtime·newstack(SB)
|
|
MOVQ $0, 0x1003 // crash if newstack returns
|
|
RET
|
|
|
|
// morestack but not preserving ctxt.
|
|
TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0
|
|
MOVL $0, DX
|
|
JMP runtime·morestack(SB)
|
|
|
|
TEXT runtime·stackBarrier(SB),NOSPLIT,$0
|
|
// We came here via a RET to an overwritten return PC.
|
|
// AX may be live. Other registers are available.
|
|
|
|
// Get the original return PC, g.stkbar[g.stkbarPos].savedLRVal.
|
|
get_tls(CX)
|
|
MOVQ g(CX), CX
|
|
MOVQ (g_stkbar+slice_array)(CX), DX
|
|
MOVQ g_stkbarPos(CX), BX
|
|
IMULQ $stkbar__size, BX // Too big for SIB.
|
|
MOVQ stkbar_savedLRVal(DX)(BX*1), BX
|
|
// Record that this stack barrier was hit.
|
|
ADDQ $1, g_stkbarPos(CX)
|
|
// Jump to the original return PC.
|
|
JMP BX
|
|
|
|
// reflectcall: call a function with the given argument list
|
|
// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
|
|
// we don't have variable-sized frames, so we use a small number
|
|
// of constant-sized-frame functions to encode a few bits of size in the pc.
|
|
// Caution: ugly multiline assembly macros in your future!
|
|
|
|
#define DISPATCH(NAME,MAXSIZE) \
|
|
CMPQ CX, $MAXSIZE; \
|
|
JA 3(PC); \
|
|
MOVQ $NAME(SB), AX; \
|
|
JMP AX
|
|
// Note: can't just "JMP NAME(SB)" - bad inlining results.
|
|
|
|
TEXT reflect·call(SB), NOSPLIT, $0-0
|
|
JMP ·reflectcall(SB)
|
|
|
|
TEXT ·reflectcall(SB), NOSPLIT, $0-32
|
|
MOVLQZX argsize+24(FP), CX
|
|
// NOTE(rsc): No call16, because CALLFN needs four words
|
|
// of argument space to invoke callwritebarrier.
|
|
DISPATCH(runtime·call32, 32)
|
|
DISPATCH(runtime·call64, 64)
|
|
DISPATCH(runtime·call128, 128)
|
|
DISPATCH(runtime·call256, 256)
|
|
DISPATCH(runtime·call512, 512)
|
|
DISPATCH(runtime·call1024, 1024)
|
|
DISPATCH(runtime·call2048, 2048)
|
|
DISPATCH(runtime·call4096, 4096)
|
|
DISPATCH(runtime·call8192, 8192)
|
|
DISPATCH(runtime·call16384, 16384)
|
|
DISPATCH(runtime·call32768, 32768)
|
|
DISPATCH(runtime·call65536, 65536)
|
|
DISPATCH(runtime·call131072, 131072)
|
|
DISPATCH(runtime·call262144, 262144)
|
|
DISPATCH(runtime·call524288, 524288)
|
|
DISPATCH(runtime·call1048576, 1048576)
|
|
DISPATCH(runtime·call2097152, 2097152)
|
|
DISPATCH(runtime·call4194304, 4194304)
|
|
DISPATCH(runtime·call8388608, 8388608)
|
|
DISPATCH(runtime·call16777216, 16777216)
|
|
DISPATCH(runtime·call33554432, 33554432)
|
|
DISPATCH(runtime·call67108864, 67108864)
|
|
DISPATCH(runtime·call134217728, 134217728)
|
|
DISPATCH(runtime·call268435456, 268435456)
|
|
DISPATCH(runtime·call536870912, 536870912)
|
|
DISPATCH(runtime·call1073741824, 1073741824)
|
|
MOVQ $runtime·badreflectcall(SB), AX
|
|
JMP AX
|
|
|
|
#define CALLFN(NAME,MAXSIZE) \
|
|
TEXT NAME(SB), WRAPPER, $MAXSIZE-32; \
|
|
NO_LOCAL_POINTERS; \
|
|
/* copy arguments to stack */ \
|
|
MOVQ argptr+16(FP), SI; \
|
|
MOVLQZX argsize+24(FP), CX; \
|
|
MOVQ SP, DI; \
|
|
REP;MOVSB; \
|
|
/* call function */ \
|
|
MOVQ f+8(FP), DX; \
|
|
PCDATA $PCDATA_StackMapIndex, $0; \
|
|
CALL (DX); \
|
|
/* copy return values back */ \
|
|
MOVQ argptr+16(FP), DI; \
|
|
MOVLQZX argsize+24(FP), CX; \
|
|
MOVLQZX retoffset+28(FP), BX; \
|
|
MOVQ SP, SI; \
|
|
ADDQ BX, DI; \
|
|
ADDQ BX, SI; \
|
|
SUBQ BX, CX; \
|
|
REP;MOVSB; \
|
|
/* execute write barrier updates */ \
|
|
MOVQ argtype+0(FP), DX; \
|
|
MOVQ argptr+16(FP), DI; \
|
|
MOVLQZX argsize+24(FP), CX; \
|
|
MOVLQZX retoffset+28(FP), BX; \
|
|
MOVQ DX, 0(SP); \
|
|
MOVQ DI, 8(SP); \
|
|
MOVQ CX, 16(SP); \
|
|
MOVQ BX, 24(SP); \
|
|
CALL runtime·callwritebarrier(SB); \
|
|
RET
|
|
|
|
CALLFN(·call32, 32)
|
|
CALLFN(·call64, 64)
|
|
CALLFN(·call128, 128)
|
|
CALLFN(·call256, 256)
|
|
CALLFN(·call512, 512)
|
|
CALLFN(·call1024, 1024)
|
|
CALLFN(·call2048, 2048)
|
|
CALLFN(·call4096, 4096)
|
|
CALLFN(·call8192, 8192)
|
|
CALLFN(·call16384, 16384)
|
|
CALLFN(·call32768, 32768)
|
|
CALLFN(·call65536, 65536)
|
|
CALLFN(·call131072, 131072)
|
|
CALLFN(·call262144, 262144)
|
|
CALLFN(·call524288, 524288)
|
|
CALLFN(·call1048576, 1048576)
|
|
CALLFN(·call2097152, 2097152)
|
|
CALLFN(·call4194304, 4194304)
|
|
CALLFN(·call8388608, 8388608)
|
|
CALLFN(·call16777216, 16777216)
|
|
CALLFN(·call33554432, 33554432)
|
|
CALLFN(·call67108864, 67108864)
|
|
CALLFN(·call134217728, 134217728)
|
|
CALLFN(·call268435456, 268435456)
|
|
CALLFN(·call536870912, 536870912)
|
|
CALLFN(·call1073741824, 1073741824)
|
|
|
|
// bool cas(int32 *val, int32 old, int32 new)
|
|
// Atomically:
|
|
// if(*val == old){
|
|
// *val = new;
|
|
// return 1;
|
|
// } else
|
|
// return 0;
|
|
TEXT runtime·cas(SB), NOSPLIT, $0-17
|
|
MOVQ ptr+0(FP), BX
|
|
MOVL old+8(FP), AX
|
|
MOVL new+12(FP), CX
|
|
LOCK
|
|
CMPXCHGL CX, 0(BX)
|
|
SETEQ ret+16(FP)
|
|
RET
|
|
|
|
// bool runtime·cas64(uint64 *val, uint64 old, uint64 new)
|
|
// Atomically:
|
|
// if(*val == *old){
|
|
// *val = new;
|
|
// return 1;
|
|
// } else {
|
|
// return 0;
|
|
// }
|
|
TEXT runtime·cas64(SB), NOSPLIT, $0-25
|
|
MOVQ ptr+0(FP), BX
|
|
MOVQ old+8(FP), AX
|
|
MOVQ new+16(FP), CX
|
|
LOCK
|
|
CMPXCHGQ CX, 0(BX)
|
|
SETEQ ret+24(FP)
|
|
RET
|
|
|
|
TEXT runtime·casuintptr(SB), NOSPLIT, $0-25
|
|
JMP runtime·cas64(SB)
|
|
|
|
TEXT runtime·atomicloaduintptr(SB), NOSPLIT, $0-16
|
|
JMP runtime·atomicload64(SB)
|
|
|
|
TEXT runtime·atomicloaduint(SB), NOSPLIT, $0-16
|
|
JMP runtime·atomicload64(SB)
|
|
|
|
TEXT runtime·atomicstoreuintptr(SB), NOSPLIT, $0-16
|
|
JMP runtime·atomicstore64(SB)
|
|
|
|
// bool casp(void **val, void *old, void *new)
|
|
// Atomically:
|
|
// if(*val == old){
|
|
// *val = new;
|
|
// return 1;
|
|
// } else
|
|
// return 0;
|
|
TEXT runtime·casp1(SB), NOSPLIT, $0-25
|
|
MOVQ ptr+0(FP), BX
|
|
MOVQ old+8(FP), AX
|
|
MOVQ new+16(FP), CX
|
|
LOCK
|
|
CMPXCHGQ CX, 0(BX)
|
|
SETEQ ret+24(FP)
|
|
RET
|
|
|
|
// uint32 xadd(uint32 volatile *val, int32 delta)
|
|
// Atomically:
|
|
// *val += delta;
|
|
// return *val;
|
|
TEXT runtime·xadd(SB), NOSPLIT, $0-20
|
|
MOVQ ptr+0(FP), BX
|
|
MOVL delta+8(FP), AX
|
|
MOVL AX, CX
|
|
LOCK
|
|
XADDL AX, 0(BX)
|
|
ADDL CX, AX
|
|
MOVL AX, ret+16(FP)
|
|
RET
|
|
|
|
TEXT runtime·xadd64(SB), NOSPLIT, $0-24
|
|
MOVQ ptr+0(FP), BX
|
|
MOVQ delta+8(FP), AX
|
|
MOVQ AX, CX
|
|
LOCK
|
|
XADDQ AX, 0(BX)
|
|
ADDQ CX, AX
|
|
MOVQ AX, ret+16(FP)
|
|
RET
|
|
|
|
TEXT runtime·xadduintptr(SB), NOSPLIT, $0-24
|
|
JMP runtime·xadd64(SB)
|
|
|
|
TEXT runtime·xchg(SB), NOSPLIT, $0-20
|
|
MOVQ ptr+0(FP), BX
|
|
MOVL new+8(FP), AX
|
|
XCHGL AX, 0(BX)
|
|
MOVL AX, ret+16(FP)
|
|
RET
|
|
|
|
TEXT runtime·xchg64(SB), NOSPLIT, $0-24
|
|
MOVQ ptr+0(FP), BX
|
|
MOVQ new+8(FP), AX
|
|
XCHGQ AX, 0(BX)
|
|
MOVQ AX, ret+16(FP)
|
|
RET
|
|
|
|
TEXT runtime·xchgp1(SB), NOSPLIT, $0-24
|
|
MOVQ ptr+0(FP), BX
|
|
MOVQ new+8(FP), AX
|
|
XCHGQ AX, 0(BX)
|
|
MOVQ AX, ret+16(FP)
|
|
RET
|
|
|
|
TEXT runtime·xchguintptr(SB), NOSPLIT, $0-24
|
|
JMP runtime·xchg64(SB)
|
|
|
|
TEXT runtime·procyield(SB),NOSPLIT,$0-0
|
|
MOVL cycles+0(FP), AX
|
|
again:
|
|
PAUSE
|
|
SUBL $1, AX
|
|
JNZ again
|
|
RET
|
|
|
|
TEXT runtime·atomicstorep1(SB), NOSPLIT, $0-16
|
|
MOVQ ptr+0(FP), BX
|
|
MOVQ val+8(FP), AX
|
|
XCHGQ AX, 0(BX)
|
|
RET
|
|
|
|
TEXT runtime·atomicstore(SB), NOSPLIT, $0-12
|
|
MOVQ ptr+0(FP), BX
|
|
MOVL val+8(FP), AX
|
|
XCHGL AX, 0(BX)
|
|
RET
|
|
|
|
TEXT runtime·atomicstore64(SB), NOSPLIT, $0-16
|
|
MOVQ ptr+0(FP), BX
|
|
MOVQ val+8(FP), AX
|
|
XCHGQ AX, 0(BX)
|
|
RET
|
|
|
|
// void runtime·atomicor8(byte volatile*, byte);
|
|
TEXT runtime·atomicor8(SB), NOSPLIT, $0-9
|
|
MOVQ ptr+0(FP), AX
|
|
MOVB val+8(FP), BX
|
|
LOCK
|
|
ORB BX, (AX)
|
|
RET
|
|
|
|
// void runtime·atomicand8(byte volatile*, byte);
|
|
TEXT runtime·atomicand8(SB), NOSPLIT, $0-9
|
|
MOVQ ptr+0(FP), AX
|
|
MOVB val+8(FP), BX
|
|
LOCK
|
|
ANDB BX, (AX)
|
|
RET
|
|
|
|
TEXT ·publicationBarrier(SB),NOSPLIT,$0-0
|
|
// Stores are already ordered on x86, so this is just a
|
|
// compile barrier.
|
|
RET
|
|
|
|
// void jmpdefer(fn, sp);
|
|
// called from deferreturn.
|
|
// 1. pop the caller
|
|
// 2. sub 5 bytes from the callers return
|
|
// 3. jmp to the argument
|
|
TEXT runtime·jmpdefer(SB), NOSPLIT, $0-16
|
|
MOVQ fv+0(FP), DX // fn
|
|
MOVQ argp+8(FP), BX // caller sp
|
|
LEAQ -8(BX), SP // caller sp after CALL
|
|
SUBQ $5, (SP) // return to CALL again
|
|
MOVQ 0(DX), BX
|
|
JMP BX // but first run the deferred function
|
|
|
|
// Save state of caller into g->sched. Smashes R8, R9.
|
|
TEXT gosave<>(SB),NOSPLIT,$0
|
|
get_tls(R8)
|
|
MOVQ g(R8), R8
|
|
MOVQ 0(SP), R9
|
|
MOVQ R9, (g_sched+gobuf_pc)(R8)
|
|
LEAQ 8(SP), R9
|
|
MOVQ R9, (g_sched+gobuf_sp)(R8)
|
|
MOVQ $0, (g_sched+gobuf_ret)(R8)
|
|
MOVQ $0, (g_sched+gobuf_ctxt)(R8)
|
|
MOVQ BP, (g_sched+gobuf_bp)(R8)
|
|
RET
|
|
|
|
// func asmcgocall(fn, arg unsafe.Pointer) int32
|
|
// Call fn(arg) on the scheduler stack,
|
|
// aligned appropriately for the gcc ABI.
|
|
// See cgocall.go for more details.
|
|
TEXT ·asmcgocall(SB),NOSPLIT,$0-20
|
|
MOVQ fn+0(FP), AX
|
|
MOVQ arg+8(FP), BX
|
|
|
|
MOVQ SP, DX
|
|
|
|
// Figure out if we need to switch to m->g0 stack.
|
|
// We get called to create new OS threads too, and those
|
|
// come in on the m->g0 stack already.
|
|
get_tls(CX)
|
|
MOVQ g(CX), R8
|
|
MOVQ g_m(R8), R8
|
|
MOVQ m_g0(R8), SI
|
|
MOVQ g(CX), DI
|
|
CMPQ SI, DI
|
|
JEQ nosave
|
|
MOVQ m_gsignal(R8), SI
|
|
CMPQ SI, DI
|
|
JEQ nosave
|
|
|
|
MOVQ m_g0(R8), SI
|
|
CALL gosave<>(SB)
|
|
MOVQ SI, g(CX)
|
|
MOVQ (g_sched+gobuf_sp)(SI), SP
|
|
nosave:
|
|
|
|
// Now on a scheduling stack (a pthread-created stack).
|
|
// Make sure we have enough room for 4 stack-backed fast-call
|
|
// registers as per windows amd64 calling convention.
|
|
SUBQ $64, SP
|
|
ANDQ $~15, SP // alignment for gcc ABI
|
|
MOVQ DI, 48(SP) // save g
|
|
MOVQ (g_stack+stack_hi)(DI), DI
|
|
SUBQ DX, DI
|
|
MOVQ DI, 40(SP) // save depth in stack (can't just save SP, as stack might be copied during a callback)
|
|
MOVQ BX, DI // DI = first argument in AMD64 ABI
|
|
MOVQ BX, CX // CX = first argument in Win64
|
|
CALL AX
|
|
|
|
// Restore registers, g, stack pointer.
|
|
get_tls(CX)
|
|
MOVQ 48(SP), DI
|
|
MOVQ (g_stack+stack_hi)(DI), SI
|
|
SUBQ 40(SP), SI
|
|
MOVQ DI, g(CX)
|
|
MOVQ SI, SP
|
|
|
|
MOVL AX, ret+16(FP)
|
|
RET
|
|
|
|
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize)
|
|
// Turn the fn into a Go func (by taking its address) and call
|
|
// cgocallback_gofunc.
|
|
TEXT runtime·cgocallback(SB),NOSPLIT,$24-24
|
|
LEAQ fn+0(FP), AX
|
|
MOVQ AX, 0(SP)
|
|
MOVQ frame+8(FP), AX
|
|
MOVQ AX, 8(SP)
|
|
MOVQ framesize+16(FP), AX
|
|
MOVQ AX, 16(SP)
|
|
MOVQ $runtime·cgocallback_gofunc(SB), AX
|
|
CALL AX
|
|
RET
|
|
|
|
// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize)
|
|
// See cgocall.go for more details.
|
|
TEXT ·cgocallback_gofunc(SB),NOSPLIT,$8-24
|
|
NO_LOCAL_POINTERS
|
|
|
|
// If g is nil, Go did not create the current thread.
|
|
// Call needm to obtain one m for temporary use.
|
|
// In this case, we're running on the thread stack, so there's
|
|
// lots of space, but the linker doesn't know. Hide the call from
|
|
// the linker analysis by using an indirect call through AX.
|
|
get_tls(CX)
|
|
#ifdef GOOS_windows
|
|
MOVL $0, BX
|
|
CMPQ CX, $0
|
|
JEQ 2(PC)
|
|
#endif
|
|
MOVQ g(CX), BX
|
|
CMPQ BX, $0
|
|
JEQ needm
|
|
MOVQ g_m(BX), BX
|
|
MOVQ BX, R8 // holds oldm until end of function
|
|
JMP havem
|
|
needm:
|
|
MOVQ $0, 0(SP)
|
|
MOVQ $runtime·needm(SB), AX
|
|
CALL AX
|
|
MOVQ 0(SP), R8
|
|
get_tls(CX)
|
|
MOVQ g(CX), BX
|
|
MOVQ g_m(BX), BX
|
|
|
|
// Set m->sched.sp = SP, so that if a panic happens
|
|
// during the function we are about to execute, it will
|
|
// have a valid SP to run on the g0 stack.
|
|
// The next few lines (after the havem label)
|
|
// will save this SP onto the stack and then write
|
|
// the same SP back to m->sched.sp. That seems redundant,
|
|
// but if an unrecovered panic happens, unwindm will
|
|
// restore the g->sched.sp from the stack location
|
|
// and then systemstack will try to use it. If we don't set it here,
|
|
// that restored SP will be uninitialized (typically 0) and
|
|
// will not be usable.
|
|
MOVQ m_g0(BX), SI
|
|
MOVQ SP, (g_sched+gobuf_sp)(SI)
|
|
|
|
havem:
|
|
// Now there's a valid m, and we're running on its m->g0.
|
|
// Save current m->g0->sched.sp on stack and then set it to SP.
|
|
// Save current sp in m->g0->sched.sp in preparation for
|
|
// switch back to m->curg stack.
|
|
// NOTE: unwindm knows that the saved g->sched.sp is at 0(SP).
|
|
MOVQ m_g0(BX), SI
|
|
MOVQ (g_sched+gobuf_sp)(SI), AX
|
|
MOVQ AX, 0(SP)
|
|
MOVQ SP, (g_sched+gobuf_sp)(SI)
|
|
|
|
// Switch to m->curg stack and call runtime.cgocallbackg.
|
|
// Because we are taking over the execution of m->curg
|
|
// but *not* resuming what had been running, we need to
|
|
// save that information (m->curg->sched) so we can restore it.
|
|
// We can restore m->curg->sched.sp easily, because calling
|
|
// runtime.cgocallbackg leaves SP unchanged upon return.
|
|
// To save m->curg->sched.pc, we push it onto the stack.
|
|
// This has the added benefit that it looks to the traceback
|
|
// routine like cgocallbackg is going to return to that
|
|
// PC (because the frame we allocate below has the same
|
|
// size as cgocallback_gofunc's frame declared above)
|
|
// so that the traceback will seamlessly trace back into
|
|
// the earlier calls.
|
|
//
|
|
// In the new goroutine, 0(SP) holds the saved R8.
|
|
MOVQ m_curg(BX), SI
|
|
MOVQ SI, g(CX)
|
|
MOVQ (g_sched+gobuf_sp)(SI), DI // prepare stack as DI
|
|
MOVQ (g_sched+gobuf_pc)(SI), BX
|
|
MOVQ BX, -8(DI)
|
|
// Compute the size of the frame, including return PC and, if
|
|
// GOEXPERIMENT=framepointer, the saved based pointer
|
|
LEAQ fv+0(FP), AX
|
|
SUBQ SP, AX
|
|
SUBQ AX, DI
|
|
MOVQ DI, SP
|
|
|
|
MOVQ R8, 0(SP)
|
|
CALL runtime·cgocallbackg(SB)
|
|
MOVQ 0(SP), R8
|
|
|
|
// Compute the size of the frame again. FP and SP have
|
|
// completely different values here than they did above,
|
|
// but only their difference matters.
|
|
LEAQ fv+0(FP), AX
|
|
SUBQ SP, AX
|
|
|
|
// Restore g->sched (== m->curg->sched) from saved values.
|
|
get_tls(CX)
|
|
MOVQ g(CX), SI
|
|
MOVQ SP, DI
|
|
ADDQ AX, DI
|
|
MOVQ -8(DI), BX
|
|
MOVQ BX, (g_sched+gobuf_pc)(SI)
|
|
MOVQ DI, (g_sched+gobuf_sp)(SI)
|
|
|
|
// Switch back to m->g0's stack and restore m->g0->sched.sp.
|
|
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
|
|
// so we do not have to restore it.)
|
|
MOVQ g(CX), BX
|
|
MOVQ g_m(BX), BX
|
|
MOVQ m_g0(BX), SI
|
|
MOVQ SI, g(CX)
|
|
MOVQ (g_sched+gobuf_sp)(SI), SP
|
|
MOVQ 0(SP), AX
|
|
MOVQ AX, (g_sched+gobuf_sp)(SI)
|
|
|
|
// If the m on entry was nil, we called needm above to borrow an m
|
|
// for the duration of the call. Since the call is over, return it with dropm.
|
|
CMPQ R8, $0
|
|
JNE 3(PC)
|
|
MOVQ $runtime·dropm(SB), AX
|
|
CALL AX
|
|
|
|
// Done!
|
|
RET
|
|
|
|
// void setg(G*); set g. for use by needm.
|
|
TEXT runtime·setg(SB), NOSPLIT, $0-8
|
|
MOVQ gg+0(FP), BX
|
|
#ifdef GOOS_windows
|
|
CMPQ BX, $0
|
|
JNE settls
|
|
MOVQ $0, 0x28(GS)
|
|
RET
|
|
settls:
|
|
MOVQ g_m(BX), AX
|
|
LEAQ m_tls(AX), AX
|
|
MOVQ AX, 0x28(GS)
|
|
#endif
|
|
get_tls(CX)
|
|
MOVQ BX, g(CX)
|
|
RET
|
|
|
|
// void setg_gcc(G*); set g called from gcc.
|
|
TEXT setg_gcc<>(SB),NOSPLIT,$0
|
|
get_tls(AX)
|
|
MOVQ DI, g(AX)
|
|
RET
|
|
|
|
// check that SP is in range [g->stack.lo, g->stack.hi)
|
|
TEXT runtime·stackcheck(SB), NOSPLIT, $0-0
|
|
get_tls(CX)
|
|
MOVQ g(CX), AX
|
|
CMPQ (g_stack+stack_hi)(AX), SP
|
|
JHI 2(PC)
|
|
INT $3
|
|
CMPQ SP, (g_stack+stack_lo)(AX)
|
|
JHI 2(PC)
|
|
INT $3
|
|
RET
|
|
|
|
TEXT runtime·getcallerpc(SB),NOSPLIT,$8-16
|
|
MOVQ argp+0(FP),AX // addr of first arg
|
|
MOVQ -8(AX),AX // get calling pc
|
|
CMPQ AX, runtime·stackBarrierPC(SB)
|
|
JNE nobar
|
|
// Get original return PC.
|
|
CALL runtime·nextBarrierPC(SB)
|
|
MOVQ 0(SP), AX
|
|
nobar:
|
|
MOVQ AX, ret+8(FP)
|
|
RET
|
|
|
|
TEXT runtime·setcallerpc(SB),NOSPLIT,$8-16
|
|
MOVQ argp+0(FP),AX // addr of first arg
|
|
MOVQ pc+8(FP), BX
|
|
MOVQ -8(AX), CX
|
|
CMPQ CX, runtime·stackBarrierPC(SB)
|
|
JEQ setbar
|
|
MOVQ BX, -8(AX) // set calling pc
|
|
RET
|
|
setbar:
|
|
// Set the stack barrier return PC.
|
|
MOVQ BX, 0(SP)
|
|
CALL runtime·setNextBarrierPC(SB)
|
|
RET
|
|
|
|
TEXT runtime·getcallersp(SB),NOSPLIT,$0-16
|
|
MOVQ argp+0(FP), AX
|
|
MOVQ AX, ret+8(FP)
|
|
RET
|
|
|
|
// func cputicks() int64
|
|
TEXT runtime·cputicks(SB),NOSPLIT,$0-0
|
|
CMPB runtime·lfenceBeforeRdtsc(SB), $1
|
|
JNE mfence
|
|
BYTE $0x0f; BYTE $0xae; BYTE $0xe8 // LFENCE
|
|
JMP done
|
|
mfence:
|
|
BYTE $0x0f; BYTE $0xae; BYTE $0xf0 // MFENCE
|
|
done:
|
|
RDTSC
|
|
SHLQ $32, DX
|
|
ADDQ DX, AX
|
|
MOVQ AX, ret+0(FP)
|
|
RET
|
|
|
|
// memhash_varlen(p unsafe.Pointer, h seed) uintptr
|
|
// redirects to memhash(p, h, size) using the size
|
|
// stored in the closure.
|
|
TEXT runtime·memhash_varlen(SB),NOSPLIT,$32-24
|
|
GO_ARGS
|
|
NO_LOCAL_POINTERS
|
|
MOVQ p+0(FP), AX
|
|
MOVQ h+8(FP), BX
|
|
MOVQ 8(DX), CX
|
|
MOVQ AX, 0(SP)
|
|
MOVQ BX, 8(SP)
|
|
MOVQ CX, 16(SP)
|
|
CALL runtime·memhash(SB)
|
|
MOVQ 24(SP), AX
|
|
MOVQ AX, ret+16(FP)
|
|
RET
|
|
|
|
// hash function using AES hardware instructions
|
|
TEXT runtime·aeshash(SB),NOSPLIT,$0-32
|
|
MOVQ p+0(FP), AX // ptr to data
|
|
MOVQ s+16(FP), CX // size
|
|
LEAQ ret+24(FP), DX
|
|
JMP runtime·aeshashbody(SB)
|
|
|
|
TEXT runtime·aeshashstr(SB),NOSPLIT,$0-24
|
|
MOVQ p+0(FP), AX // ptr to string struct
|
|
MOVQ 8(AX), CX // length of string
|
|
MOVQ (AX), AX // string data
|
|
LEAQ ret+16(FP), DX
|
|
JMP runtime·aeshashbody(SB)
|
|
|
|
// AX: data
|
|
// CX: length
|
|
// DX: address to put return value
|
|
TEXT runtime·aeshashbody(SB),NOSPLIT,$0-0
|
|
MOVQ h+8(FP), X6 // seed to low 64 bits of xmm6
|
|
PINSRQ $1, CX, X6 // size to high 64 bits of xmm6
|
|
PSHUFHW $0, X6, X6 // replace size with its low 2 bytes repeated 4 times
|
|
MOVO runtime·aeskeysched(SB), X7
|
|
CMPQ CX, $16
|
|
JB aes0to15
|
|
JE aes16
|
|
CMPQ CX, $32
|
|
JBE aes17to32
|
|
CMPQ CX, $64
|
|
JBE aes33to64
|
|
CMPQ CX, $128
|
|
JBE aes65to128
|
|
JMP aes129plus
|
|
|
|
aes0to15:
|
|
TESTQ CX, CX
|
|
JE aes0
|
|
|
|
ADDQ $16, AX
|
|
TESTW $0xff0, AX
|
|
JE endofpage
|
|
|
|
// 16 bytes loaded at this address won't cross
|
|
// a page boundary, so we can load it directly.
|
|
MOVOU -16(AX), X0
|
|
ADDQ CX, CX
|
|
MOVQ $masks<>(SB), AX
|
|
PAND (AX)(CX*8), X0
|
|
|
|
// scramble 3 times
|
|
AESENC X6, X0
|
|
AESENC X7, X0
|
|
AESENC X7, X0
|
|
MOVQ X0, (DX)
|
|
RET
|
|
|
|
endofpage:
|
|
// address ends in 1111xxxx. Might be up against
|
|
// a page boundary, so load ending at last byte.
|
|
// Then shift bytes down using pshufb.
|
|
MOVOU -32(AX)(CX*1), X0
|
|
ADDQ CX, CX
|
|
MOVQ $shifts<>(SB), AX
|
|
PSHUFB (AX)(CX*8), X0
|
|
AESENC X6, X0
|
|
AESENC X7, X0
|
|
AESENC X7, X0
|
|
MOVQ X0, (DX)
|
|
RET
|
|
|
|
aes0:
|
|
// return input seed
|
|
MOVQ h+8(FP), AX
|
|
MOVQ AX, (DX)
|
|
RET
|
|
|
|
aes16:
|
|
MOVOU (AX), X0
|
|
AESENC X6, X0
|
|
AESENC X7, X0
|
|
AESENC X7, X0
|
|
MOVQ X0, (DX)
|
|
RET
|
|
|
|
aes17to32:
|
|
// load data to be hashed
|
|
MOVOU (AX), X0
|
|
MOVOU -16(AX)(CX*1), X1
|
|
|
|
// scramble 3 times
|
|
AESENC X6, X0
|
|
AESENC runtime·aeskeysched+16(SB), X1
|
|
AESENC X7, X0
|
|
AESENC X7, X1
|
|
AESENC X7, X0
|
|
AESENC X7, X1
|
|
|
|
// combine results
|
|
PXOR X1, X0
|
|
MOVQ X0, (DX)
|
|
RET
|
|
|
|
aes33to64:
|
|
MOVOU (AX), X0
|
|
MOVOU 16(AX), X1
|
|
MOVOU -32(AX)(CX*1), X2
|
|
MOVOU -16(AX)(CX*1), X3
|
|
|
|
AESENC X6, X0
|
|
AESENC runtime·aeskeysched+16(SB), X1
|
|
AESENC runtime·aeskeysched+32(SB), X2
|
|
AESENC runtime·aeskeysched+48(SB), X3
|
|
AESENC X7, X0
|
|
AESENC X7, X1
|
|
AESENC X7, X2
|
|
AESENC X7, X3
|
|
AESENC X7, X0
|
|
AESENC X7, X1
|
|
AESENC X7, X2
|
|
AESENC X7, X3
|
|
|
|
PXOR X2, X0
|
|
PXOR X3, X1
|
|
PXOR X1, X0
|
|
MOVQ X0, (DX)
|
|
RET
|
|
|
|
aes65to128:
|
|
MOVOU (AX), X0
|
|
MOVOU 16(AX), X1
|
|
MOVOU 32(AX), X2
|
|
MOVOU 48(AX), X3
|
|
MOVOU -64(AX)(CX*1), X4
|
|
MOVOU -48(AX)(CX*1), X5
|
|
MOVOU -32(AX)(CX*1), X8
|
|
MOVOU -16(AX)(CX*1), X9
|
|
|
|
AESENC X6, X0
|
|
AESENC runtime·aeskeysched+16(SB), X1
|
|
AESENC runtime·aeskeysched+32(SB), X2
|
|
AESENC runtime·aeskeysched+48(SB), X3
|
|
AESENC runtime·aeskeysched+64(SB), X4
|
|
AESENC runtime·aeskeysched+80(SB), X5
|
|
AESENC runtime·aeskeysched+96(SB), X8
|
|
AESENC runtime·aeskeysched+112(SB), X9
|
|
AESENC X7, X0
|
|
AESENC X7, X1
|
|
AESENC X7, X2
|
|
AESENC X7, X3
|
|
AESENC X7, X4
|
|
AESENC X7, X5
|
|
AESENC X7, X8
|
|
AESENC X7, X9
|
|
AESENC X7, X0
|
|
AESENC X7, X1
|
|
AESENC X7, X2
|
|
AESENC X7, X3
|
|
AESENC X7, X4
|
|
AESENC X7, X5
|
|
AESENC X7, X8
|
|
AESENC X7, X9
|
|
|
|
PXOR X4, X0
|
|
PXOR X5, X1
|
|
PXOR X8, X2
|
|
PXOR X9, X3
|
|
PXOR X2, X0
|
|
PXOR X3, X1
|
|
PXOR X1, X0
|
|
MOVQ X0, (DX)
|
|
RET
|
|
|
|
aes129plus:
|
|
// start with last (possibly overlapping) block
|
|
MOVOU -128(AX)(CX*1), X0
|
|
MOVOU -112(AX)(CX*1), X1
|
|
MOVOU -96(AX)(CX*1), X2
|
|
MOVOU -80(AX)(CX*1), X3
|
|
MOVOU -64(AX)(CX*1), X4
|
|
MOVOU -48(AX)(CX*1), X5
|
|
MOVOU -32(AX)(CX*1), X8
|
|
MOVOU -16(AX)(CX*1), X9
|
|
|
|
// scramble state once
|
|
AESENC X6, X0
|
|
AESENC runtime·aeskeysched+16(SB), X1
|
|
AESENC runtime·aeskeysched+32(SB), X2
|
|
AESENC runtime·aeskeysched+48(SB), X3
|
|
AESENC runtime·aeskeysched+64(SB), X4
|
|
AESENC runtime·aeskeysched+80(SB), X5
|
|
AESENC runtime·aeskeysched+96(SB), X8
|
|
AESENC runtime·aeskeysched+112(SB), X9
|
|
|
|
// compute number of remaining 128-byte blocks
|
|
DECQ CX
|
|
SHRQ $7, CX
|
|
|
|
aesloop:
|
|
// scramble state, xor in a block
|
|
MOVOU (AX), X10
|
|
MOVOU 16(AX), X11
|
|
MOVOU 32(AX), X12
|
|
MOVOU 48(AX), X13
|
|
AESENC X10, X0
|
|
AESENC X11, X1
|
|
AESENC X12, X2
|
|
AESENC X13, X3
|
|
MOVOU 64(AX), X10
|
|
MOVOU 80(AX), X11
|
|
MOVOU 96(AX), X12
|
|
MOVOU 112(AX), X13
|
|
AESENC X10, X4
|
|
AESENC X11, X5
|
|
AESENC X12, X8
|
|
AESENC X13, X9
|
|
|
|
// scramble state
|
|
AESENC X7, X0
|
|
AESENC X7, X1
|
|
AESENC X7, X2
|
|
AESENC X7, X3
|
|
AESENC X7, X4
|
|
AESENC X7, X5
|
|
AESENC X7, X8
|
|
AESENC X7, X9
|
|
|
|
ADDQ $128, AX
|
|
DECQ CX
|
|
JNE aesloop
|
|
|
|
// 2 more scrambles to finish
|
|
AESENC X7, X0
|
|
AESENC X7, X1
|
|
AESENC X7, X2
|
|
AESENC X7, X3
|
|
AESENC X7, X4
|
|
AESENC X7, X5
|
|
AESENC X7, X8
|
|
AESENC X7, X9
|
|
AESENC X7, X0
|
|
AESENC X7, X1
|
|
AESENC X7, X2
|
|
AESENC X7, X3
|
|
AESENC X7, X4
|
|
AESENC X7, X5
|
|
AESENC X7, X8
|
|
AESENC X7, X9
|
|
|
|
PXOR X4, X0
|
|
PXOR X5, X1
|
|
PXOR X8, X2
|
|
PXOR X9, X3
|
|
PXOR X2, X0
|
|
PXOR X3, X1
|
|
PXOR X1, X0
|
|
MOVQ X0, (DX)
|
|
RET
|
|
|
|
TEXT runtime·aeshash32(SB),NOSPLIT,$0-24
|
|
MOVQ p+0(FP), AX // ptr to data
|
|
MOVQ h+8(FP), X0 // seed
|
|
PINSRD $2, (AX), X0 // data
|
|
AESENC runtime·aeskeysched+0(SB), X0
|
|
AESENC runtime·aeskeysched+16(SB), X0
|
|
AESENC runtime·aeskeysched+32(SB), X0
|
|
MOVQ X0, ret+16(FP)
|
|
RET
|
|
|
|
TEXT runtime·aeshash64(SB),NOSPLIT,$0-24
|
|
MOVQ p+0(FP), AX // ptr to data
|
|
MOVQ h+8(FP), X0 // seed
|
|
PINSRQ $1, (AX), X0 // data
|
|
AESENC runtime·aeskeysched+0(SB), X0
|
|
AESENC runtime·aeskeysched+16(SB), X0
|
|
AESENC runtime·aeskeysched+32(SB), X0
|
|
MOVQ X0, ret+16(FP)
|
|
RET
|
|
|
|
// simple mask to get rid of data in the high part of the register.
|
|
DATA masks<>+0x00(SB)/8, $0x0000000000000000
|
|
DATA masks<>+0x08(SB)/8, $0x0000000000000000
|
|
DATA masks<>+0x10(SB)/8, $0x00000000000000ff
|
|
DATA masks<>+0x18(SB)/8, $0x0000000000000000
|
|
DATA masks<>+0x20(SB)/8, $0x000000000000ffff
|
|
DATA masks<>+0x28(SB)/8, $0x0000000000000000
|
|
DATA masks<>+0x30(SB)/8, $0x0000000000ffffff
|
|
DATA masks<>+0x38(SB)/8, $0x0000000000000000
|
|
DATA masks<>+0x40(SB)/8, $0x00000000ffffffff
|
|
DATA masks<>+0x48(SB)/8, $0x0000000000000000
|
|
DATA masks<>+0x50(SB)/8, $0x000000ffffffffff
|
|
DATA masks<>+0x58(SB)/8, $0x0000000000000000
|
|
DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff
|
|
DATA masks<>+0x68(SB)/8, $0x0000000000000000
|
|
DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff
|
|
DATA masks<>+0x78(SB)/8, $0x0000000000000000
|
|
DATA masks<>+0x80(SB)/8, $0xffffffffffffffff
|
|
DATA masks<>+0x88(SB)/8, $0x0000000000000000
|
|
DATA masks<>+0x90(SB)/8, $0xffffffffffffffff
|
|
DATA masks<>+0x98(SB)/8, $0x00000000000000ff
|
|
DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff
|
|
DATA masks<>+0xa8(SB)/8, $0x000000000000ffff
|
|
DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff
|
|
DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff
|
|
DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff
|
|
DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff
|
|
DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff
|
|
DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff
|
|
DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff
|
|
DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff
|
|
DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff
|
|
DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff
|
|
GLOBL masks<>(SB),RODATA,$256
|
|
|
|
// these are arguments to pshufb. They move data down from
|
|
// the high bytes of the register to the low bytes of the register.
|
|
// index is how many bytes to move.
|
|
DATA shifts<>+0x00(SB)/8, $0x0000000000000000
|
|
DATA shifts<>+0x08(SB)/8, $0x0000000000000000
|
|
DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f
|
|
DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff
|
|
DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e
|
|
DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff
|
|
DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d
|
|
DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff
|
|
DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c
|
|
DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff
|
|
DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b
|
|
DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff
|
|
DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a
|
|
DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff
|
|
DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09
|
|
DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff
|
|
DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908
|
|
DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff
|
|
DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807
|
|
DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f
|
|
DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706
|
|
DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e
|
|
DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605
|
|
DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d
|
|
DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504
|
|
DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c
|
|
DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403
|
|
DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b
|
|
DATA shifts<>+0xe0(SB)/8, $0x0908070605040302
|
|
DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a
|
|
DATA shifts<>+0xf0(SB)/8, $0x0807060504030201
|
|
DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09
|
|
GLOBL shifts<>(SB),RODATA,$256
|
|
|
|
TEXT runtime·memeq(SB),NOSPLIT,$0-25
|
|
MOVQ a+0(FP), SI
|
|
MOVQ b+8(FP), DI
|
|
MOVQ size+16(FP), BX
|
|
LEAQ ret+24(FP), AX
|
|
JMP runtime·memeqbody(SB)
|
|
|
|
// memequal_varlen(a, b unsafe.Pointer) bool
|
|
TEXT runtime·memequal_varlen(SB),NOSPLIT,$0-17
|
|
MOVQ a+0(FP), SI
|
|
MOVQ b+8(FP), DI
|
|
CMPQ SI, DI
|
|
JEQ eq
|
|
MOVQ 8(DX), BX // compiler stores size at offset 8 in the closure
|
|
LEAQ ret+16(FP), AX
|
|
JMP runtime·memeqbody(SB)
|
|
eq:
|
|
MOVB $1, ret+16(FP)
|
|
RET
|
|
|
|
// eqstring tests whether two strings are equal.
|
|
// The compiler guarantees that strings passed
|
|
// to eqstring have equal length.
|
|
// See runtime_test.go:eqstring_generic for
|
|
// equivalent Go code.
|
|
TEXT runtime·eqstring(SB),NOSPLIT,$0-33
|
|
MOVQ s1str+0(FP), SI
|
|
MOVQ s2str+16(FP), DI
|
|
CMPQ SI, DI
|
|
JEQ eq
|
|
MOVQ s1len+8(FP), BX
|
|
LEAQ v+32(FP), AX
|
|
JMP runtime·memeqbody(SB)
|
|
eq:
|
|
MOVB $1, v+32(FP)
|
|
RET
|
|
|
|
// a in SI
|
|
// b in DI
|
|
// count in BX
|
|
// address of result byte in AX
|
|
TEXT runtime·memeqbody(SB),NOSPLIT,$0-0
|
|
CMPQ BX, $8
|
|
JB small
|
|
|
|
// 64 bytes at a time using xmm registers
|
|
hugeloop:
|
|
CMPQ BX, $64
|
|
JB bigloop
|
|
MOVOU (SI), X0
|
|
MOVOU (DI), X1
|
|
MOVOU 16(SI), X2
|
|
MOVOU 16(DI), X3
|
|
MOVOU 32(SI), X4
|
|
MOVOU 32(DI), X5
|
|
MOVOU 48(SI), X6
|
|
MOVOU 48(DI), X7
|
|
PCMPEQB X1, X0
|
|
PCMPEQB X3, X2
|
|
PCMPEQB X5, X4
|
|
PCMPEQB X7, X6
|
|
PAND X2, X0
|
|
PAND X6, X4
|
|
PAND X4, X0
|
|
PMOVMSKB X0, DX
|
|
ADDQ $64, SI
|
|
ADDQ $64, DI
|
|
SUBQ $64, BX
|
|
CMPL DX, $0xffff
|
|
JEQ hugeloop
|
|
MOVB $0, (AX)
|
|
RET
|
|
|
|
// 8 bytes at a time using 64-bit register
|
|
bigloop:
|
|
CMPQ BX, $8
|
|
JBE leftover
|
|
MOVQ (SI), CX
|
|
MOVQ (DI), DX
|
|
ADDQ $8, SI
|
|
ADDQ $8, DI
|
|
SUBQ $8, BX
|
|
CMPQ CX, DX
|
|
JEQ bigloop
|
|
MOVB $0, (AX)
|
|
RET
|
|
|
|
// remaining 0-8 bytes
|
|
leftover:
|
|
MOVQ -8(SI)(BX*1), CX
|
|
MOVQ -8(DI)(BX*1), DX
|
|
CMPQ CX, DX
|
|
SETEQ (AX)
|
|
RET
|
|
|
|
small:
|
|
CMPQ BX, $0
|
|
JEQ equal
|
|
|
|
LEAQ 0(BX*8), CX
|
|
NEGQ CX
|
|
|
|
CMPB SI, $0xf8
|
|
JA si_high
|
|
|
|
// load at SI won't cross a page boundary.
|
|
MOVQ (SI), SI
|
|
JMP si_finish
|
|
si_high:
|
|
// address ends in 11111xxx. Load up to bytes we want, move to correct position.
|
|
MOVQ -8(SI)(BX*1), SI
|
|
SHRQ CX, SI
|
|
si_finish:
|
|
|
|
// same for DI.
|
|
CMPB DI, $0xf8
|
|
JA di_high
|
|
MOVQ (DI), DI
|
|
JMP di_finish
|
|
di_high:
|
|
MOVQ -8(DI)(BX*1), DI
|
|
SHRQ CX, DI
|
|
di_finish:
|
|
|
|
SUBQ SI, DI
|
|
SHLQ CX, DI
|
|
equal:
|
|
SETEQ (AX)
|
|
RET
|
|
|
|
TEXT runtime·cmpstring(SB),NOSPLIT,$0-40
|
|
MOVQ s1_base+0(FP), SI
|
|
MOVQ s1_len+8(FP), BX
|
|
MOVQ s2_base+16(FP), DI
|
|
MOVQ s2_len+24(FP), DX
|
|
LEAQ ret+32(FP), R9
|
|
JMP runtime·cmpbody(SB)
|
|
|
|
TEXT bytes·Compare(SB),NOSPLIT,$0-56
|
|
MOVQ s1+0(FP), SI
|
|
MOVQ s1+8(FP), BX
|
|
MOVQ s2+24(FP), DI
|
|
MOVQ s2+32(FP), DX
|
|
LEAQ res+48(FP), R9
|
|
JMP runtime·cmpbody(SB)
|
|
|
|
// input:
|
|
// SI = a
|
|
// DI = b
|
|
// BX = alen
|
|
// DX = blen
|
|
// R9 = address of output word (stores -1/0/1 here)
|
|
TEXT runtime·cmpbody(SB),NOSPLIT,$0-0
|
|
CMPQ SI, DI
|
|
JEQ allsame
|
|
CMPQ BX, DX
|
|
MOVQ DX, R8
|
|
CMOVQLT BX, R8 // R8 = min(alen, blen) = # of bytes to compare
|
|
CMPQ R8, $8
|
|
JB small
|
|
|
|
loop:
|
|
CMPQ R8, $16
|
|
JBE _0through16
|
|
MOVOU (SI), X0
|
|
MOVOU (DI), X1
|
|
PCMPEQB X0, X1
|
|
PMOVMSKB X1, AX
|
|
XORQ $0xffff, AX // convert EQ to NE
|
|
JNE diff16 // branch if at least one byte is not equal
|
|
ADDQ $16, SI
|
|
ADDQ $16, DI
|
|
SUBQ $16, R8
|
|
JMP loop
|
|
|
|
// AX = bit mask of differences
|
|
diff16:
|
|
BSFQ AX, BX // index of first byte that differs
|
|
XORQ AX, AX
|
|
MOVB (SI)(BX*1), CX
|
|
CMPB CX, (DI)(BX*1)
|
|
SETHI AX
|
|
LEAQ -1(AX*2), AX // convert 1/0 to +1/-1
|
|
MOVQ AX, (R9)
|
|
RET
|
|
|
|
// 0 through 16 bytes left, alen>=8, blen>=8
|
|
_0through16:
|
|
CMPQ R8, $8
|
|
JBE _0through8
|
|
MOVQ (SI), AX
|
|
MOVQ (DI), CX
|
|
CMPQ AX, CX
|
|
JNE diff8
|
|
_0through8:
|
|
MOVQ -8(SI)(R8*1), AX
|
|
MOVQ -8(DI)(R8*1), CX
|
|
CMPQ AX, CX
|
|
JEQ allsame
|
|
|
|
// AX and CX contain parts of a and b that differ.
|
|
diff8:
|
|
BSWAPQ AX // reverse order of bytes
|
|
BSWAPQ CX
|
|
XORQ AX, CX
|
|
BSRQ CX, CX // index of highest bit difference
|
|
SHRQ CX, AX // move a's bit to bottom
|
|
ANDQ $1, AX // mask bit
|
|
LEAQ -1(AX*2), AX // 1/0 => +1/-1
|
|
MOVQ AX, (R9)
|
|
RET
|
|
|
|
// 0-7 bytes in common
|
|
small:
|
|
LEAQ (R8*8), CX // bytes left -> bits left
|
|
NEGQ CX // - bits lift (== 64 - bits left mod 64)
|
|
JEQ allsame
|
|
|
|
// load bytes of a into high bytes of AX
|
|
CMPB SI, $0xf8
|
|
JA si_high
|
|
MOVQ (SI), SI
|
|
JMP si_finish
|
|
si_high:
|
|
MOVQ -8(SI)(R8*1), SI
|
|
SHRQ CX, SI
|
|
si_finish:
|
|
SHLQ CX, SI
|
|
|
|
// load bytes of b in to high bytes of BX
|
|
CMPB DI, $0xf8
|
|
JA di_high
|
|
MOVQ (DI), DI
|
|
JMP di_finish
|
|
di_high:
|
|
MOVQ -8(DI)(R8*1), DI
|
|
SHRQ CX, DI
|
|
di_finish:
|
|
SHLQ CX, DI
|
|
|
|
BSWAPQ SI // reverse order of bytes
|
|
BSWAPQ DI
|
|
XORQ SI, DI // find bit differences
|
|
JEQ allsame
|
|
BSRQ DI, CX // index of highest bit difference
|
|
SHRQ CX, SI // move a's bit to bottom
|
|
ANDQ $1, SI // mask bit
|
|
LEAQ -1(SI*2), AX // 1/0 => +1/-1
|
|
MOVQ AX, (R9)
|
|
RET
|
|
|
|
allsame:
|
|
XORQ AX, AX
|
|
XORQ CX, CX
|
|
CMPQ BX, DX
|
|
SETGT AX // 1 if alen > blen
|
|
SETEQ CX // 1 if alen == blen
|
|
LEAQ -1(CX)(AX*2), AX // 1,0,-1 result
|
|
MOVQ AX, (R9)
|
|
RET
|
|
|
|
TEXT bytes·IndexByte(SB),NOSPLIT,$0-40
|
|
MOVQ s+0(FP), SI
|
|
MOVQ s_len+8(FP), BX
|
|
MOVB c+24(FP), AL
|
|
LEAQ ret+32(FP), R8
|
|
JMP runtime·indexbytebody(SB)
|
|
|
|
TEXT strings·IndexByte(SB),NOSPLIT,$0-32
|
|
MOVQ s+0(FP), SI
|
|
MOVQ s_len+8(FP), BX
|
|
MOVB c+16(FP), AL
|
|
LEAQ ret+24(FP), R8
|
|
JMP runtime·indexbytebody(SB)
|
|
|
|
// input:
|
|
// SI: data
|
|
// BX: data len
|
|
// AL: byte sought
|
|
// R8: address to put result
|
|
TEXT runtime·indexbytebody(SB),NOSPLIT,$0
|
|
MOVQ SI, DI
|
|
|
|
CMPQ BX, $16
|
|
JLT small
|
|
|
|
// round up to first 16-byte boundary
|
|
TESTQ $15, SI
|
|
JZ aligned
|
|
MOVQ SI, CX
|
|
ANDQ $~15, CX
|
|
ADDQ $16, CX
|
|
|
|
// search the beginning
|
|
SUBQ SI, CX
|
|
REPN; SCASB
|
|
JZ success
|
|
|
|
// DI is 16-byte aligned; get ready to search using SSE instructions
|
|
aligned:
|
|
// round down to last 16-byte boundary
|
|
MOVQ BX, R11
|
|
ADDQ SI, R11
|
|
ANDQ $~15, R11
|
|
|
|
// shuffle X0 around so that each byte contains c
|
|
MOVD AX, X0
|
|
PUNPCKLBW X0, X0
|
|
PUNPCKLBW X0, X0
|
|
PSHUFL $0, X0, X0
|
|
JMP condition
|
|
|
|
sse:
|
|
// move the next 16-byte chunk of the buffer into X1
|
|
MOVO (DI), X1
|
|
// compare bytes in X0 to X1
|
|
PCMPEQB X0, X1
|
|
// take the top bit of each byte in X1 and put the result in DX
|
|
PMOVMSKB X1, DX
|
|
TESTL DX, DX
|
|
JNZ ssesuccess
|
|
ADDQ $16, DI
|
|
|
|
condition:
|
|
CMPQ DI, R11
|
|
JLT sse
|
|
|
|
// search the end
|
|
MOVQ SI, CX
|
|
ADDQ BX, CX
|
|
SUBQ R11, CX
|
|
// if CX == 0, the zero flag will be set and we'll end up
|
|
// returning a false success
|
|
JZ failure
|
|
REPN; SCASB
|
|
JZ success
|
|
|
|
failure:
|
|
MOVQ $-1, (R8)
|
|
RET
|
|
|
|
// handle for lengths < 16
|
|
small:
|
|
MOVQ BX, CX
|
|
REPN; SCASB
|
|
JZ success
|
|
MOVQ $-1, (R8)
|
|
RET
|
|
|
|
// we've found the chunk containing the byte
|
|
// now just figure out which specific byte it is
|
|
ssesuccess:
|
|
// get the index of the least significant set bit
|
|
BSFW DX, DX
|
|
SUBQ SI, DI
|
|
ADDQ DI, DX
|
|
MOVQ DX, (R8)
|
|
RET
|
|
|
|
success:
|
|
SUBQ SI, DI
|
|
SUBL $1, DI
|
|
MOVQ DI, (R8)
|
|
RET
|
|
|
|
TEXT bytes·Equal(SB),NOSPLIT,$0-49
|
|
MOVQ a_len+8(FP), BX
|
|
MOVQ b_len+32(FP), CX
|
|
CMPQ BX, CX
|
|
JNE eqret
|
|
MOVQ a+0(FP), SI
|
|
MOVQ b+24(FP), DI
|
|
LEAQ ret+48(FP), AX
|
|
JMP runtime·memeqbody(SB)
|
|
eqret:
|
|
MOVB $0, ret+48(FP)
|
|
RET
|
|
|
|
TEXT runtime·fastrand1(SB), NOSPLIT, $0-4
|
|
get_tls(CX)
|
|
MOVQ g(CX), AX
|
|
MOVQ g_m(AX), AX
|
|
MOVL m_fastrand(AX), DX
|
|
ADDL DX, DX
|
|
MOVL DX, BX
|
|
XORL $0x88888eef, DX
|
|
CMOVLMI BX, DX
|
|
MOVL DX, m_fastrand(AX)
|
|
MOVL DX, ret+0(FP)
|
|
RET
|
|
|
|
TEXT runtime·return0(SB), NOSPLIT, $0
|
|
MOVL $0, AX
|
|
RET
|
|
|
|
|
|
// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
|
|
// Must obey the gcc calling convention.
|
|
TEXT _cgo_topofstack(SB),NOSPLIT,$0
|
|
get_tls(CX)
|
|
MOVQ g(CX), AX
|
|
MOVQ g_m(AX), AX
|
|
MOVQ m_curg(AX), AX
|
|
MOVQ (g_stack+stack_hi)(AX), AX
|
|
RET
|
|
|
|
// The top-most function running on a goroutine
|
|
// returns to goexit+PCQuantum.
|
|
TEXT runtime·goexit(SB),NOSPLIT,$0-0
|
|
BYTE $0x90 // NOP
|
|
CALL runtime·goexit1(SB) // does not return
|
|
// traceback from goexit1 must hit code range of goexit
|
|
BYTE $0x90 // NOP
|
|
|
|
TEXT runtime·prefetcht0(SB),NOSPLIT,$0-8
|
|
MOVQ addr+0(FP), AX
|
|
PREFETCHT0 (AX)
|
|
RET
|
|
|
|
TEXT runtime·prefetcht1(SB),NOSPLIT,$0-8
|
|
MOVQ addr+0(FP), AX
|
|
PREFETCHT1 (AX)
|
|
RET
|
|
|
|
TEXT runtime·prefetcht2(SB),NOSPLIT,$0-8
|
|
MOVQ addr+0(FP), AX
|
|
PREFETCHT2 (AX)
|
|
RET
|
|
|
|
TEXT runtime·prefetchnta(SB),NOSPLIT,$0-8
|
|
MOVQ addr+0(FP), AX
|
|
PREFETCHNTA (AX)
|
|
RET
|
|
|
|
// This is called from .init_array and follows the platform, not Go, ABI.
|
|
TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
|
|
PUSHQ R15 // The access to global variables below implicitly uses R15, which is callee-save
|
|
MOVQ runtime·lastmoduledatap(SB), AX
|
|
MOVQ DI, moduledata_next(AX)
|
|
MOVQ DI, runtime·lastmoduledatap(SB)
|
|
POPQ R15
|
|
RET
|