// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" TEXT runtime·rt0_go(SB),NOSPLIT,$0 // copy arguments forward on an even stack MOVQ DI, AX // argc MOVQ SI, BX // argv SUBQ $(4*8+7), SP // 2args 2auto ANDQ $~15, SP MOVQ AX, 16(SP) MOVQ BX, 24(SP) // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVQ $runtime·g0(SB), DI LEAQ (-64*1024+104)(SP), BX MOVQ BX, g_stackguard0(DI) MOVQ BX, g_stackguard1(DI) MOVQ BX, (g_stack+stack_lo)(DI) MOVQ SP, (g_stack+stack_hi)(DI) // find out information about the processor we're on MOVQ $0, AX CPUID CMPQ AX, $0 JE nocpuinfo // Figure out how to serialize RDTSC. // On Intel processors LFENCE is enough. AMD requires MFENCE. // Don't know about the rest, so let's do MFENCE. CMPL BX, $0x756E6547 // "Genu" JNE notintel CMPL DX, $0x49656E69 // "ineI" JNE notintel CMPL CX, $0x6C65746E // "ntel" JNE notintel MOVB $1, runtime·lfenceBeforeRdtsc(SB) notintel: MOVQ $1, AX CPUID MOVL CX, runtime·cpuid_ecx(SB) MOVL DX, runtime·cpuid_edx(SB) nocpuinfo: // if there is an _cgo_init, call it. MOVQ _cgo_init(SB), AX TESTQ AX, AX JZ needtls // g0 already in DI MOVQ DI, CX // Win64 uses CX for first parameter MOVQ $setg_gcc<>(SB), SI CALL AX // update stackguard after _cgo_init MOVQ $runtime·g0(SB), CX MOVQ (g_stack+stack_lo)(CX), AX ADDQ $const__StackGuard, AX MOVQ AX, g_stackguard0(CX) MOVQ AX, g_stackguard1(CX) CMPL runtime·iswindows(SB), $0 JEQ ok needtls: // skip TLS setup on Plan 9 CMPL runtime·isplan9(SB), $1 JEQ ok // skip TLS setup on Solaris CMPL runtime·issolaris(SB), $1 JEQ ok LEAQ runtime·tls0(SB), DI CALL runtime·settls(SB) // store through it, to make sure it works get_tls(BX) MOVQ $0x123, g(BX) MOVQ runtime·tls0(SB), AX CMPQ AX, $0x123 JEQ 2(PC) MOVL AX, 0 // abort ok: // set the per-goroutine and per-mach "registers" get_tls(BX) LEAQ runtime·g0(SB), CX MOVQ CX, g(BX) LEAQ runtime·m0(SB), AX // save m->g0 = g0 MOVQ CX, m_g0(AX) // save m0 to g0->m MOVQ AX, g_m(CX) CLD // convention is D is always left cleared CALL runtime·check(SB) MOVL 16(SP), AX // copy argc MOVL AX, 0(SP) MOVQ 24(SP), AX // copy argv MOVQ AX, 8(SP) CALL runtime·args(SB) CALL runtime·osinit(SB) CALL runtime·schedinit(SB) // create a new goroutine to start program MOVQ $runtime·mainPC(SB), AX // entry PUSHQ AX PUSHQ $0 // arg size CALL runtime·newproc(SB) POPQ AX POPQ AX // start this M CALL runtime·mstart(SB) MOVL $0xf1, 0xf1 // crash RET DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$8 TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 BYTE $0xcc RET TEXT runtime·asminit(SB),NOSPLIT,$0-0 // No per-thread init. RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT, $0-8 MOVQ buf+0(FP), AX // gobuf LEAQ buf+0(FP), BX // caller's SP MOVQ BX, gobuf_sp(AX) MOVQ 0(SP), BX // caller's PC MOVQ BX, gobuf_pc(AX) MOVQ $0, gobuf_ret(AX) MOVQ $0, gobuf_ctxt(AX) MOVQ BP, gobuf_bp(AX) get_tls(CX) MOVQ g(CX), BX MOVQ BX, gobuf_g(AX) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $0-8 MOVQ buf+0(FP), BX // gobuf MOVQ gobuf_g(BX), DX MOVQ 0(DX), CX // make sure g != nil get_tls(CX) MOVQ DX, g(CX) MOVQ gobuf_sp(BX), SP // restore SP MOVQ gobuf_ret(BX), AX MOVQ gobuf_ctxt(BX), DX MOVQ gobuf_bp(BX), BP MOVQ $0, gobuf_sp(BX) // clear to help garbage collector MOVQ $0, gobuf_ret(BX) MOVQ $0, gobuf_ctxt(BX) MOVQ $0, gobuf_bp(BX) MOVQ gobuf_pc(BX), BX JMP BX // func mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT, $0-8 MOVQ fn+0(FP), DI get_tls(CX) MOVQ g(CX), AX // save state in g->sched MOVQ 0(SP), BX // caller's PC MOVQ BX, (g_sched+gobuf_pc)(AX) LEAQ fn+0(FP), BX // caller's SP MOVQ BX, (g_sched+gobuf_sp)(AX) MOVQ AX, (g_sched+gobuf_g)(AX) MOVQ BP, (g_sched+gobuf_bp)(AX) // switch to m->g0 & its stack, call fn MOVQ g(CX), BX MOVQ g_m(BX), BX MOVQ m_g0(BX), SI CMPQ SI, AX // if g == m->g0 call badmcall JNE 3(PC) MOVQ $runtime·badmcall(SB), AX JMP AX MOVQ SI, g(CX) // g = m->g0 MOVQ (g_sched+gobuf_sp)(SI), SP // sp = m->g0->sched.sp PUSHQ AX MOVQ DI, DX MOVQ 0(DI), DI CALL DI POPQ AX MOVQ $runtime·badmcall2(SB), AX JMP AX RET // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-8 MOVQ fn+0(FP), DI // DI = fn get_tls(CX) MOVQ g(CX), AX // AX = g MOVQ g_m(AX), BX // BX = m MOVQ m_gsignal(BX), DX // DX = gsignal CMPQ AX, DX JEQ noswitch MOVQ m_g0(BX), DX // DX = g0 CMPQ AX, DX JEQ noswitch MOVQ m_curg(BX), R8 CMPQ AX, R8 JEQ switch // Bad: g is not gsignal, not g0, not curg. What is it? MOVQ $runtime·badsystemstack(SB), AX CALL AX switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVQ $runtime·systemstack_switch(SB), SI MOVQ SI, (g_sched+gobuf_pc)(AX) MOVQ SP, (g_sched+gobuf_sp)(AX) MOVQ AX, (g_sched+gobuf_g)(AX) MOVQ BP, (g_sched+gobuf_bp)(AX) // switch to g0 MOVQ DX, g(CX) MOVQ (g_sched+gobuf_sp)(DX), BX // make it look like mstart called systemstack on g0, to stop traceback SUBQ $8, BX MOVQ $runtime·mstart(SB), DX MOVQ DX, 0(BX) MOVQ BX, SP // call target function MOVQ DI, DX MOVQ 0(DI), DI CALL DI // switch back to g get_tls(CX) MOVQ g(CX), AX MOVQ g_m(AX), BX MOVQ m_curg(BX), AX MOVQ AX, g(CX) MOVQ (g_sched+gobuf_sp)(AX), SP MOVQ $0, (g_sched+gobuf_sp)(AX) RET noswitch: // already on m stack, just call directly MOVQ DI, DX MOVQ 0(DI), DI CALL DI RET /* * support for morestack */ // Called during function prolog when more stack is needed. // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT,$0-0 // Cannot grow scheduler stack (m->g0). get_tls(CX) MOVQ g(CX), BX MOVQ g_m(BX), BX MOVQ m_g0(BX), SI CMPQ g(CX), SI JNE 2(PC) INT $3 // Cannot grow signal stack (m->gsignal). MOVQ m_gsignal(BX), SI CMPQ g(CX), SI JNE 2(PC) INT $3 // Called from f. // Set m->morebuf to f's caller. MOVQ 8(SP), AX // f's caller's PC MOVQ AX, (m_morebuf+gobuf_pc)(BX) LEAQ 16(SP), AX // f's caller's SP MOVQ AX, (m_morebuf+gobuf_sp)(BX) get_tls(CX) MOVQ g(CX), SI MOVQ SI, (m_morebuf+gobuf_g)(BX) // Set g->sched to context in f. MOVQ 0(SP), AX // f's PC MOVQ AX, (g_sched+gobuf_pc)(SI) MOVQ SI, (g_sched+gobuf_g)(SI) LEAQ 8(SP), AX // f's SP MOVQ AX, (g_sched+gobuf_sp)(SI) MOVQ DX, (g_sched+gobuf_ctxt)(SI) MOVQ BP, (g_sched+gobuf_bp)(SI) // Call newstack on m->g0's stack. MOVQ m_g0(BX), BX MOVQ BX, g(CX) MOVQ (g_sched+gobuf_sp)(BX), SP CALL runtime·newstack(SB) MOVQ $0, 0x1003 // crash if newstack returns RET // morestack but not preserving ctxt. TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0 MOVL $0, DX JMP runtime·morestack(SB) TEXT runtime·stackBarrier(SB),NOSPLIT,$0 // We came here via a RET to an overwritten return PC. // AX may be live. Other registers are available. // Get the original return PC, g.stkbar[g.stkbarPos].savedLRVal. get_tls(CX) MOVQ g(CX), CX MOVQ (g_stkbar+slice_array)(CX), DX MOVQ g_stkbarPos(CX), BX IMULQ $stkbar__size, BX // Too big for SIB. MOVQ stkbar_savedLRVal(DX)(BX*1), BX // Record that this stack barrier was hit. ADDQ $1, g_stkbarPos(CX) // Jump to the original return PC. JMP BX // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ CMPQ CX, $MAXSIZE; \ JA 3(PC); \ MOVQ $NAME(SB), AX; \ JMP AX // Note: can't just "JMP NAME(SB)" - bad inlining results. TEXT reflect·call(SB), NOSPLIT, $0-0 JMP ·reflectcall(SB) TEXT ·reflectcall(SB), NOSPLIT, $0-32 MOVLQZX argsize+24(FP), CX // NOTE(rsc): No call16, because CALLFN needs four words // of argument space to invoke callwritebarrier. DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVQ $runtime·badreflectcall(SB), AX JMP AX #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-32; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVQ argptr+16(FP), SI; \ MOVLQZX argsize+24(FP), CX; \ MOVQ SP, DI; \ REP;MOVSB; \ /* call function */ \ MOVQ f+8(FP), DX; \ PCDATA $PCDATA_StackMapIndex, $0; \ CALL (DX); \ /* copy return values back */ \ MOVQ argptr+16(FP), DI; \ MOVLQZX argsize+24(FP), CX; \ MOVLQZX retoffset+28(FP), BX; \ MOVQ SP, SI; \ ADDQ BX, DI; \ ADDQ BX, SI; \ SUBQ BX, CX; \ REP;MOVSB; \ /* execute write barrier updates */ \ MOVQ argtype+0(FP), DX; \ MOVQ argptr+16(FP), DI; \ MOVLQZX argsize+24(FP), CX; \ MOVLQZX retoffset+28(FP), BX; \ MOVQ DX, 0(SP); \ MOVQ DI, 8(SP); \ MOVQ CX, 16(SP); \ MOVQ BX, 24(SP); \ CALL runtime·callwritebarrier(SB); \ RET CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) // bool cas(int32 *val, int32 old, int32 new) // Atomically: // if(*val == old){ // *val = new; // return 1; // } else // return 0; TEXT runtime·cas(SB), NOSPLIT, $0-17 MOVQ ptr+0(FP), BX MOVL old+8(FP), AX MOVL new+12(FP), CX LOCK CMPXCHGL CX, 0(BX) SETEQ ret+16(FP) RET // bool runtime·cas64(uint64 *val, uint64 old, uint64 new) // Atomically: // if(*val == *old){ // *val = new; // return 1; // } else { // return 0; // } TEXT runtime·cas64(SB), NOSPLIT, $0-25 MOVQ ptr+0(FP), BX MOVQ old+8(FP), AX MOVQ new+16(FP), CX LOCK CMPXCHGQ CX, 0(BX) SETEQ ret+24(FP) RET TEXT runtime·casuintptr(SB), NOSPLIT, $0-25 JMP runtime·cas64(SB) TEXT runtime·atomicloaduintptr(SB), NOSPLIT, $0-16 JMP runtime·atomicload64(SB) TEXT runtime·atomicloaduint(SB), NOSPLIT, $0-16 JMP runtime·atomicload64(SB) TEXT runtime·atomicstoreuintptr(SB), NOSPLIT, $0-16 JMP runtime·atomicstore64(SB) // bool casp(void **val, void *old, void *new) // Atomically: // if(*val == old){ // *val = new; // return 1; // } else // return 0; TEXT runtime·casp1(SB), NOSPLIT, $0-25 MOVQ ptr+0(FP), BX MOVQ old+8(FP), AX MOVQ new+16(FP), CX LOCK CMPXCHGQ CX, 0(BX) SETEQ ret+24(FP) RET // uint32 xadd(uint32 volatile *val, int32 delta) // Atomically: // *val += delta; // return *val; TEXT runtime·xadd(SB), NOSPLIT, $0-20 MOVQ ptr+0(FP), BX MOVL delta+8(FP), AX MOVL AX, CX LOCK XADDL AX, 0(BX) ADDL CX, AX MOVL AX, ret+16(FP) RET TEXT runtime·xadd64(SB), NOSPLIT, $0-24 MOVQ ptr+0(FP), BX MOVQ delta+8(FP), AX MOVQ AX, CX LOCK XADDQ AX, 0(BX) ADDQ CX, AX MOVQ AX, ret+16(FP) RET TEXT runtime·xadduintptr(SB), NOSPLIT, $0-24 JMP runtime·xadd64(SB) TEXT runtime·xchg(SB), NOSPLIT, $0-20 MOVQ ptr+0(FP), BX MOVL new+8(FP), AX XCHGL AX, 0(BX) MOVL AX, ret+16(FP) RET TEXT runtime·xchg64(SB), NOSPLIT, $0-24 MOVQ ptr+0(FP), BX MOVQ new+8(FP), AX XCHGQ AX, 0(BX) MOVQ AX, ret+16(FP) RET TEXT runtime·xchgp1(SB), NOSPLIT, $0-24 MOVQ ptr+0(FP), BX MOVQ new+8(FP), AX XCHGQ AX, 0(BX) MOVQ AX, ret+16(FP) RET TEXT runtime·xchguintptr(SB), NOSPLIT, $0-24 JMP runtime·xchg64(SB) TEXT runtime·procyield(SB),NOSPLIT,$0-0 MOVL cycles+0(FP), AX again: PAUSE SUBL $1, AX JNZ again RET TEXT runtime·atomicstorep1(SB), NOSPLIT, $0-16 MOVQ ptr+0(FP), BX MOVQ val+8(FP), AX XCHGQ AX, 0(BX) RET TEXT runtime·atomicstore(SB), NOSPLIT, $0-12 MOVQ ptr+0(FP), BX MOVL val+8(FP), AX XCHGL AX, 0(BX) RET TEXT runtime·atomicstore64(SB), NOSPLIT, $0-16 MOVQ ptr+0(FP), BX MOVQ val+8(FP), AX XCHGQ AX, 0(BX) RET // void runtime·atomicor8(byte volatile*, byte); TEXT runtime·atomicor8(SB), NOSPLIT, $0-9 MOVQ ptr+0(FP), AX MOVB val+8(FP), BX LOCK ORB BX, (AX) RET // void runtime·atomicand8(byte volatile*, byte); TEXT runtime·atomicand8(SB), NOSPLIT, $0-9 MOVQ ptr+0(FP), AX MOVB val+8(FP), BX LOCK ANDB BX, (AX) RET TEXT ·publicationBarrier(SB),NOSPLIT,$0-0 // Stores are already ordered on x86, so this is just a // compile barrier. RET // void jmpdefer(fn, sp); // called from deferreturn. // 1. pop the caller // 2. sub 5 bytes from the callers return // 3. jmp to the argument TEXT runtime·jmpdefer(SB), NOSPLIT, $0-16 MOVQ fv+0(FP), DX // fn MOVQ argp+8(FP), BX // caller sp LEAQ -8(BX), SP // caller sp after CALL SUBQ $5, (SP) // return to CALL again MOVQ 0(DX), BX JMP BX // but first run the deferred function // Save state of caller into g->sched. Smashes R8, R9. TEXT gosave<>(SB),NOSPLIT,$0 get_tls(R8) MOVQ g(R8), R8 MOVQ 0(SP), R9 MOVQ R9, (g_sched+gobuf_pc)(R8) LEAQ 8(SP), R9 MOVQ R9, (g_sched+gobuf_sp)(R8) MOVQ $0, (g_sched+gobuf_ret)(R8) MOVQ $0, (g_sched+gobuf_ctxt)(R8) MOVQ BP, (g_sched+gobuf_bp)(R8) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-20 MOVQ fn+0(FP), AX MOVQ arg+8(FP), BX MOVQ SP, DX // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. get_tls(CX) MOVQ g(CX), R8 MOVQ g_m(R8), R8 MOVQ m_g0(R8), SI MOVQ g(CX), DI CMPQ SI, DI JEQ nosave MOVQ m_gsignal(R8), SI CMPQ SI, DI JEQ nosave MOVQ m_g0(R8), SI CALL gosave<>(SB) MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), SP nosave: // Now on a scheduling stack (a pthread-created stack). // Make sure we have enough room for 4 stack-backed fast-call // registers as per windows amd64 calling convention. SUBQ $64, SP ANDQ $~15, SP // alignment for gcc ABI MOVQ DI, 48(SP) // save g MOVQ (g_stack+stack_hi)(DI), DI SUBQ DX, DI MOVQ DI, 40(SP) // save depth in stack (can't just save SP, as stack might be copied during a callback) MOVQ BX, DI // DI = first argument in AMD64 ABI MOVQ BX, CX // CX = first argument in Win64 CALL AX // Restore registers, g, stack pointer. get_tls(CX) MOVQ 48(SP), DI MOVQ (g_stack+stack_hi)(DI), SI SUBQ 40(SP), SI MOVQ DI, g(CX) MOVQ SI, SP MOVL AX, ret+16(FP) RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$24-24 LEAQ fn+0(FP), AX MOVQ AX, 0(SP) MOVQ frame+8(FP), AX MOVQ AX, 8(SP) MOVQ framesize+16(FP), AX MOVQ AX, 16(SP) MOVQ $runtime·cgocallback_gofunc(SB), AX CALL AX RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize) // See cgocall.go for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$8-24 NO_LOCAL_POINTERS // If g is nil, Go did not create the current thread. // Call needm to obtain one m for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call through AX. get_tls(CX) #ifdef GOOS_windows MOVL $0, BX CMPQ CX, $0 JEQ 2(PC) #endif MOVQ g(CX), BX CMPQ BX, $0 JEQ needm MOVQ g_m(BX), BX MOVQ BX, R8 // holds oldm until end of function JMP havem needm: MOVQ $0, 0(SP) MOVQ $runtime·needm(SB), AX CALL AX MOVQ 0(SP), R8 get_tls(CX) MOVQ g(CX), BX MOVQ g_m(BX), BX // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVQ m_g0(BX), SI MOVQ SP, (g_sched+gobuf_sp)(SI) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 0(SP). MOVQ m_g0(BX), SI MOVQ (g_sched+gobuf_sp)(SI), AX MOVQ AX, 0(SP) MOVQ SP, (g_sched+gobuf_sp)(SI) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, 0(SP) holds the saved R8. MOVQ m_curg(BX), SI MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), DI // prepare stack as DI MOVQ (g_sched+gobuf_pc)(SI), BX MOVQ BX, -8(DI) // Compute the size of the frame, including return PC and, if // GOEXPERIMENT=framepointer, the saved based pointer LEAQ fv+0(FP), AX SUBQ SP, AX SUBQ AX, DI MOVQ DI, SP MOVQ R8, 0(SP) CALL runtime·cgocallbackg(SB) MOVQ 0(SP), R8 // Compute the size of the frame again. FP and SP have // completely different values here than they did above, // but only their difference matters. LEAQ fv+0(FP), AX SUBQ SP, AX // Restore g->sched (== m->curg->sched) from saved values. get_tls(CX) MOVQ g(CX), SI MOVQ SP, DI ADDQ AX, DI MOVQ -8(DI), BX MOVQ BX, (g_sched+gobuf_pc)(SI) MOVQ DI, (g_sched+gobuf_sp)(SI) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVQ g(CX), BX MOVQ g_m(BX), BX MOVQ m_g0(BX), SI MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), SP MOVQ 0(SP), AX MOVQ AX, (g_sched+gobuf_sp)(SI) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. CMPQ R8, $0 JNE 3(PC) MOVQ $runtime·dropm(SB), AX CALL AX // Done! RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOVQ gg+0(FP), BX #ifdef GOOS_windows CMPQ BX, $0 JNE settls MOVQ $0, 0x28(GS) RET settls: MOVQ g_m(BX), AX LEAQ m_tls(AX), AX MOVQ AX, 0x28(GS) #endif get_tls(CX) MOVQ BX, g(CX) RET // void setg_gcc(G*); set g called from gcc. TEXT setg_gcc<>(SB),NOSPLIT,$0 get_tls(AX) MOVQ DI, g(AX) RET // check that SP is in range [g->stack.lo, g->stack.hi) TEXT runtime·stackcheck(SB), NOSPLIT, $0-0 get_tls(CX) MOVQ g(CX), AX CMPQ (g_stack+stack_hi)(AX), SP JHI 2(PC) INT $3 CMPQ SP, (g_stack+stack_lo)(AX) JHI 2(PC) INT $3 RET TEXT runtime·getcallerpc(SB),NOSPLIT,$8-16 MOVQ argp+0(FP),AX // addr of first arg MOVQ -8(AX),AX // get calling pc CMPQ AX, runtime·stackBarrierPC(SB) JNE nobar // Get original return PC. CALL runtime·nextBarrierPC(SB) MOVQ 0(SP), AX nobar: MOVQ AX, ret+8(FP) RET TEXT runtime·setcallerpc(SB),NOSPLIT,$8-16 MOVQ argp+0(FP),AX // addr of first arg MOVQ pc+8(FP), BX MOVQ -8(AX), CX CMPQ CX, runtime·stackBarrierPC(SB) JEQ setbar MOVQ BX, -8(AX) // set calling pc RET setbar: // Set the stack barrier return PC. MOVQ BX, 0(SP) CALL runtime·setNextBarrierPC(SB) RET TEXT runtime·getcallersp(SB),NOSPLIT,$0-16 MOVQ argp+0(FP), AX MOVQ AX, ret+8(FP) RET // func cputicks() int64 TEXT runtime·cputicks(SB),NOSPLIT,$0-0 CMPB runtime·lfenceBeforeRdtsc(SB), $1 JNE mfence BYTE $0x0f; BYTE $0xae; BYTE $0xe8 // LFENCE JMP done mfence: BYTE $0x0f; BYTE $0xae; BYTE $0xf0 // MFENCE done: RDTSC SHLQ $32, DX ADDQ DX, AX MOVQ AX, ret+0(FP) RET // memhash_varlen(p unsafe.Pointer, h seed) uintptr // redirects to memhash(p, h, size) using the size // stored in the closure. TEXT runtime·memhash_varlen(SB),NOSPLIT,$32-24 GO_ARGS NO_LOCAL_POINTERS MOVQ p+0(FP), AX MOVQ h+8(FP), BX MOVQ 8(DX), CX MOVQ AX, 0(SP) MOVQ BX, 8(SP) MOVQ CX, 16(SP) CALL runtime·memhash(SB) MOVQ 24(SP), AX MOVQ AX, ret+16(FP) RET // hash function using AES hardware instructions TEXT runtime·aeshash(SB),NOSPLIT,$0-32 MOVQ p+0(FP), AX // ptr to data MOVQ s+16(FP), CX // size LEAQ ret+24(FP), DX JMP runtime·aeshashbody(SB) TEXT runtime·aeshashstr(SB),NOSPLIT,$0-24 MOVQ p+0(FP), AX // ptr to string struct MOVQ 8(AX), CX // length of string MOVQ (AX), AX // string data LEAQ ret+16(FP), DX JMP runtime·aeshashbody(SB) // AX: data // CX: length // DX: address to put return value TEXT runtime·aeshashbody(SB),NOSPLIT,$0-0 MOVQ h+8(FP), X6 // seed to low 64 bits of xmm6 PINSRQ $1, CX, X6 // size to high 64 bits of xmm6 PSHUFHW $0, X6, X6 // replace size with its low 2 bytes repeated 4 times MOVO runtime·aeskeysched(SB), X7 CMPQ CX, $16 JB aes0to15 JE aes16 CMPQ CX, $32 JBE aes17to32 CMPQ CX, $64 JBE aes33to64 CMPQ CX, $128 JBE aes65to128 JMP aes129plus aes0to15: TESTQ CX, CX JE aes0 ADDQ $16, AX TESTW $0xff0, AX JE endofpage // 16 bytes loaded at this address won't cross // a page boundary, so we can load it directly. MOVOU -16(AX), X0 ADDQ CX, CX MOVQ $masks<>(SB), AX PAND (AX)(CX*8), X0 // scramble 3 times AESENC X6, X0 AESENC X7, X0 AESENC X7, X0 MOVQ X0, (DX) RET endofpage: // address ends in 1111xxxx. Might be up against // a page boundary, so load ending at last byte. // Then shift bytes down using pshufb. MOVOU -32(AX)(CX*1), X0 ADDQ CX, CX MOVQ $shifts<>(SB), AX PSHUFB (AX)(CX*8), X0 AESENC X6, X0 AESENC X7, X0 AESENC X7, X0 MOVQ X0, (DX) RET aes0: // return input seed MOVQ h+8(FP), AX MOVQ AX, (DX) RET aes16: MOVOU (AX), X0 AESENC X6, X0 AESENC X7, X0 AESENC X7, X0 MOVQ X0, (DX) RET aes17to32: // load data to be hashed MOVOU (AX), X0 MOVOU -16(AX)(CX*1), X1 // scramble 3 times AESENC X6, X0 AESENC runtime·aeskeysched+16(SB), X1 AESENC X7, X0 AESENC X7, X1 AESENC X7, X0 AESENC X7, X1 // combine results PXOR X1, X0 MOVQ X0, (DX) RET aes33to64: MOVOU (AX), X0 MOVOU 16(AX), X1 MOVOU -32(AX)(CX*1), X2 MOVOU -16(AX)(CX*1), X3 AESENC X6, X0 AESENC runtime·aeskeysched+16(SB), X1 AESENC runtime·aeskeysched+32(SB), X2 AESENC runtime·aeskeysched+48(SB), X3 AESENC X7, X0 AESENC X7, X1 AESENC X7, X2 AESENC X7, X3 AESENC X7, X0 AESENC X7, X1 AESENC X7, X2 AESENC X7, X3 PXOR X2, X0 PXOR X3, X1 PXOR X1, X0 MOVQ X0, (DX) RET aes65to128: MOVOU (AX), X0 MOVOU 16(AX), X1 MOVOU 32(AX), X2 MOVOU 48(AX), X3 MOVOU -64(AX)(CX*1), X4 MOVOU -48(AX)(CX*1), X5 MOVOU -32(AX)(CX*1), X8 MOVOU -16(AX)(CX*1), X9 AESENC X6, X0 AESENC runtime·aeskeysched+16(SB), X1 AESENC runtime·aeskeysched+32(SB), X2 AESENC runtime·aeskeysched+48(SB), X3 AESENC runtime·aeskeysched+64(SB), X4 AESENC runtime·aeskeysched+80(SB), X5 AESENC runtime·aeskeysched+96(SB), X8 AESENC runtime·aeskeysched+112(SB), X9 AESENC X7, X0 AESENC X7, X1 AESENC X7, X2 AESENC X7, X3 AESENC X7, X4 AESENC X7, X5 AESENC X7, X8 AESENC X7, X9 AESENC X7, X0 AESENC X7, X1 AESENC X7, X2 AESENC X7, X3 AESENC X7, X4 AESENC X7, X5 AESENC X7, X8 AESENC X7, X9 PXOR X4, X0 PXOR X5, X1 PXOR X8, X2 PXOR X9, X3 PXOR X2, X0 PXOR X3, X1 PXOR X1, X0 MOVQ X0, (DX) RET aes129plus: // start with last (possibly overlapping) block MOVOU -128(AX)(CX*1), X0 MOVOU -112(AX)(CX*1), X1 MOVOU -96(AX)(CX*1), X2 MOVOU -80(AX)(CX*1), X3 MOVOU -64(AX)(CX*1), X4 MOVOU -48(AX)(CX*1), X5 MOVOU -32(AX)(CX*1), X8 MOVOU -16(AX)(CX*1), X9 // scramble state once AESENC X6, X0 AESENC runtime·aeskeysched+16(SB), X1 AESENC runtime·aeskeysched+32(SB), X2 AESENC runtime·aeskeysched+48(SB), X3 AESENC runtime·aeskeysched+64(SB), X4 AESENC runtime·aeskeysched+80(SB), X5 AESENC runtime·aeskeysched+96(SB), X8 AESENC runtime·aeskeysched+112(SB), X9 // compute number of remaining 128-byte blocks DECQ CX SHRQ $7, CX aesloop: // scramble state, xor in a block MOVOU (AX), X10 MOVOU 16(AX), X11 MOVOU 32(AX), X12 MOVOU 48(AX), X13 AESENC X10, X0 AESENC X11, X1 AESENC X12, X2 AESENC X13, X3 MOVOU 64(AX), X10 MOVOU 80(AX), X11 MOVOU 96(AX), X12 MOVOU 112(AX), X13 AESENC X10, X4 AESENC X11, X5 AESENC X12, X8 AESENC X13, X9 // scramble state AESENC X7, X0 AESENC X7, X1 AESENC X7, X2 AESENC X7, X3 AESENC X7, X4 AESENC X7, X5 AESENC X7, X8 AESENC X7, X9 ADDQ $128, AX DECQ CX JNE aesloop // 2 more scrambles to finish AESENC X7, X0 AESENC X7, X1 AESENC X7, X2 AESENC X7, X3 AESENC X7, X4 AESENC X7, X5 AESENC X7, X8 AESENC X7, X9 AESENC X7, X0 AESENC X7, X1 AESENC X7, X2 AESENC X7, X3 AESENC X7, X4 AESENC X7, X5 AESENC X7, X8 AESENC X7, X9 PXOR X4, X0 PXOR X5, X1 PXOR X8, X2 PXOR X9, X3 PXOR X2, X0 PXOR X3, X1 PXOR X1, X0 MOVQ X0, (DX) RET TEXT runtime·aeshash32(SB),NOSPLIT,$0-24 MOVQ p+0(FP), AX // ptr to data MOVQ h+8(FP), X0 // seed PINSRD $2, (AX), X0 // data AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+32(SB), X0 MOVQ X0, ret+16(FP) RET TEXT runtime·aeshash64(SB),NOSPLIT,$0-24 MOVQ p+0(FP), AX // ptr to data MOVQ h+8(FP), X0 // seed PINSRQ $1, (AX), X0 // data AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+32(SB), X0 MOVQ X0, ret+16(FP) RET // simple mask to get rid of data in the high part of the register. DATA masks<>+0x00(SB)/8, $0x0000000000000000 DATA masks<>+0x08(SB)/8, $0x0000000000000000 DATA masks<>+0x10(SB)/8, $0x00000000000000ff DATA masks<>+0x18(SB)/8, $0x0000000000000000 DATA masks<>+0x20(SB)/8, $0x000000000000ffff DATA masks<>+0x28(SB)/8, $0x0000000000000000 DATA masks<>+0x30(SB)/8, $0x0000000000ffffff DATA masks<>+0x38(SB)/8, $0x0000000000000000 DATA masks<>+0x40(SB)/8, $0x00000000ffffffff DATA masks<>+0x48(SB)/8, $0x0000000000000000 DATA masks<>+0x50(SB)/8, $0x000000ffffffffff DATA masks<>+0x58(SB)/8, $0x0000000000000000 DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff DATA masks<>+0x68(SB)/8, $0x0000000000000000 DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff DATA masks<>+0x78(SB)/8, $0x0000000000000000 DATA masks<>+0x80(SB)/8, $0xffffffffffffffff DATA masks<>+0x88(SB)/8, $0x0000000000000000 DATA masks<>+0x90(SB)/8, $0xffffffffffffffff DATA masks<>+0x98(SB)/8, $0x00000000000000ff DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff DATA masks<>+0xa8(SB)/8, $0x000000000000ffff DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff GLOBL masks<>(SB),RODATA,$256 // these are arguments to pshufb. They move data down from // the high bytes of the register to the low bytes of the register. // index is how many bytes to move. DATA shifts<>+0x00(SB)/8, $0x0000000000000000 DATA shifts<>+0x08(SB)/8, $0x0000000000000000 DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09 DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908 DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807 DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706 DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605 DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504 DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403 DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b DATA shifts<>+0xe0(SB)/8, $0x0908070605040302 DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a DATA shifts<>+0xf0(SB)/8, $0x0807060504030201 DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09 GLOBL shifts<>(SB),RODATA,$256 TEXT runtime·memeq(SB),NOSPLIT,$0-25 MOVQ a+0(FP), SI MOVQ b+8(FP), DI MOVQ size+16(FP), BX LEAQ ret+24(FP), AX JMP runtime·memeqbody(SB) // memequal_varlen(a, b unsafe.Pointer) bool TEXT runtime·memequal_varlen(SB),NOSPLIT,$0-17 MOVQ a+0(FP), SI MOVQ b+8(FP), DI CMPQ SI, DI JEQ eq MOVQ 8(DX), BX // compiler stores size at offset 8 in the closure LEAQ ret+16(FP), AX JMP runtime·memeqbody(SB) eq: MOVB $1, ret+16(FP) RET // eqstring tests whether two strings are equal. // The compiler guarantees that strings passed // to eqstring have equal length. // See runtime_test.go:eqstring_generic for // equivalent Go code. TEXT runtime·eqstring(SB),NOSPLIT,$0-33 MOVQ s1str+0(FP), SI MOVQ s2str+16(FP), DI CMPQ SI, DI JEQ eq MOVQ s1len+8(FP), BX LEAQ v+32(FP), AX JMP runtime·memeqbody(SB) eq: MOVB $1, v+32(FP) RET // a in SI // b in DI // count in BX // address of result byte in AX TEXT runtime·memeqbody(SB),NOSPLIT,$0-0 CMPQ BX, $8 JB small // 64 bytes at a time using xmm registers hugeloop: CMPQ BX, $64 JB bigloop MOVOU (SI), X0 MOVOU (DI), X1 MOVOU 16(SI), X2 MOVOU 16(DI), X3 MOVOU 32(SI), X4 MOVOU 32(DI), X5 MOVOU 48(SI), X6 MOVOU 48(DI), X7 PCMPEQB X1, X0 PCMPEQB X3, X2 PCMPEQB X5, X4 PCMPEQB X7, X6 PAND X2, X0 PAND X6, X4 PAND X4, X0 PMOVMSKB X0, DX ADDQ $64, SI ADDQ $64, DI SUBQ $64, BX CMPL DX, $0xffff JEQ hugeloop MOVB $0, (AX) RET // 8 bytes at a time using 64-bit register bigloop: CMPQ BX, $8 JBE leftover MOVQ (SI), CX MOVQ (DI), DX ADDQ $8, SI ADDQ $8, DI SUBQ $8, BX CMPQ CX, DX JEQ bigloop MOVB $0, (AX) RET // remaining 0-8 bytes leftover: MOVQ -8(SI)(BX*1), CX MOVQ -8(DI)(BX*1), DX CMPQ CX, DX SETEQ (AX) RET small: CMPQ BX, $0 JEQ equal LEAQ 0(BX*8), CX NEGQ CX CMPB SI, $0xf8 JA si_high // load at SI won't cross a page boundary. MOVQ (SI), SI JMP si_finish si_high: // address ends in 11111xxx. Load up to bytes we want, move to correct position. MOVQ -8(SI)(BX*1), SI SHRQ CX, SI si_finish: // same for DI. CMPB DI, $0xf8 JA di_high MOVQ (DI), DI JMP di_finish di_high: MOVQ -8(DI)(BX*1), DI SHRQ CX, DI di_finish: SUBQ SI, DI SHLQ CX, DI equal: SETEQ (AX) RET TEXT runtime·cmpstring(SB),NOSPLIT,$0-40 MOVQ s1_base+0(FP), SI MOVQ s1_len+8(FP), BX MOVQ s2_base+16(FP), DI MOVQ s2_len+24(FP), DX LEAQ ret+32(FP), R9 JMP runtime·cmpbody(SB) TEXT bytes·Compare(SB),NOSPLIT,$0-56 MOVQ s1+0(FP), SI MOVQ s1+8(FP), BX MOVQ s2+24(FP), DI MOVQ s2+32(FP), DX LEAQ res+48(FP), R9 JMP runtime·cmpbody(SB) // input: // SI = a // DI = b // BX = alen // DX = blen // R9 = address of output word (stores -1/0/1 here) TEXT runtime·cmpbody(SB),NOSPLIT,$0-0 CMPQ SI, DI JEQ allsame CMPQ BX, DX MOVQ DX, R8 CMOVQLT BX, R8 // R8 = min(alen, blen) = # of bytes to compare CMPQ R8, $8 JB small loop: CMPQ R8, $16 JBE _0through16 MOVOU (SI), X0 MOVOU (DI), X1 PCMPEQB X0, X1 PMOVMSKB X1, AX XORQ $0xffff, AX // convert EQ to NE JNE diff16 // branch if at least one byte is not equal ADDQ $16, SI ADDQ $16, DI SUBQ $16, R8 JMP loop // AX = bit mask of differences diff16: BSFQ AX, BX // index of first byte that differs XORQ AX, AX MOVB (SI)(BX*1), CX CMPB CX, (DI)(BX*1) SETHI AX LEAQ -1(AX*2), AX // convert 1/0 to +1/-1 MOVQ AX, (R9) RET // 0 through 16 bytes left, alen>=8, blen>=8 _0through16: CMPQ R8, $8 JBE _0through8 MOVQ (SI), AX MOVQ (DI), CX CMPQ AX, CX JNE diff8 _0through8: MOVQ -8(SI)(R8*1), AX MOVQ -8(DI)(R8*1), CX CMPQ AX, CX JEQ allsame // AX and CX contain parts of a and b that differ. diff8: BSWAPQ AX // reverse order of bytes BSWAPQ CX XORQ AX, CX BSRQ CX, CX // index of highest bit difference SHRQ CX, AX // move a's bit to bottom ANDQ $1, AX // mask bit LEAQ -1(AX*2), AX // 1/0 => +1/-1 MOVQ AX, (R9) RET // 0-7 bytes in common small: LEAQ (R8*8), CX // bytes left -> bits left NEGQ CX // - bits lift (== 64 - bits left mod 64) JEQ allsame // load bytes of a into high bytes of AX CMPB SI, $0xf8 JA si_high MOVQ (SI), SI JMP si_finish si_high: MOVQ -8(SI)(R8*1), SI SHRQ CX, SI si_finish: SHLQ CX, SI // load bytes of b in to high bytes of BX CMPB DI, $0xf8 JA di_high MOVQ (DI), DI JMP di_finish di_high: MOVQ -8(DI)(R8*1), DI SHRQ CX, DI di_finish: SHLQ CX, DI BSWAPQ SI // reverse order of bytes BSWAPQ DI XORQ SI, DI // find bit differences JEQ allsame BSRQ DI, CX // index of highest bit difference SHRQ CX, SI // move a's bit to bottom ANDQ $1, SI // mask bit LEAQ -1(SI*2), AX // 1/0 => +1/-1 MOVQ AX, (R9) RET allsame: XORQ AX, AX XORQ CX, CX CMPQ BX, DX SETGT AX // 1 if alen > blen SETEQ CX // 1 if alen == blen LEAQ -1(CX)(AX*2), AX // 1,0,-1 result MOVQ AX, (R9) RET TEXT bytes·IndexByte(SB),NOSPLIT,$0-40 MOVQ s+0(FP), SI MOVQ s_len+8(FP), BX MOVB c+24(FP), AL LEAQ ret+32(FP), R8 JMP runtime·indexbytebody(SB) TEXT strings·IndexByte(SB),NOSPLIT,$0-32 MOVQ s+0(FP), SI MOVQ s_len+8(FP), BX MOVB c+16(FP), AL LEAQ ret+24(FP), R8 JMP runtime·indexbytebody(SB) // input: // SI: data // BX: data len // AL: byte sought // R8: address to put result TEXT runtime·indexbytebody(SB),NOSPLIT,$0 MOVQ SI, DI CMPQ BX, $16 JLT small // round up to first 16-byte boundary TESTQ $15, SI JZ aligned MOVQ SI, CX ANDQ $~15, CX ADDQ $16, CX // search the beginning SUBQ SI, CX REPN; SCASB JZ success // DI is 16-byte aligned; get ready to search using SSE instructions aligned: // round down to last 16-byte boundary MOVQ BX, R11 ADDQ SI, R11 ANDQ $~15, R11 // shuffle X0 around so that each byte contains c MOVD AX, X0 PUNPCKLBW X0, X0 PUNPCKLBW X0, X0 PSHUFL $0, X0, X0 JMP condition sse: // move the next 16-byte chunk of the buffer into X1 MOVO (DI), X1 // compare bytes in X0 to X1 PCMPEQB X0, X1 // take the top bit of each byte in X1 and put the result in DX PMOVMSKB X1, DX TESTL DX, DX JNZ ssesuccess ADDQ $16, DI condition: CMPQ DI, R11 JLT sse // search the end MOVQ SI, CX ADDQ BX, CX SUBQ R11, CX // if CX == 0, the zero flag will be set and we'll end up // returning a false success JZ failure REPN; SCASB JZ success failure: MOVQ $-1, (R8) RET // handle for lengths < 16 small: MOVQ BX, CX REPN; SCASB JZ success MOVQ $-1, (R8) RET // we've found the chunk containing the byte // now just figure out which specific byte it is ssesuccess: // get the index of the least significant set bit BSFW DX, DX SUBQ SI, DI ADDQ DI, DX MOVQ DX, (R8) RET success: SUBQ SI, DI SUBL $1, DI MOVQ DI, (R8) RET TEXT bytes·Equal(SB),NOSPLIT,$0-49 MOVQ a_len+8(FP), BX MOVQ b_len+32(FP), CX CMPQ BX, CX JNE eqret MOVQ a+0(FP), SI MOVQ b+24(FP), DI LEAQ ret+48(FP), AX JMP runtime·memeqbody(SB) eqret: MOVB $0, ret+48(FP) RET TEXT runtime·fastrand1(SB), NOSPLIT, $0-4 get_tls(CX) MOVQ g(CX), AX MOVQ g_m(AX), AX MOVL m_fastrand(AX), DX ADDL DX, DX MOVL DX, BX XORL $0x88888eef, DX CMOVLMI BX, DX MOVL DX, m_fastrand(AX) MOVL DX, ret+0(FP) RET TEXT runtime·return0(SB), NOSPLIT, $0 MOVL $0, AX RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$0 get_tls(CX) MOVQ g(CX), AX MOVQ g_m(AX), AX MOVQ m_curg(AX), AX MOVQ (g_stack+stack_hi)(AX), AX RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT,$0-0 BYTE $0x90 // NOP CALL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit BYTE $0x90 // NOP TEXT runtime·prefetcht0(SB),NOSPLIT,$0-8 MOVQ addr+0(FP), AX PREFETCHT0 (AX) RET TEXT runtime·prefetcht1(SB),NOSPLIT,$0-8 MOVQ addr+0(FP), AX PREFETCHT1 (AX) RET TEXT runtime·prefetcht2(SB),NOSPLIT,$0-8 MOVQ addr+0(FP), AX PREFETCHT2 (AX) RET TEXT runtime·prefetchnta(SB),NOSPLIT,$0-8 MOVQ addr+0(FP), AX PREFETCHNTA (AX) RET // This is called from .init_array and follows the platform, not Go, ABI. TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0 PUSHQ R15 // The access to global variables below implicitly uses R15, which is callee-save MOVQ runtime·lastmoduledatap(SB), AX MOVQ DI, moduledata_next(AX) MOVQ DI, runtime·lastmoduledatap(SB) POPQ R15 RET