mirror of
https://github.com/golang/go
synced 2024-11-08 05:26:15 -07:00
a8a60ac2a7
Changes the compiler to recognize the slice extension pattern append(x, make([]T, y)...) and replace it with growslice and an optional memclr to avoid an allocation for make([]T, y). Memclr is not called in case growslice already allocated a new cleared backing array when T contains pointers. amd64: name old time/op new time/op delta ExtendSlice/IntSlice 103ns ± 4% 57ns ± 4% -44.55% (p=0.000 n=18+18) ExtendSlice/PointerSlice 155ns ± 3% 77ns ± 3% -49.93% (p=0.000 n=20+20) ExtendSlice/NoGrow 50.2ns ± 3% 5.2ns ± 2% -89.67% (p=0.000 n=18+18) name old alloc/op new alloc/op delta ExtendSlice/IntSlice 64.0B ± 0% 32.0B ± 0% -50.00% (p=0.000 n=20+20) ExtendSlice/PointerSlice 64.0B ± 0% 32.0B ± 0% -50.00% (p=0.000 n=20+20) ExtendSlice/NoGrow 32.0B ± 0% 0.0B -100.00% (p=0.000 n=20+20) name old allocs/op new allocs/op delta ExtendSlice/IntSlice 2.00 ± 0% 1.00 ± 0% -50.00% (p=0.000 n=20+20) ExtendSlice/PointerSlice 2.00 ± 0% 1.00 ± 0% -50.00% (p=0.000 n=20+20) ExtendSlice/NoGrow 1.00 ± 0% 0.00 -100.00% (p=0.000 n=20+20) Fixes #21266 Change-Id: Idc3077665f63cbe89762b590c5967a864fd1c07f Reviewed-on: https://go-review.googlesource.com/109517 Run-TryBot: Martin Möhrmann <moehrmann@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
278 lines
7.7 KiB
Go
278 lines
7.7 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
type slice struct {
|
|
array unsafe.Pointer
|
|
len int
|
|
cap int
|
|
}
|
|
|
|
// An notInHeapSlice is a slice backed by go:notinheap memory.
|
|
type notInHeapSlice struct {
|
|
array *notInHeap
|
|
len int
|
|
cap int
|
|
}
|
|
|
|
// maxElems is a lookup table containing the maximum capacity for a slice.
|
|
// The index is the size of the slice element.
|
|
var maxElems = [...]uintptr{
|
|
^uintptr(0),
|
|
maxAlloc / 1, maxAlloc / 2, maxAlloc / 3, maxAlloc / 4,
|
|
maxAlloc / 5, maxAlloc / 6, maxAlloc / 7, maxAlloc / 8,
|
|
maxAlloc / 9, maxAlloc / 10, maxAlloc / 11, maxAlloc / 12,
|
|
maxAlloc / 13, maxAlloc / 14, maxAlloc / 15, maxAlloc / 16,
|
|
maxAlloc / 17, maxAlloc / 18, maxAlloc / 19, maxAlloc / 20,
|
|
maxAlloc / 21, maxAlloc / 22, maxAlloc / 23, maxAlloc / 24,
|
|
maxAlloc / 25, maxAlloc / 26, maxAlloc / 27, maxAlloc / 28,
|
|
maxAlloc / 29, maxAlloc / 30, maxAlloc / 31, maxAlloc / 32,
|
|
}
|
|
|
|
// maxSliceCap returns the maximum capacity for a slice.
|
|
func maxSliceCap(elemsize uintptr) uintptr {
|
|
if elemsize < uintptr(len(maxElems)) {
|
|
return maxElems[elemsize]
|
|
}
|
|
return maxAlloc / elemsize
|
|
}
|
|
|
|
func panicmakeslicelen() {
|
|
panic(errorString("makeslice: len out of range"))
|
|
}
|
|
|
|
func panicmakeslicecap() {
|
|
panic(errorString("makeslice: cap out of range"))
|
|
}
|
|
|
|
func makeslice(et *_type, len, cap int) slice {
|
|
// NOTE: The len > maxElements check here is not strictly necessary,
|
|
// but it produces a 'len out of range' error instead of a 'cap out of range' error
|
|
// when someone does make([]T, bignumber). 'cap out of range' is true too,
|
|
// but since the cap is only being supplied implicitly, saying len is clearer.
|
|
// See issue 4085.
|
|
maxElements := maxSliceCap(et.size)
|
|
if len < 0 || uintptr(len) > maxElements {
|
|
panicmakeslicelen()
|
|
}
|
|
|
|
if cap < len || uintptr(cap) > maxElements {
|
|
panicmakeslicecap()
|
|
}
|
|
|
|
p := mallocgc(et.size*uintptr(cap), et, true)
|
|
return slice{p, len, cap}
|
|
}
|
|
|
|
func makeslice64(et *_type, len64, cap64 int64) slice {
|
|
len := int(len64)
|
|
if int64(len) != len64 {
|
|
panicmakeslicelen()
|
|
}
|
|
|
|
cap := int(cap64)
|
|
if int64(cap) != cap64 {
|
|
panicmakeslicecap()
|
|
}
|
|
|
|
return makeslice(et, len, cap)
|
|
}
|
|
|
|
// growslice handles slice growth during append.
|
|
// It is passed the slice element type, the old slice, and the desired new minimum capacity,
|
|
// and it returns a new slice with at least that capacity, with the old data
|
|
// copied into it.
|
|
// The new slice's length is set to the old slice's length,
|
|
// NOT to the new requested capacity.
|
|
// This is for codegen convenience. The old slice's length is used immediately
|
|
// to calculate where to write new values during an append.
|
|
// TODO: When the old backend is gone, reconsider this decision.
|
|
// The SSA backend might prefer the new length or to return only ptr/cap and save stack space.
|
|
func growslice(et *_type, old slice, cap int) slice {
|
|
if raceenabled {
|
|
callerpc := getcallerpc()
|
|
racereadrangepc(old.array, uintptr(old.len*int(et.size)), callerpc, funcPC(growslice))
|
|
}
|
|
if msanenabled {
|
|
msanread(old.array, uintptr(old.len*int(et.size)))
|
|
}
|
|
|
|
if et.size == 0 {
|
|
if cap < old.cap {
|
|
panic(errorString("growslice: cap out of range"))
|
|
}
|
|
// append should not create a slice with nil pointer but non-zero len.
|
|
// We assume that append doesn't need to preserve old.array in this case.
|
|
return slice{unsafe.Pointer(&zerobase), old.len, cap}
|
|
}
|
|
|
|
newcap := old.cap
|
|
doublecap := newcap + newcap
|
|
if cap > doublecap {
|
|
newcap = cap
|
|
} else {
|
|
if old.len < 1024 {
|
|
newcap = doublecap
|
|
} else {
|
|
// Check 0 < newcap to detect overflow
|
|
// and prevent an infinite loop.
|
|
for 0 < newcap && newcap < cap {
|
|
newcap += newcap / 4
|
|
}
|
|
// Set newcap to the requested cap when
|
|
// the newcap calculation overflowed.
|
|
if newcap <= 0 {
|
|
newcap = cap
|
|
}
|
|
}
|
|
}
|
|
|
|
var overflow bool
|
|
var lenmem, newlenmem, capmem uintptr
|
|
// Specialize for common values of et.size.
|
|
// For 1 we don't need any division/multiplication.
|
|
// For sys.PtrSize, compiler will optimize division/multiplication into a shift by a constant.
|
|
// For powers of 2, use a variable shift.
|
|
switch {
|
|
case et.size == 1:
|
|
lenmem = uintptr(old.len)
|
|
newlenmem = uintptr(cap)
|
|
capmem = roundupsize(uintptr(newcap))
|
|
overflow = uintptr(newcap) > maxAlloc
|
|
newcap = int(capmem)
|
|
case et.size == sys.PtrSize:
|
|
lenmem = uintptr(old.len) * sys.PtrSize
|
|
newlenmem = uintptr(cap) * sys.PtrSize
|
|
capmem = roundupsize(uintptr(newcap) * sys.PtrSize)
|
|
overflow = uintptr(newcap) > maxAlloc/sys.PtrSize
|
|
newcap = int(capmem / sys.PtrSize)
|
|
case isPowerOfTwo(et.size):
|
|
var shift uintptr
|
|
if sys.PtrSize == 8 {
|
|
// Mask shift for better code generation.
|
|
shift = uintptr(sys.Ctz64(uint64(et.size))) & 63
|
|
} else {
|
|
shift = uintptr(sys.Ctz32(uint32(et.size))) & 31
|
|
}
|
|
lenmem = uintptr(old.len) << shift
|
|
newlenmem = uintptr(cap) << shift
|
|
capmem = roundupsize(uintptr(newcap) << shift)
|
|
overflow = uintptr(newcap) > (maxAlloc >> shift)
|
|
newcap = int(capmem >> shift)
|
|
default:
|
|
lenmem = uintptr(old.len) * et.size
|
|
newlenmem = uintptr(cap) * et.size
|
|
capmem = roundupsize(uintptr(newcap) * et.size)
|
|
overflow = uintptr(newcap) > maxSliceCap(et.size)
|
|
newcap = int(capmem / et.size)
|
|
}
|
|
|
|
// The check of overflow (uintptr(newcap) > maxSliceCap(et.size))
|
|
// in addition to capmem > _MaxMem is needed to prevent an overflow
|
|
// which can be used to trigger a segfault on 32bit architectures
|
|
// with this example program:
|
|
//
|
|
// type T [1<<27 + 1]int64
|
|
//
|
|
// var d T
|
|
// var s []T
|
|
//
|
|
// func main() {
|
|
// s = append(s, d, d, d, d)
|
|
// print(len(s), "\n")
|
|
// }
|
|
if cap < old.cap || overflow || capmem > maxAlloc {
|
|
panic(errorString("growslice: cap out of range"))
|
|
}
|
|
|
|
var p unsafe.Pointer
|
|
if et.kind&kindNoPointers != 0 {
|
|
p = mallocgc(capmem, nil, false)
|
|
memmove(p, old.array, lenmem)
|
|
// The append() that calls growslice is going to overwrite from old.len to cap (which will be the new length).
|
|
// Only clear the part that will not be overwritten.
|
|
memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
|
|
} else {
|
|
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
|
|
p = mallocgc(capmem, et, true)
|
|
if !writeBarrier.enabled {
|
|
memmove(p, old.array, lenmem)
|
|
} else {
|
|
for i := uintptr(0); i < lenmem; i += et.size {
|
|
typedmemmove(et, add(p, i), add(old.array, i))
|
|
}
|
|
}
|
|
}
|
|
|
|
return slice{p, old.len, newcap}
|
|
}
|
|
|
|
func isPowerOfTwo(x uintptr) bool {
|
|
return x&(x-1) == 0
|
|
}
|
|
|
|
func slicecopy(to, fm slice, width uintptr) int {
|
|
if fm.len == 0 || to.len == 0 {
|
|
return 0
|
|
}
|
|
|
|
n := fm.len
|
|
if to.len < n {
|
|
n = to.len
|
|
}
|
|
|
|
if width == 0 {
|
|
return n
|
|
}
|
|
|
|
if raceenabled {
|
|
callerpc := getcallerpc()
|
|
pc := funcPC(slicecopy)
|
|
racewriterangepc(to.array, uintptr(n*int(width)), callerpc, pc)
|
|
racereadrangepc(fm.array, uintptr(n*int(width)), callerpc, pc)
|
|
}
|
|
if msanenabled {
|
|
msanwrite(to.array, uintptr(n*int(width)))
|
|
msanread(fm.array, uintptr(n*int(width)))
|
|
}
|
|
|
|
size := uintptr(n) * width
|
|
if size == 1 { // common case worth about 2x to do here
|
|
// TODO: is this still worth it with new memmove impl?
|
|
*(*byte)(to.array) = *(*byte)(fm.array) // known to be a byte pointer
|
|
} else {
|
|
memmove(to.array, fm.array, size)
|
|
}
|
|
return n
|
|
}
|
|
|
|
func slicestringcopy(to []byte, fm string) int {
|
|
if len(fm) == 0 || len(to) == 0 {
|
|
return 0
|
|
}
|
|
|
|
n := len(fm)
|
|
if len(to) < n {
|
|
n = len(to)
|
|
}
|
|
|
|
if raceenabled {
|
|
callerpc := getcallerpc()
|
|
pc := funcPC(slicestringcopy)
|
|
racewriterangepc(unsafe.Pointer(&to[0]), uintptr(n), callerpc, pc)
|
|
}
|
|
if msanenabled {
|
|
msanwrite(unsafe.Pointer(&to[0]), uintptr(n))
|
|
}
|
|
|
|
memmove(unsafe.Pointer(&to[0]), stringStructOf(&fm).str, uintptr(n))
|
|
return n
|
|
}
|