// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "runtime/internal/sys" "unsafe" ) type slice struct { array unsafe.Pointer len int cap int } // An notInHeapSlice is a slice backed by go:notinheap memory. type notInHeapSlice struct { array *notInHeap len int cap int } // maxElems is a lookup table containing the maximum capacity for a slice. // The index is the size of the slice element. var maxElems = [...]uintptr{ ^uintptr(0), maxAlloc / 1, maxAlloc / 2, maxAlloc / 3, maxAlloc / 4, maxAlloc / 5, maxAlloc / 6, maxAlloc / 7, maxAlloc / 8, maxAlloc / 9, maxAlloc / 10, maxAlloc / 11, maxAlloc / 12, maxAlloc / 13, maxAlloc / 14, maxAlloc / 15, maxAlloc / 16, maxAlloc / 17, maxAlloc / 18, maxAlloc / 19, maxAlloc / 20, maxAlloc / 21, maxAlloc / 22, maxAlloc / 23, maxAlloc / 24, maxAlloc / 25, maxAlloc / 26, maxAlloc / 27, maxAlloc / 28, maxAlloc / 29, maxAlloc / 30, maxAlloc / 31, maxAlloc / 32, } // maxSliceCap returns the maximum capacity for a slice. func maxSliceCap(elemsize uintptr) uintptr { if elemsize < uintptr(len(maxElems)) { return maxElems[elemsize] } return maxAlloc / elemsize } func panicmakeslicelen() { panic(errorString("makeslice: len out of range")) } func panicmakeslicecap() { panic(errorString("makeslice: cap out of range")) } func makeslice(et *_type, len, cap int) slice { // NOTE: The len > maxElements check here is not strictly necessary, // but it produces a 'len out of range' error instead of a 'cap out of range' error // when someone does make([]T, bignumber). 'cap out of range' is true too, // but since the cap is only being supplied implicitly, saying len is clearer. // See issue 4085. maxElements := maxSliceCap(et.size) if len < 0 || uintptr(len) > maxElements { panicmakeslicelen() } if cap < len || uintptr(cap) > maxElements { panicmakeslicecap() } p := mallocgc(et.size*uintptr(cap), et, true) return slice{p, len, cap} } func makeslice64(et *_type, len64, cap64 int64) slice { len := int(len64) if int64(len) != len64 { panicmakeslicelen() } cap := int(cap64) if int64(cap) != cap64 { panicmakeslicecap() } return makeslice(et, len, cap) } // growslice handles slice growth during append. // It is passed the slice element type, the old slice, and the desired new minimum capacity, // and it returns a new slice with at least that capacity, with the old data // copied into it. // The new slice's length is set to the old slice's length, // NOT to the new requested capacity. // This is for codegen convenience. The old slice's length is used immediately // to calculate where to write new values during an append. // TODO: When the old backend is gone, reconsider this decision. // The SSA backend might prefer the new length or to return only ptr/cap and save stack space. func growslice(et *_type, old slice, cap int) slice { if raceenabled { callerpc := getcallerpc() racereadrangepc(old.array, uintptr(old.len*int(et.size)), callerpc, funcPC(growslice)) } if msanenabled { msanread(old.array, uintptr(old.len*int(et.size))) } if et.size == 0 { if cap < old.cap { panic(errorString("growslice: cap out of range")) } // append should not create a slice with nil pointer but non-zero len. // We assume that append doesn't need to preserve old.array in this case. return slice{unsafe.Pointer(&zerobase), old.len, cap} } newcap := old.cap doublecap := newcap + newcap if cap > doublecap { newcap = cap } else { if old.len < 1024 { newcap = doublecap } else { // Check 0 < newcap to detect overflow // and prevent an infinite loop. for 0 < newcap && newcap < cap { newcap += newcap / 4 } // Set newcap to the requested cap when // the newcap calculation overflowed. if newcap <= 0 { newcap = cap } } } var overflow bool var lenmem, newlenmem, capmem uintptr // Specialize for common values of et.size. // For 1 we don't need any division/multiplication. // For sys.PtrSize, compiler will optimize division/multiplication into a shift by a constant. // For powers of 2, use a variable shift. switch { case et.size == 1: lenmem = uintptr(old.len) newlenmem = uintptr(cap) capmem = roundupsize(uintptr(newcap)) overflow = uintptr(newcap) > maxAlloc newcap = int(capmem) case et.size == sys.PtrSize: lenmem = uintptr(old.len) * sys.PtrSize newlenmem = uintptr(cap) * sys.PtrSize capmem = roundupsize(uintptr(newcap) * sys.PtrSize) overflow = uintptr(newcap) > maxAlloc/sys.PtrSize newcap = int(capmem / sys.PtrSize) case isPowerOfTwo(et.size): var shift uintptr if sys.PtrSize == 8 { // Mask shift for better code generation. shift = uintptr(sys.Ctz64(uint64(et.size))) & 63 } else { shift = uintptr(sys.Ctz32(uint32(et.size))) & 31 } lenmem = uintptr(old.len) << shift newlenmem = uintptr(cap) << shift capmem = roundupsize(uintptr(newcap) << shift) overflow = uintptr(newcap) > (maxAlloc >> shift) newcap = int(capmem >> shift) default: lenmem = uintptr(old.len) * et.size newlenmem = uintptr(cap) * et.size capmem = roundupsize(uintptr(newcap) * et.size) overflow = uintptr(newcap) > maxSliceCap(et.size) newcap = int(capmem / et.size) } // The check of overflow (uintptr(newcap) > maxSliceCap(et.size)) // in addition to capmem > _MaxMem is needed to prevent an overflow // which can be used to trigger a segfault on 32bit architectures // with this example program: // // type T [1<<27 + 1]int64 // // var d T // var s []T // // func main() { // s = append(s, d, d, d, d) // print(len(s), "\n") // } if cap < old.cap || overflow || capmem > maxAlloc { panic(errorString("growslice: cap out of range")) } var p unsafe.Pointer if et.kind&kindNoPointers != 0 { p = mallocgc(capmem, nil, false) memmove(p, old.array, lenmem) // The append() that calls growslice is going to overwrite from old.len to cap (which will be the new length). // Only clear the part that will not be overwritten. memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem) } else { // Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory. p = mallocgc(capmem, et, true) if !writeBarrier.enabled { memmove(p, old.array, lenmem) } else { for i := uintptr(0); i < lenmem; i += et.size { typedmemmove(et, add(p, i), add(old.array, i)) } } } return slice{p, old.len, newcap} } func isPowerOfTwo(x uintptr) bool { return x&(x-1) == 0 } func slicecopy(to, fm slice, width uintptr) int { if fm.len == 0 || to.len == 0 { return 0 } n := fm.len if to.len < n { n = to.len } if width == 0 { return n } if raceenabled { callerpc := getcallerpc() pc := funcPC(slicecopy) racewriterangepc(to.array, uintptr(n*int(width)), callerpc, pc) racereadrangepc(fm.array, uintptr(n*int(width)), callerpc, pc) } if msanenabled { msanwrite(to.array, uintptr(n*int(width))) msanread(fm.array, uintptr(n*int(width))) } size := uintptr(n) * width if size == 1 { // common case worth about 2x to do here // TODO: is this still worth it with new memmove impl? *(*byte)(to.array) = *(*byte)(fm.array) // known to be a byte pointer } else { memmove(to.array, fm.array, size) } return n } func slicestringcopy(to []byte, fm string) int { if len(fm) == 0 || len(to) == 0 { return 0 } n := len(fm) if len(to) < n { n = len(to) } if raceenabled { callerpc := getcallerpc() pc := funcPC(slicestringcopy) racewriterangepc(unsafe.Pointer(&to[0]), uintptr(n), callerpc, pc) } if msanenabled { msanwrite(unsafe.Pointer(&to[0]), uintptr(n)) } memmove(unsafe.Pointer(&to[0]), stringStructOf(&fm).str, uintptr(n)) return n }