mirror of
https://github.com/golang/go
synced 2024-11-19 21:04:43 -07:00
c13866db7f
Also undo revision a5b96b602690 used to workaround the bug. Fixes #4643. R=rsc, golang-dev, dave, minux.ma, lucio.dere, bradfitz CC=golang-dev https://golang.org/cl/7090043
1838 lines
45 KiB
C
1838 lines
45 KiB
C
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Garbage collector.
|
|
|
|
#include "runtime.h"
|
|
#include "arch_GOARCH.h"
|
|
#include "malloc.h"
|
|
#include "stack.h"
|
|
#include "mgc0.h"
|
|
#include "race.h"
|
|
#include "type.h"
|
|
#include "typekind.h"
|
|
|
|
enum {
|
|
Debug = 0,
|
|
DebugMark = 0, // run second pass to check mark
|
|
|
|
// Four bits per word (see #defines below).
|
|
wordsPerBitmapWord = sizeof(void*)*8/4,
|
|
bitShift = sizeof(void*)*8/4,
|
|
|
|
handoffThreshold = 4,
|
|
IntermediateBufferCapacity = 64,
|
|
|
|
// Bits in type information
|
|
PRECISE = 1,
|
|
LOOP = 2,
|
|
PC_BITS = PRECISE | LOOP,
|
|
};
|
|
|
|
// Bits in per-word bitmap.
|
|
// #defines because enum might not be able to hold the values.
|
|
//
|
|
// Each word in the bitmap describes wordsPerBitmapWord words
|
|
// of heap memory. There are 4 bitmap bits dedicated to each heap word,
|
|
// so on a 64-bit system there is one bitmap word per 16 heap words.
|
|
// The bits in the word are packed together by type first, then by
|
|
// heap location, so each 64-bit bitmap word consists of, from top to bottom,
|
|
// the 16 bitSpecial bits for the corresponding heap words, then the 16 bitMarked bits,
|
|
// then the 16 bitNoPointers/bitBlockBoundary bits, then the 16 bitAllocated bits.
|
|
// This layout makes it easier to iterate over the bits of a given type.
|
|
//
|
|
// The bitmap starts at mheap.arena_start and extends *backward* from
|
|
// there. On a 64-bit system the off'th word in the arena is tracked by
|
|
// the off/16+1'th word before mheap.arena_start. (On a 32-bit system,
|
|
// the only difference is that the divisor is 8.)
|
|
//
|
|
// To pull out the bits corresponding to a given pointer p, we use:
|
|
//
|
|
// off = p - (uintptr*)mheap.arena_start; // word offset
|
|
// b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
// shift = off % wordsPerBitmapWord
|
|
// bits = *b >> shift;
|
|
// /* then test bits & bitAllocated, bits & bitMarked, etc. */
|
|
//
|
|
#define bitAllocated ((uintptr)1<<(bitShift*0))
|
|
#define bitNoPointers ((uintptr)1<<(bitShift*1)) /* when bitAllocated is set */
|
|
#define bitMarked ((uintptr)1<<(bitShift*2)) /* when bitAllocated is set */
|
|
#define bitSpecial ((uintptr)1<<(bitShift*3)) /* when bitAllocated is set - has finalizer or being profiled */
|
|
#define bitBlockBoundary ((uintptr)1<<(bitShift*1)) /* when bitAllocated is NOT set */
|
|
|
|
#define bitMask (bitBlockBoundary | bitAllocated | bitMarked | bitSpecial)
|
|
|
|
// Holding worldsema grants an M the right to try to stop the world.
|
|
// The procedure is:
|
|
//
|
|
// runtime·semacquire(&runtime·worldsema);
|
|
// m->gcing = 1;
|
|
// runtime·stoptheworld();
|
|
//
|
|
// ... do stuff ...
|
|
//
|
|
// m->gcing = 0;
|
|
// runtime·semrelease(&runtime·worldsema);
|
|
// runtime·starttheworld();
|
|
//
|
|
uint32 runtime·worldsema = 1;
|
|
|
|
static int32 gctrace;
|
|
|
|
typedef struct Obj Obj;
|
|
struct Obj
|
|
{
|
|
byte *p; // data pointer
|
|
uintptr n; // size of data in bytes
|
|
uintptr ti; // type info
|
|
};
|
|
|
|
// The size of Workbuf is N*PageSize.
|
|
typedef struct Workbuf Workbuf;
|
|
struct Workbuf
|
|
{
|
|
#define SIZE (2*PageSize-sizeof(LFNode)-sizeof(uintptr))
|
|
LFNode node; // must be first
|
|
uintptr nobj;
|
|
Obj obj[SIZE/sizeof(Obj) - 1];
|
|
uint8 _padding[SIZE%sizeof(Obj) + sizeof(Obj)];
|
|
#undef SIZE
|
|
};
|
|
|
|
typedef struct Finalizer Finalizer;
|
|
struct Finalizer
|
|
{
|
|
void (*fn)(void*);
|
|
void *arg;
|
|
uintptr nret;
|
|
};
|
|
|
|
typedef struct FinBlock FinBlock;
|
|
struct FinBlock
|
|
{
|
|
FinBlock *alllink;
|
|
FinBlock *next;
|
|
int32 cnt;
|
|
int32 cap;
|
|
Finalizer fin[1];
|
|
};
|
|
|
|
extern byte data[];
|
|
extern byte edata[];
|
|
extern byte bss[];
|
|
extern byte ebss[];
|
|
|
|
extern byte gcdata[];
|
|
extern byte gcbss[];
|
|
|
|
static G *fing;
|
|
static FinBlock *finq; // list of finalizers that are to be executed
|
|
static FinBlock *finc; // cache of free blocks
|
|
static FinBlock *allfin; // list of all blocks
|
|
static Lock finlock;
|
|
static int32 fingwait;
|
|
|
|
static void runfinq(void);
|
|
static Workbuf* getempty(Workbuf*);
|
|
static Workbuf* getfull(Workbuf*);
|
|
static void putempty(Workbuf*);
|
|
static Workbuf* handoff(Workbuf*);
|
|
|
|
static struct {
|
|
uint64 full; // lock-free list of full blocks
|
|
uint64 empty; // lock-free list of empty blocks
|
|
byte pad0[CacheLineSize]; // prevents false-sharing between full/empty and nproc/nwait
|
|
uint32 nproc;
|
|
volatile uint32 nwait;
|
|
volatile uint32 ndone;
|
|
volatile uint32 debugmarkdone;
|
|
Note alldone;
|
|
ParFor *markfor;
|
|
ParFor *sweepfor;
|
|
|
|
Lock;
|
|
byte *chunk;
|
|
uintptr nchunk;
|
|
|
|
Obj *roots;
|
|
uint32 nroot;
|
|
uint32 rootcap;
|
|
} work;
|
|
|
|
enum {
|
|
// TODO(atom): to be expanded in a next CL
|
|
GC_DEFAULT_PTR = GC_NUM_INSTR,
|
|
};
|
|
|
|
// PtrTarget and BitTarget are structures used by intermediate buffers.
|
|
// The intermediate buffers hold GC data before it
|
|
// is moved/flushed to the work buffer (Workbuf).
|
|
// The size of an intermediate buffer is very small,
|
|
// such as 32 or 64 elements.
|
|
typedef struct PtrTarget PtrTarget;
|
|
struct PtrTarget
|
|
{
|
|
void *p;
|
|
uintptr ti;
|
|
};
|
|
|
|
typedef struct BitTarget BitTarget;
|
|
struct BitTarget
|
|
{
|
|
void *p;
|
|
uintptr ti;
|
|
uintptr *bitp, shift;
|
|
};
|
|
|
|
typedef struct BufferList BufferList;
|
|
struct BufferList
|
|
{
|
|
PtrTarget ptrtarget[IntermediateBufferCapacity];
|
|
BitTarget bittarget[IntermediateBufferCapacity];
|
|
BufferList *next;
|
|
};
|
|
static BufferList *bufferList;
|
|
|
|
static Lock lock;
|
|
static Type *itabtype;
|
|
|
|
static void enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj);
|
|
|
|
// flushptrbuf moves data from the PtrTarget buffer to the work buffer.
|
|
// The PtrTarget buffer contains blocks irrespective of whether the blocks have been marked or scanned,
|
|
// while the work buffer contains blocks which have been marked
|
|
// and are prepared to be scanned by the garbage collector.
|
|
//
|
|
// _wp, _wbuf, _nobj are input/output parameters and are specifying the work buffer.
|
|
// bitbuf holds temporary data generated by this function.
|
|
//
|
|
// A simplified drawing explaining how the todo-list moves from a structure to another:
|
|
//
|
|
// scanblock
|
|
// (find pointers)
|
|
// Obj ------> PtrTarget (pointer targets)
|
|
// ↑ |
|
|
// | | flushptrbuf (1st part,
|
|
// | | find block start)
|
|
// | ↓
|
|
// `--------- BitTarget (pointer targets and the corresponding locations in bitmap)
|
|
// flushptrbuf
|
|
// (2nd part, mark and enqueue)
|
|
static void
|
|
flushptrbuf(PtrTarget *ptrbuf, PtrTarget **ptrbufpos, Obj **_wp, Workbuf **_wbuf, uintptr *_nobj, BitTarget *bitbuf)
|
|
{
|
|
byte *p, *arena_start, *obj;
|
|
uintptr size, *bitp, bits, shift, j, x, xbits, off, nobj, ti, n;
|
|
MSpan *s;
|
|
PageID k;
|
|
Obj *wp;
|
|
Workbuf *wbuf;
|
|
PtrTarget *ptrbuf_end;
|
|
BitTarget *bitbufpos, *bt;
|
|
|
|
arena_start = runtime·mheap.arena_start;
|
|
|
|
wp = *_wp;
|
|
wbuf = *_wbuf;
|
|
nobj = *_nobj;
|
|
|
|
ptrbuf_end = *ptrbufpos;
|
|
n = ptrbuf_end - ptrbuf;
|
|
*ptrbufpos = ptrbuf;
|
|
|
|
// If buffer is nearly full, get a new one.
|
|
if(wbuf == nil || nobj+n >= nelem(wbuf->obj)) {
|
|
if(wbuf != nil)
|
|
wbuf->nobj = nobj;
|
|
wbuf = getempty(wbuf);
|
|
wp = wbuf->obj;
|
|
nobj = 0;
|
|
|
|
if(n >= nelem(wbuf->obj))
|
|
runtime·throw("ptrbuf has to be smaller than WorkBuf");
|
|
}
|
|
|
|
// TODO(atom): This block is a branch of an if-then-else statement.
|
|
// The single-threaded branch may be added in a next CL.
|
|
{
|
|
// Multi-threaded version.
|
|
|
|
bitbufpos = bitbuf;
|
|
|
|
while(ptrbuf < ptrbuf_end) {
|
|
obj = ptrbuf->p;
|
|
ti = ptrbuf->ti;
|
|
ptrbuf++;
|
|
|
|
// obj belongs to interval [mheap.arena_start, mheap.arena_used).
|
|
if(Debug > 1) {
|
|
if(obj < runtime·mheap.arena_start || obj >= runtime·mheap.arena_used)
|
|
runtime·throw("object is outside of mheap");
|
|
}
|
|
|
|
// obj may be a pointer to a live object.
|
|
// Try to find the beginning of the object.
|
|
|
|
// Round down to word boundary.
|
|
if(((uintptr)obj & ((uintptr)PtrSize-1)) != 0) {
|
|
obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1));
|
|
ti = 0;
|
|
}
|
|
|
|
// Find bits for this word.
|
|
off = (uintptr*)obj - (uintptr*)arena_start;
|
|
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
xbits = *bitp;
|
|
bits = xbits >> shift;
|
|
|
|
// Pointing at the beginning of a block?
|
|
if((bits & (bitAllocated|bitBlockBoundary)) != 0)
|
|
goto found;
|
|
|
|
ti = 0;
|
|
|
|
// Pointing just past the beginning?
|
|
// Scan backward a little to find a block boundary.
|
|
for(j=shift; j-->0; ) {
|
|
if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) {
|
|
obj = (byte*)obj - (shift-j)*PtrSize;
|
|
shift = j;
|
|
bits = xbits>>shift;
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
// Otherwise consult span table to find beginning.
|
|
// (Manually inlined copy of MHeap_LookupMaybe.)
|
|
k = (uintptr)obj>>PageShift;
|
|
x = k;
|
|
if(sizeof(void*) == 8)
|
|
x -= (uintptr)arena_start>>PageShift;
|
|
s = runtime·mheap.map[x];
|
|
if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse)
|
|
continue;
|
|
p = (byte*)((uintptr)s->start<<PageShift);
|
|
if(s->sizeclass == 0) {
|
|
obj = p;
|
|
} else {
|
|
if((byte*)obj >= (byte*)s->limit)
|
|
continue;
|
|
size = s->elemsize;
|
|
int32 i = ((byte*)obj - p)/size;
|
|
obj = p+i*size;
|
|
}
|
|
|
|
// Now that we know the object header, reload bits.
|
|
off = (uintptr*)obj - (uintptr*)arena_start;
|
|
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
xbits = *bitp;
|
|
bits = xbits >> shift;
|
|
|
|
found:
|
|
// Now we have bits, bitp, and shift correct for
|
|
// obj pointing at the base of the object.
|
|
// Only care about allocated and not marked.
|
|
if((bits & (bitAllocated|bitMarked)) != bitAllocated)
|
|
continue;
|
|
|
|
*bitbufpos++ = (BitTarget){obj, ti, bitp, shift};
|
|
}
|
|
|
|
runtime·lock(&lock);
|
|
for(bt=bitbuf; bt<bitbufpos; bt++){
|
|
xbits = *bt->bitp;
|
|
bits = xbits >> bt->shift;
|
|
if((bits & bitMarked) != 0)
|
|
continue;
|
|
|
|
// Mark the block
|
|
*bt->bitp = xbits | (bitMarked << bt->shift);
|
|
|
|
// If object has no pointers, don't need to scan further.
|
|
if((bits & bitNoPointers) != 0)
|
|
continue;
|
|
|
|
obj = bt->p;
|
|
|
|
// Ask span about size class.
|
|
// (Manually inlined copy of MHeap_Lookup.)
|
|
x = (uintptr)obj >> PageShift;
|
|
if(sizeof(void*) == 8)
|
|
x -= (uintptr)arena_start>>PageShift;
|
|
s = runtime·mheap.map[x];
|
|
|
|
PREFETCH(obj);
|
|
|
|
*wp = (Obj){obj, s->elemsize, bt->ti};
|
|
wp++;
|
|
nobj++;
|
|
}
|
|
runtime·unlock(&lock);
|
|
|
|
// If another proc wants a pointer, give it some.
|
|
if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) {
|
|
wbuf->nobj = nobj;
|
|
wbuf = handoff(wbuf);
|
|
nobj = wbuf->nobj;
|
|
wp = wbuf->obj + nobj;
|
|
}
|
|
}
|
|
|
|
*_wp = wp;
|
|
*_wbuf = wbuf;
|
|
*_nobj = nobj;
|
|
}
|
|
|
|
// Program that scans the whole block and treats every block element as a potential pointer
|
|
static uintptr defaultProg[2] = {PtrSize, GC_DEFAULT_PTR};
|
|
|
|
// Local variables of a program fragment or loop
|
|
typedef struct Frame Frame;
|
|
struct Frame {
|
|
uintptr count, elemsize, b;
|
|
uintptr *loop_or_ret;
|
|
};
|
|
|
|
// scanblock scans a block of n bytes starting at pointer b for references
|
|
// to other objects, scanning any it finds recursively until there are no
|
|
// unscanned objects left. Instead of using an explicit recursion, it keeps
|
|
// a work list in the Workbuf* structures and loops in the main function
|
|
// body. Keeping an explicit work list is easier on the stack allocator and
|
|
// more efficient.
|
|
//
|
|
// wbuf: current work buffer
|
|
// wp: storage for next queued pointer (write pointer)
|
|
// nobj: number of queued objects
|
|
static void
|
|
scanblock(Workbuf *wbuf, Obj *wp, uintptr nobj, bool keepworking)
|
|
{
|
|
byte *b, *arena_start, *arena_used;
|
|
uintptr n, i, end_b, elemsize, ti, objti, count;
|
|
uintptr *pc, precise_type, nominal_size;
|
|
void *obj;
|
|
Type *t;
|
|
Slice *sliceptr;
|
|
Frame *stack_ptr, stack_top, stack[GC_STACK_CAPACITY+4];
|
|
BufferList *scanbuffers;
|
|
PtrTarget *ptrbuf, *ptrbuf_end, *ptrbufpos;
|
|
BitTarget *bitbuf;
|
|
Eface *eface;
|
|
Iface *iface;
|
|
|
|
if(sizeof(Workbuf) % PageSize != 0)
|
|
runtime·throw("scanblock: size of Workbuf is suboptimal");
|
|
|
|
// Memory arena parameters.
|
|
arena_start = runtime·mheap.arena_start;
|
|
arena_used = runtime·mheap.arena_used;
|
|
|
|
stack_ptr = stack+nelem(stack)-1;
|
|
|
|
precise_type = false;
|
|
nominal_size = 0;
|
|
|
|
// Allocate ptrbuf, bitbuf
|
|
{
|
|
runtime·lock(&lock);
|
|
|
|
if(bufferList == nil) {
|
|
bufferList = runtime·SysAlloc(sizeof(*bufferList));
|
|
bufferList->next = nil;
|
|
}
|
|
scanbuffers = bufferList;
|
|
bufferList = bufferList->next;
|
|
|
|
ptrbuf = &scanbuffers->ptrtarget[0];
|
|
ptrbuf_end = &scanbuffers->ptrtarget[0] + nelem(scanbuffers->ptrtarget);
|
|
bitbuf = &scanbuffers->bittarget[0];
|
|
|
|
runtime·unlock(&lock);
|
|
}
|
|
|
|
ptrbufpos = ptrbuf;
|
|
|
|
goto next_block;
|
|
|
|
for(;;) {
|
|
// Each iteration scans the block b of length n, queueing pointers in
|
|
// the work buffer.
|
|
if(Debug > 1) {
|
|
runtime·printf("scanblock %p %D\n", b, (int64)n);
|
|
}
|
|
|
|
// TODO(atom): to be expanded in a next CL
|
|
if(ti != 0) {
|
|
pc = (uintptr*)(ti & ~(uintptr)PC_BITS);
|
|
precise_type = (ti & PRECISE);
|
|
stack_top.elemsize = pc[0];
|
|
if(!precise_type)
|
|
nominal_size = pc[0];
|
|
if(ti & LOOP) {
|
|
stack_top.count = 0; // 0 means an infinite number of iterations
|
|
stack_top.loop_or_ret = pc+1;
|
|
} else {
|
|
stack_top.count = 1;
|
|
}
|
|
} else {
|
|
pc = defaultProg;
|
|
}
|
|
|
|
pc++;
|
|
stack_top.b = (uintptr)b;
|
|
|
|
end_b = (uintptr)b + n - PtrSize;
|
|
|
|
for(;;) {
|
|
obj = nil;
|
|
objti = 0;
|
|
switch(pc[0]) {
|
|
case GC_PTR:
|
|
obj = *(void**)(stack_top.b + pc[1]);
|
|
objti = pc[2];
|
|
pc += 3;
|
|
break;
|
|
|
|
case GC_SLICE:
|
|
sliceptr = (Slice*)(stack_top.b + pc[1]);
|
|
if(sliceptr->cap != 0) {
|
|
obj = sliceptr->array;
|
|
objti = pc[2] | PRECISE | LOOP;
|
|
}
|
|
pc += 3;
|
|
break;
|
|
|
|
case GC_APTR:
|
|
obj = *(void**)(stack_top.b + pc[1]);
|
|
pc += 2;
|
|
break;
|
|
|
|
case GC_STRING:
|
|
obj = *(void**)(stack_top.b + pc[1]);
|
|
pc += 2;
|
|
break;
|
|
|
|
case GC_EFACE:
|
|
eface = (Eface*)(stack_top.b + pc[1]);
|
|
pc += 2;
|
|
if(eface->type != nil && (eface->data >= arena_start && eface->data < arena_used)) {
|
|
t = eface->type;
|
|
if(t->size <= sizeof(void*)) {
|
|
if((t->kind & KindNoPointers))
|
|
break;
|
|
|
|
obj = eface->data;
|
|
if((t->kind & ~KindNoPointers) == KindPtr)
|
|
objti = (uintptr)((PtrType*)t)->elem->gc;
|
|
} else {
|
|
obj = eface->data;
|
|
objti = (uintptr)t->gc;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GC_IFACE:
|
|
iface = (Iface*)(stack_top.b + pc[1]);
|
|
pc += 2;
|
|
if(iface->tab == nil)
|
|
break;
|
|
|
|
// iface->tab
|
|
if((void*)iface->tab >= arena_start && (void*)iface->tab < arena_used) {
|
|
*ptrbufpos++ = (PtrTarget){iface->tab, (uintptr)itabtype->gc};
|
|
if(ptrbufpos == ptrbuf_end)
|
|
flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj, bitbuf);
|
|
}
|
|
|
|
// iface->data
|
|
if(iface->data >= arena_start && iface->data < arena_used) {
|
|
t = iface->tab->type;
|
|
if(t->size <= sizeof(void*)) {
|
|
if((t->kind & KindNoPointers))
|
|
break;
|
|
|
|
obj = iface->data;
|
|
if((t->kind & ~KindNoPointers) == KindPtr)
|
|
objti = (uintptr)((PtrType*)t)->elem->gc;
|
|
} else {
|
|
obj = iface->data;
|
|
objti = (uintptr)t->gc;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GC_DEFAULT_PTR:
|
|
while((i = stack_top.b) <= end_b) {
|
|
stack_top.b += PtrSize;
|
|
obj = *(byte**)i;
|
|
if(obj >= arena_start && obj < arena_used) {
|
|
*ptrbufpos++ = (PtrTarget){obj, 0};
|
|
if(ptrbufpos == ptrbuf_end)
|
|
flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj, bitbuf);
|
|
}
|
|
}
|
|
goto next_block;
|
|
|
|
case GC_END:
|
|
if(--stack_top.count != 0) {
|
|
// Next iteration of a loop if possible.
|
|
elemsize = stack_top.elemsize;
|
|
stack_top.b += elemsize;
|
|
if(stack_top.b + elemsize <= end_b+PtrSize) {
|
|
pc = stack_top.loop_or_ret;
|
|
continue;
|
|
}
|
|
i = stack_top.b;
|
|
} else {
|
|
// Stack pop if possible.
|
|
if(stack_ptr+1 < stack+nelem(stack)) {
|
|
pc = stack_top.loop_or_ret;
|
|
stack_top = *(++stack_ptr);
|
|
continue;
|
|
}
|
|
i = (uintptr)b + nominal_size;
|
|
}
|
|
if(!precise_type) {
|
|
// Quickly scan [b+i,b+n) for possible pointers.
|
|
for(; i<=end_b; i+=PtrSize) {
|
|
if(*(byte**)i != nil) {
|
|
// Found a value that may be a pointer.
|
|
// Do a rescan of the entire block.
|
|
enqueue((Obj){b, n, 0}, &wbuf, &wp, &nobj);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
goto next_block;
|
|
|
|
case GC_ARRAY_START:
|
|
i = stack_top.b + pc[1];
|
|
count = pc[2];
|
|
elemsize = pc[3];
|
|
pc += 4;
|
|
|
|
// Stack push.
|
|
*stack_ptr-- = stack_top;
|
|
stack_top = (Frame){count, elemsize, i, pc};
|
|
continue;
|
|
|
|
case GC_ARRAY_NEXT:
|
|
if(--stack_top.count != 0) {
|
|
stack_top.b += stack_top.elemsize;
|
|
pc = stack_top.loop_or_ret;
|
|
} else {
|
|
// Stack pop.
|
|
stack_top = *(++stack_ptr);
|
|
pc += 1;
|
|
}
|
|
continue;
|
|
|
|
case GC_CALL:
|
|
// Stack push.
|
|
*stack_ptr-- = stack_top;
|
|
stack_top = (Frame){1, 0, stack_top.b + pc[1], pc+3 /*return address*/};
|
|
pc = (uintptr*)pc[2]; // target of the CALL instruction
|
|
continue;
|
|
|
|
case GC_MAP_PTR:
|
|
// TODO(atom): to be expanded in a next CL. Same as GC_APTR for now.
|
|
obj = *(void**)(stack_top.b + pc[1]);
|
|
pc += 3;
|
|
break;
|
|
|
|
case GC_REGION:
|
|
// TODO(atom): to be expanded in a next CL. Same as GC_APTR for now.
|
|
obj = (void*)(stack_top.b + pc[1]);
|
|
pc += 4;
|
|
break;
|
|
|
|
default:
|
|
runtime·throw("scanblock: invalid GC instruction");
|
|
return;
|
|
}
|
|
|
|
if(obj >= arena_start && obj < arena_used) {
|
|
*ptrbufpos++ = (PtrTarget){obj, objti};
|
|
if(ptrbufpos == ptrbuf_end)
|
|
flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj, bitbuf);
|
|
}
|
|
}
|
|
|
|
next_block:
|
|
// Done scanning [b, b+n). Prepare for the next iteration of
|
|
// the loop by setting b, n, ti to the parameters for the next block.
|
|
|
|
if(nobj == 0) {
|
|
flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj, bitbuf);
|
|
|
|
if(nobj == 0) {
|
|
if(!keepworking) {
|
|
if(wbuf)
|
|
putempty(wbuf);
|
|
goto endscan;
|
|
}
|
|
// Emptied our buffer: refill.
|
|
wbuf = getfull(wbuf);
|
|
if(wbuf == nil)
|
|
goto endscan;
|
|
nobj = wbuf->nobj;
|
|
wp = wbuf->obj + wbuf->nobj;
|
|
}
|
|
}
|
|
|
|
// Fetch b from the work buffer.
|
|
--wp;
|
|
b = wp->p;
|
|
n = wp->n;
|
|
ti = wp->ti;
|
|
nobj--;
|
|
}
|
|
|
|
endscan:
|
|
runtime·lock(&lock);
|
|
scanbuffers->next = bufferList;
|
|
bufferList = scanbuffers;
|
|
runtime·unlock(&lock);
|
|
}
|
|
|
|
// debug_scanblock is the debug copy of scanblock.
|
|
// it is simpler, slower, single-threaded, recursive,
|
|
// and uses bitSpecial as the mark bit.
|
|
static void
|
|
debug_scanblock(byte *b, uintptr n)
|
|
{
|
|
byte *obj, *p;
|
|
void **vp;
|
|
uintptr size, *bitp, bits, shift, i, xbits, off;
|
|
MSpan *s;
|
|
|
|
if(!DebugMark)
|
|
runtime·throw("debug_scanblock without DebugMark");
|
|
|
|
if((intptr)n < 0) {
|
|
runtime·printf("debug_scanblock %p %D\n", b, (int64)n);
|
|
runtime·throw("debug_scanblock");
|
|
}
|
|
|
|
// Align b to a word boundary.
|
|
off = (uintptr)b & (PtrSize-1);
|
|
if(off != 0) {
|
|
b += PtrSize - off;
|
|
n -= PtrSize - off;
|
|
}
|
|
|
|
vp = (void**)b;
|
|
n /= PtrSize;
|
|
for(i=0; i<n; i++) {
|
|
obj = (byte*)vp[i];
|
|
|
|
// Words outside the arena cannot be pointers.
|
|
if((byte*)obj < runtime·mheap.arena_start || (byte*)obj >= runtime·mheap.arena_used)
|
|
continue;
|
|
|
|
// Round down to word boundary.
|
|
obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1));
|
|
|
|
// Consult span table to find beginning.
|
|
s = runtime·MHeap_LookupMaybe(&runtime·mheap, obj);
|
|
if(s == nil)
|
|
continue;
|
|
|
|
p = (byte*)((uintptr)s->start<<PageShift);
|
|
size = s->elemsize;
|
|
if(s->sizeclass == 0) {
|
|
obj = p;
|
|
} else {
|
|
if((byte*)obj >= (byte*)s->limit)
|
|
continue;
|
|
int32 i = ((byte*)obj - p)/size;
|
|
obj = p+i*size;
|
|
}
|
|
|
|
// Now that we know the object header, reload bits.
|
|
off = (uintptr*)obj - (uintptr*)runtime·mheap.arena_start;
|
|
bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
xbits = *bitp;
|
|
bits = xbits >> shift;
|
|
|
|
// Now we have bits, bitp, and shift correct for
|
|
// obj pointing at the base of the object.
|
|
// If not allocated or already marked, done.
|
|
if((bits & bitAllocated) == 0 || (bits & bitSpecial) != 0) // NOTE: bitSpecial not bitMarked
|
|
continue;
|
|
*bitp |= bitSpecial<<shift;
|
|
if(!(bits & bitMarked))
|
|
runtime·printf("found unmarked block %p in %p\n", obj, vp+i);
|
|
|
|
// If object has no pointers, don't need to scan further.
|
|
if((bits & bitNoPointers) != 0)
|
|
continue;
|
|
|
|
debug_scanblock(obj, size);
|
|
}
|
|
}
|
|
|
|
// Append obj to the work buffer.
|
|
// _wbuf, _wp, _nobj are input/output parameters and are specifying the work buffer.
|
|
static void
|
|
enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj)
|
|
{
|
|
uintptr nobj, off;
|
|
Obj *wp;
|
|
Workbuf *wbuf;
|
|
|
|
if(Debug > 1)
|
|
runtime·printf("append obj(%p %D %p)\n", obj.p, (int64)obj.n, obj.ti);
|
|
|
|
// Align obj.b to a word boundary.
|
|
off = (uintptr)obj.p & (PtrSize-1);
|
|
if(off != 0) {
|
|
obj.p += PtrSize - off;
|
|
obj.n -= PtrSize - off;
|
|
obj.ti = 0;
|
|
}
|
|
|
|
if(obj.p == nil || obj.n == 0)
|
|
return;
|
|
|
|
// Load work buffer state
|
|
wp = *_wp;
|
|
wbuf = *_wbuf;
|
|
nobj = *_nobj;
|
|
|
|
// If another proc wants a pointer, give it some.
|
|
if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) {
|
|
wbuf->nobj = nobj;
|
|
wbuf = handoff(wbuf);
|
|
nobj = wbuf->nobj;
|
|
wp = wbuf->obj + nobj;
|
|
}
|
|
|
|
// If buffer is full, get a new one.
|
|
if(wbuf == nil || nobj >= nelem(wbuf->obj)) {
|
|
if(wbuf != nil)
|
|
wbuf->nobj = nobj;
|
|
wbuf = getempty(wbuf);
|
|
wp = wbuf->obj;
|
|
nobj = 0;
|
|
}
|
|
|
|
*wp = obj;
|
|
wp++;
|
|
nobj++;
|
|
|
|
// Save work buffer state
|
|
*_wp = wp;
|
|
*_wbuf = wbuf;
|
|
*_nobj = nobj;
|
|
}
|
|
|
|
static void
|
|
markroot(ParFor *desc, uint32 i)
|
|
{
|
|
Obj *wp;
|
|
Workbuf *wbuf;
|
|
uintptr nobj;
|
|
|
|
USED(&desc);
|
|
wp = nil;
|
|
wbuf = nil;
|
|
nobj = 0;
|
|
enqueue(work.roots[i], &wbuf, &wp, &nobj);
|
|
scanblock(wbuf, wp, nobj, false);
|
|
}
|
|
|
|
// Get an empty work buffer off the work.empty list,
|
|
// allocating new buffers as needed.
|
|
static Workbuf*
|
|
getempty(Workbuf *b)
|
|
{
|
|
if(b != nil)
|
|
runtime·lfstackpush(&work.full, &b->node);
|
|
b = (Workbuf*)runtime·lfstackpop(&work.empty);
|
|
if(b == nil) {
|
|
// Need to allocate.
|
|
runtime·lock(&work);
|
|
if(work.nchunk < sizeof *b) {
|
|
work.nchunk = 1<<20;
|
|
work.chunk = runtime·SysAlloc(work.nchunk);
|
|
}
|
|
b = (Workbuf*)work.chunk;
|
|
work.chunk += sizeof *b;
|
|
work.nchunk -= sizeof *b;
|
|
runtime·unlock(&work);
|
|
}
|
|
b->nobj = 0;
|
|
return b;
|
|
}
|
|
|
|
static void
|
|
putempty(Workbuf *b)
|
|
{
|
|
runtime·lfstackpush(&work.empty, &b->node);
|
|
}
|
|
|
|
// Get a full work buffer off the work.full list, or return nil.
|
|
static Workbuf*
|
|
getfull(Workbuf *b)
|
|
{
|
|
int32 i;
|
|
|
|
if(b != nil)
|
|
runtime·lfstackpush(&work.empty, &b->node);
|
|
b = (Workbuf*)runtime·lfstackpop(&work.full);
|
|
if(b != nil || work.nproc == 1)
|
|
return b;
|
|
|
|
runtime·xadd(&work.nwait, +1);
|
|
for(i=0;; i++) {
|
|
if(work.full != 0) {
|
|
runtime·xadd(&work.nwait, -1);
|
|
b = (Workbuf*)runtime·lfstackpop(&work.full);
|
|
if(b != nil)
|
|
return b;
|
|
runtime·xadd(&work.nwait, +1);
|
|
}
|
|
if(work.nwait == work.nproc)
|
|
return nil;
|
|
if(i < 10) {
|
|
m->gcstats.nprocyield++;
|
|
runtime·procyield(20);
|
|
} else if(i < 20) {
|
|
m->gcstats.nosyield++;
|
|
runtime·osyield();
|
|
} else {
|
|
m->gcstats.nsleep++;
|
|
runtime·usleep(100);
|
|
}
|
|
}
|
|
}
|
|
|
|
static Workbuf*
|
|
handoff(Workbuf *b)
|
|
{
|
|
int32 n;
|
|
Workbuf *b1;
|
|
|
|
// Make new buffer with half of b's pointers.
|
|
b1 = getempty(nil);
|
|
n = b->nobj/2;
|
|
b->nobj -= n;
|
|
b1->nobj = n;
|
|
runtime·memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]);
|
|
m->gcstats.nhandoff++;
|
|
m->gcstats.nhandoffcnt += n;
|
|
|
|
// Put b on full list - let first half of b get stolen.
|
|
runtime·lfstackpush(&work.full, &b->node);
|
|
return b1;
|
|
}
|
|
|
|
static void
|
|
addroot(Obj obj)
|
|
{
|
|
uint32 cap;
|
|
Obj *new;
|
|
|
|
if(work.nroot >= work.rootcap) {
|
|
cap = PageSize/sizeof(Obj);
|
|
if(cap < 2*work.rootcap)
|
|
cap = 2*work.rootcap;
|
|
new = (Obj*)runtime·SysAlloc(cap*sizeof(Obj));
|
|
if(work.roots != nil) {
|
|
runtime·memmove(new, work.roots, work.rootcap*sizeof(Obj));
|
|
runtime·SysFree(work.roots, work.rootcap*sizeof(Obj));
|
|
}
|
|
work.roots = new;
|
|
work.rootcap = cap;
|
|
}
|
|
work.roots[work.nroot] = obj;
|
|
work.nroot++;
|
|
}
|
|
|
|
static void
|
|
addstackroots(G *gp)
|
|
{
|
|
M *mp;
|
|
int32 n;
|
|
Stktop *stk;
|
|
byte *sp, *guard;
|
|
|
|
stk = (Stktop*)gp->stackbase;
|
|
guard = (byte*)gp->stackguard;
|
|
|
|
if(gp == g) {
|
|
// Scanning our own stack: start at &gp.
|
|
sp = (byte*)&gp;
|
|
} else if((mp = gp->m) != nil && mp->helpgc) {
|
|
// gchelper's stack is in active use and has no interesting pointers.
|
|
return;
|
|
} else {
|
|
// Scanning another goroutine's stack.
|
|
// The goroutine is usually asleep (the world is stopped).
|
|
sp = (byte*)gp->sched.sp;
|
|
|
|
// The exception is that if the goroutine is about to enter or might
|
|
// have just exited a system call, it may be executing code such
|
|
// as schedlock and may have needed to start a new stack segment.
|
|
// Use the stack segment and stack pointer at the time of
|
|
// the system call instead, since that won't change underfoot.
|
|
if(gp->gcstack != (uintptr)nil) {
|
|
stk = (Stktop*)gp->gcstack;
|
|
sp = (byte*)gp->gcsp;
|
|
guard = (byte*)gp->gcguard;
|
|
}
|
|
}
|
|
|
|
n = 0;
|
|
while(stk) {
|
|
if(sp < guard-StackGuard || (byte*)stk < sp) {
|
|
runtime·printf("scanstack inconsistent: g%D#%d sp=%p not in [%p,%p]\n", gp->goid, n, sp, guard-StackGuard, stk);
|
|
runtime·throw("scanstack");
|
|
}
|
|
addroot((Obj){sp, (byte*)stk - sp, 0});
|
|
sp = (byte*)stk->gobuf.sp;
|
|
guard = stk->stackguard;
|
|
stk = (Stktop*)stk->stackbase;
|
|
n++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
addfinroots(void *v)
|
|
{
|
|
uintptr size;
|
|
|
|
size = 0;
|
|
if(!runtime·mlookup(v, &v, &size, nil) || !runtime·blockspecial(v))
|
|
runtime·throw("mark - finalizer inconsistency");
|
|
|
|
// do not mark the finalizer block itself. just mark the things it points at.
|
|
addroot((Obj){v, size, 0});
|
|
}
|
|
|
|
static void
|
|
addroots(void)
|
|
{
|
|
G *gp;
|
|
FinBlock *fb;
|
|
MSpan *s, **allspans;
|
|
uint32 spanidx;
|
|
|
|
work.nroot = 0;
|
|
|
|
// data & bss
|
|
// TODO(atom): load balancing
|
|
addroot((Obj){data, edata - data, (uintptr)gcdata});
|
|
addroot((Obj){bss, ebss - bss, (uintptr)gcbss});
|
|
|
|
// MSpan.types
|
|
allspans = runtime·mheap.allspans;
|
|
for(spanidx=0; spanidx<runtime·mheap.nspan; spanidx++) {
|
|
s = allspans[spanidx];
|
|
if(s->state == MSpanInUse) {
|
|
switch(s->types.compression) {
|
|
case MTypes_Empty:
|
|
case MTypes_Single:
|
|
break;
|
|
case MTypes_Words:
|
|
case MTypes_Bytes:
|
|
// TODO(atom): consider using defaultProg instead of 0
|
|
addroot((Obj){(byte*)&s->types.data, sizeof(void*), 0});
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// stacks
|
|
for(gp=runtime·allg; gp!=nil; gp=gp->alllink) {
|
|
switch(gp->status){
|
|
default:
|
|
runtime·printf("unexpected G.status %d\n", gp->status);
|
|
runtime·throw("mark - bad status");
|
|
case Gdead:
|
|
break;
|
|
case Grunning:
|
|
if(gp != g)
|
|
runtime·throw("mark - world not stopped");
|
|
addstackroots(gp);
|
|
break;
|
|
case Grunnable:
|
|
case Gsyscall:
|
|
case Gwaiting:
|
|
addstackroots(gp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
runtime·walkfintab(addfinroots);
|
|
|
|
for(fb=allfin; fb; fb=fb->alllink)
|
|
addroot((Obj){(byte*)fb->fin, fb->cnt*sizeof(fb->fin[0]), 0});
|
|
}
|
|
|
|
static bool
|
|
handlespecial(byte *p, uintptr size)
|
|
{
|
|
void (*fn)(void*);
|
|
uintptr nret;
|
|
FinBlock *block;
|
|
Finalizer *f;
|
|
|
|
if(!runtime·getfinalizer(p, true, &fn, &nret)) {
|
|
runtime·setblockspecial(p, false);
|
|
runtime·MProf_Free(p, size);
|
|
return false;
|
|
}
|
|
|
|
runtime·lock(&finlock);
|
|
if(finq == nil || finq->cnt == finq->cap) {
|
|
if(finc == nil) {
|
|
finc = runtime·SysAlloc(PageSize);
|
|
finc->cap = (PageSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1;
|
|
finc->alllink = allfin;
|
|
allfin = finc;
|
|
}
|
|
block = finc;
|
|
finc = block->next;
|
|
block->next = finq;
|
|
finq = block;
|
|
}
|
|
f = &finq->fin[finq->cnt];
|
|
finq->cnt++;
|
|
f->fn = fn;
|
|
f->nret = nret;
|
|
f->arg = p;
|
|
runtime·unlock(&finlock);
|
|
return true;
|
|
}
|
|
|
|
// Sweep frees or collects finalizers for blocks not marked in the mark phase.
|
|
// It clears the mark bits in preparation for the next GC round.
|
|
static void
|
|
sweepspan(ParFor *desc, uint32 idx)
|
|
{
|
|
int32 cl, n, npages;
|
|
uintptr size;
|
|
byte *p;
|
|
MCache *c;
|
|
byte *arena_start;
|
|
MLink head, *end;
|
|
int32 nfree;
|
|
byte *type_data;
|
|
byte compression;
|
|
uintptr type_data_inc;
|
|
MSpan *s;
|
|
|
|
USED(&desc);
|
|
s = runtime·mheap.allspans[idx];
|
|
// Stamp newly unused spans. The scavenger will use that
|
|
// info to potentially give back some pages to the OS.
|
|
if(s->state == MSpanFree && s->unusedsince == 0)
|
|
s->unusedsince = runtime·nanotime();
|
|
if(s->state != MSpanInUse)
|
|
return;
|
|
arena_start = runtime·mheap.arena_start;
|
|
p = (byte*)(s->start << PageShift);
|
|
cl = s->sizeclass;
|
|
size = s->elemsize;
|
|
if(cl == 0) {
|
|
n = 1;
|
|
} else {
|
|
// Chunk full of small blocks.
|
|
npages = runtime·class_to_allocnpages[cl];
|
|
n = (npages << PageShift) / size;
|
|
}
|
|
nfree = 0;
|
|
end = &head;
|
|
c = m->mcache;
|
|
|
|
type_data = (byte*)s->types.data;
|
|
type_data_inc = sizeof(uintptr);
|
|
compression = s->types.compression;
|
|
switch(compression) {
|
|
case MTypes_Bytes:
|
|
type_data += 8*sizeof(uintptr);
|
|
type_data_inc = 1;
|
|
break;
|
|
}
|
|
|
|
// Sweep through n objects of given size starting at p.
|
|
// This thread owns the span now, so it can manipulate
|
|
// the block bitmap without atomic operations.
|
|
for(; n > 0; n--, p += size, type_data+=type_data_inc) {
|
|
uintptr off, *bitp, shift, bits;
|
|
|
|
off = (uintptr*)p - (uintptr*)arena_start;
|
|
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
bits = *bitp>>shift;
|
|
|
|
if((bits & bitAllocated) == 0)
|
|
continue;
|
|
|
|
if((bits & bitMarked) != 0) {
|
|
if(DebugMark) {
|
|
if(!(bits & bitSpecial))
|
|
runtime·printf("found spurious mark on %p\n", p);
|
|
*bitp &= ~(bitSpecial<<shift);
|
|
}
|
|
*bitp &= ~(bitMarked<<shift);
|
|
continue;
|
|
}
|
|
|
|
// Special means it has a finalizer or is being profiled.
|
|
// In DebugMark mode, the bit has been coopted so
|
|
// we have to assume all blocks are special.
|
|
if(DebugMark || (bits & bitSpecial) != 0) {
|
|
if(handlespecial(p, size))
|
|
continue;
|
|
}
|
|
|
|
// Mark freed; restore block boundary bit.
|
|
*bitp = (*bitp & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);
|
|
|
|
if(cl == 0) {
|
|
// Free large span.
|
|
runtime·unmarkspan(p, 1<<PageShift);
|
|
*(uintptr*)p = 1; // needs zeroing
|
|
runtime·MHeap_Free(&runtime·mheap, s, 1);
|
|
c->local_alloc -= size;
|
|
c->local_nfree++;
|
|
} else {
|
|
// Free small object.
|
|
switch(compression) {
|
|
case MTypes_Words:
|
|
*(uintptr*)type_data = 0;
|
|
break;
|
|
case MTypes_Bytes:
|
|
*(byte*)type_data = 0;
|
|
break;
|
|
}
|
|
if(size > sizeof(uintptr))
|
|
((uintptr*)p)[1] = 1; // mark as "needs to be zeroed"
|
|
|
|
end->next = (MLink*)p;
|
|
end = (MLink*)p;
|
|
nfree++;
|
|
}
|
|
}
|
|
|
|
if(nfree) {
|
|
c->local_by_size[cl].nfree += nfree;
|
|
c->local_alloc -= size * nfree;
|
|
c->local_nfree += nfree;
|
|
c->local_cachealloc -= nfree * size;
|
|
c->local_objects -= nfree;
|
|
runtime·MCentral_FreeSpan(&runtime·mheap.central[cl], s, nfree, head.next, end);
|
|
}
|
|
}
|
|
|
|
static void
|
|
dumpspan(uint32 idx)
|
|
{
|
|
int32 sizeclass, n, npages, i, column;
|
|
uintptr size;
|
|
byte *p;
|
|
byte *arena_start;
|
|
MSpan *s;
|
|
bool allocated, special;
|
|
|
|
s = runtime·mheap.allspans[idx];
|
|
if(s->state != MSpanInUse)
|
|
return;
|
|
arena_start = runtime·mheap.arena_start;
|
|
p = (byte*)(s->start << PageShift);
|
|
sizeclass = s->sizeclass;
|
|
size = s->elemsize;
|
|
if(sizeclass == 0) {
|
|
n = 1;
|
|
} else {
|
|
npages = runtime·class_to_allocnpages[sizeclass];
|
|
n = (npages << PageShift) / size;
|
|
}
|
|
|
|
runtime·printf("%p .. %p:\n", p, p+n*size);
|
|
column = 0;
|
|
for(; n>0; n--, p+=size) {
|
|
uintptr off, *bitp, shift, bits;
|
|
|
|
off = (uintptr*)p - (uintptr*)arena_start;
|
|
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
bits = *bitp>>shift;
|
|
|
|
allocated = ((bits & bitAllocated) != 0);
|
|
special = ((bits & bitSpecial) != 0);
|
|
|
|
for(i=0; i<size; i+=sizeof(void*)) {
|
|
if(column == 0) {
|
|
runtime·printf("\t");
|
|
}
|
|
if(i == 0) {
|
|
runtime·printf(allocated ? "(" : "[");
|
|
runtime·printf(special ? "@" : "");
|
|
runtime·printf("%p: ", p+i);
|
|
} else {
|
|
runtime·printf(" ");
|
|
}
|
|
|
|
runtime·printf("%p", *(void**)(p+i));
|
|
|
|
if(i+sizeof(void*) >= size) {
|
|
runtime·printf(allocated ? ") " : "] ");
|
|
}
|
|
|
|
column++;
|
|
if(column == 8) {
|
|
runtime·printf("\n");
|
|
column = 0;
|
|
}
|
|
}
|
|
}
|
|
runtime·printf("\n");
|
|
}
|
|
|
|
// A debugging function to dump the contents of memory
|
|
void
|
|
runtime·memorydump(void)
|
|
{
|
|
uint32 spanidx;
|
|
|
|
for(spanidx=0; spanidx<runtime·mheap.nspan; spanidx++) {
|
|
dumpspan(spanidx);
|
|
}
|
|
}
|
|
|
|
void
|
|
runtime·gchelper(void)
|
|
{
|
|
// parallel mark for over gc roots
|
|
runtime·parfordo(work.markfor);
|
|
|
|
// help other threads scan secondary blocks
|
|
scanblock(nil, nil, 0, true);
|
|
|
|
if(DebugMark) {
|
|
// wait while the main thread executes mark(debug_scanblock)
|
|
while(runtime·atomicload(&work.debugmarkdone) == 0)
|
|
runtime·usleep(10);
|
|
}
|
|
|
|
runtime·parfordo(work.sweepfor);
|
|
if(runtime·xadd(&work.ndone, +1) == work.nproc-1)
|
|
runtime·notewakeup(&work.alldone);
|
|
}
|
|
|
|
// Initialized from $GOGC. GOGC=off means no gc.
|
|
//
|
|
// Next gc is after we've allocated an extra amount of
|
|
// memory proportional to the amount already in use.
|
|
// If gcpercent=100 and we're using 4M, we'll gc again
|
|
// when we get to 8M. This keeps the gc cost in linear
|
|
// proportion to the allocation cost. Adjusting gcpercent
|
|
// just changes the linear constant (and also the amount of
|
|
// extra memory used).
|
|
static int32 gcpercent = -2;
|
|
|
|
static void
|
|
stealcache(void)
|
|
{
|
|
M *mp;
|
|
|
|
for(mp=runtime·allm; mp; mp=mp->alllink)
|
|
runtime·MCache_ReleaseAll(mp->mcache);
|
|
}
|
|
|
|
static void
|
|
cachestats(GCStats *stats)
|
|
{
|
|
M *mp;
|
|
MCache *c;
|
|
int32 i;
|
|
uint64 stacks_inuse;
|
|
uint64 *src, *dst;
|
|
|
|
if(stats)
|
|
runtime·memclr((byte*)stats, sizeof(*stats));
|
|
stacks_inuse = 0;
|
|
for(mp=runtime·allm; mp; mp=mp->alllink) {
|
|
c = mp->mcache;
|
|
runtime·purgecachedstats(c);
|
|
stacks_inuse += mp->stackinuse*FixedStack;
|
|
if(stats) {
|
|
src = (uint64*)&mp->gcstats;
|
|
dst = (uint64*)stats;
|
|
for(i=0; i<sizeof(*stats)/sizeof(uint64); i++)
|
|
dst[i] += src[i];
|
|
runtime·memclr((byte*)&mp->gcstats, sizeof(mp->gcstats));
|
|
}
|
|
for(i=0; i<nelem(c->local_by_size); i++) {
|
|
mstats.by_size[i].nmalloc += c->local_by_size[i].nmalloc;
|
|
c->local_by_size[i].nmalloc = 0;
|
|
mstats.by_size[i].nfree += c->local_by_size[i].nfree;
|
|
c->local_by_size[i].nfree = 0;
|
|
}
|
|
}
|
|
mstats.stacks_inuse = stacks_inuse;
|
|
}
|
|
|
|
// Structure of arguments passed to function gc().
|
|
// This allows the arguments to be passed via reflect·call.
|
|
struct gc_args
|
|
{
|
|
int32 force;
|
|
};
|
|
|
|
static void gc(struct gc_args *args);
|
|
|
|
void
|
|
runtime·gc(int32 force)
|
|
{
|
|
byte *p;
|
|
struct gc_args a, *ap;
|
|
|
|
// The atomic operations are not atomic if the uint64s
|
|
// are not aligned on uint64 boundaries. This has been
|
|
// a problem in the past.
|
|
if((((uintptr)&work.empty) & 7) != 0)
|
|
runtime·throw("runtime: gc work buffer is misaligned");
|
|
|
|
// The gc is turned off (via enablegc) until
|
|
// the bootstrap has completed.
|
|
// Also, malloc gets called in the guts
|
|
// of a number of libraries that might be
|
|
// holding locks. To avoid priority inversion
|
|
// problems, don't bother trying to run gc
|
|
// while holding a lock. The next mallocgc
|
|
// without a lock will do the gc instead.
|
|
if(!mstats.enablegc || m->locks > 0 || runtime·panicking)
|
|
return;
|
|
|
|
if(gcpercent == -2) { // first time through
|
|
p = runtime·getenv("GOGC");
|
|
if(p == nil || p[0] == '\0')
|
|
gcpercent = 100;
|
|
else if(runtime·strcmp(p, (byte*)"off") == 0)
|
|
gcpercent = -1;
|
|
else
|
|
gcpercent = runtime·atoi(p);
|
|
|
|
p = runtime·getenv("GOGCTRACE");
|
|
if(p != nil)
|
|
gctrace = runtime·atoi(p);
|
|
}
|
|
if(gcpercent < 0)
|
|
return;
|
|
|
|
// Run gc on a bigger stack to eliminate
|
|
// a potentially large number of calls to runtime·morestack.
|
|
a.force = force;
|
|
ap = &a;
|
|
m->moreframesize_minalloc = StackBig;
|
|
reflect·call((byte*)gc, (byte*)&ap, sizeof(ap));
|
|
|
|
if(gctrace > 1 && !force) {
|
|
a.force = 1;
|
|
gc(&a);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc(struct gc_args *args)
|
|
{
|
|
int64 t0, t1, t2, t3;
|
|
uint64 heap0, heap1, obj0, obj1;
|
|
GCStats stats;
|
|
M *mp;
|
|
uint32 i;
|
|
Eface eface;
|
|
|
|
runtime·semacquire(&runtime·worldsema);
|
|
if(!args->force && mstats.heap_alloc < mstats.next_gc) {
|
|
runtime·semrelease(&runtime·worldsema);
|
|
return;
|
|
}
|
|
|
|
t0 = runtime·nanotime();
|
|
|
|
m->gcing = 1;
|
|
runtime·stoptheworld();
|
|
|
|
for(mp=runtime·allm; mp; mp=mp->alllink)
|
|
runtime·settype_flush(mp, false);
|
|
|
|
heap0 = 0;
|
|
obj0 = 0;
|
|
if(gctrace) {
|
|
cachestats(nil);
|
|
heap0 = mstats.heap_alloc;
|
|
obj0 = mstats.nmalloc - mstats.nfree;
|
|
}
|
|
|
|
m->locks++; // disable gc during mallocs in parforalloc
|
|
if(work.markfor == nil)
|
|
work.markfor = runtime·parforalloc(MaxGcproc);
|
|
if(work.sweepfor == nil)
|
|
work.sweepfor = runtime·parforalloc(MaxGcproc);
|
|
m->locks--;
|
|
|
|
if(itabtype == nil) {
|
|
// get C pointer to the Go type "itab"
|
|
runtime·gc_itab_ptr(&eface);
|
|
itabtype = ((PtrType*)eface.type)->elem;
|
|
}
|
|
|
|
work.nwait = 0;
|
|
work.ndone = 0;
|
|
work.debugmarkdone = 0;
|
|
work.nproc = runtime·gcprocs();
|
|
addroots();
|
|
runtime·parforsetup(work.markfor, work.nproc, work.nroot, nil, false, markroot);
|
|
runtime·parforsetup(work.sweepfor, work.nproc, runtime·mheap.nspan, nil, true, sweepspan);
|
|
if(work.nproc > 1) {
|
|
runtime·noteclear(&work.alldone);
|
|
runtime·helpgc(work.nproc);
|
|
}
|
|
|
|
runtime·parfordo(work.markfor);
|
|
scanblock(nil, nil, 0, true);
|
|
|
|
if(DebugMark) {
|
|
for(i=0; i<work.nroot; i++)
|
|
debug_scanblock(work.roots[i].p, work.roots[i].n);
|
|
runtime·atomicstore(&work.debugmarkdone, 1);
|
|
}
|
|
t1 = runtime·nanotime();
|
|
|
|
runtime·parfordo(work.sweepfor);
|
|
t2 = runtime·nanotime();
|
|
|
|
stealcache();
|
|
cachestats(&stats);
|
|
|
|
if(work.nproc > 1)
|
|
runtime·notesleep(&work.alldone);
|
|
|
|
stats.nprocyield += work.sweepfor->nprocyield;
|
|
stats.nosyield += work.sweepfor->nosyield;
|
|
stats.nsleep += work.sweepfor->nsleep;
|
|
|
|
mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100;
|
|
m->gcing = 0;
|
|
|
|
if(finq != nil) {
|
|
m->locks++; // disable gc during the mallocs in newproc
|
|
// kick off or wake up goroutine to run queued finalizers
|
|
if(fing == nil)
|
|
fing = runtime·newproc1((byte*)runfinq, nil, 0, 0, runtime·gc);
|
|
else if(fingwait) {
|
|
fingwait = 0;
|
|
runtime·ready(fing);
|
|
}
|
|
m->locks--;
|
|
}
|
|
|
|
heap1 = mstats.heap_alloc;
|
|
obj1 = mstats.nmalloc - mstats.nfree;
|
|
|
|
t3 = runtime·nanotime();
|
|
mstats.last_gc = t3;
|
|
mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t3 - t0;
|
|
mstats.pause_total_ns += t3 - t0;
|
|
mstats.numgc++;
|
|
if(mstats.debuggc)
|
|
runtime·printf("pause %D\n", t3-t0);
|
|
|
|
if(gctrace) {
|
|
runtime·printf("gc%d(%d): %D+%D+%D ms, %D -> %D MB %D -> %D (%D-%D) objects,"
|
|
" %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n",
|
|
mstats.numgc, work.nproc, (t1-t0)/1000000, (t2-t1)/1000000, (t3-t2)/1000000,
|
|
heap0>>20, heap1>>20, obj0, obj1,
|
|
mstats.nmalloc, mstats.nfree,
|
|
stats.nhandoff, stats.nhandoffcnt,
|
|
work.sweepfor->nsteal, work.sweepfor->nstealcnt,
|
|
stats.nprocyield, stats.nosyield, stats.nsleep);
|
|
}
|
|
|
|
runtime·MProf_GC();
|
|
runtime·semrelease(&runtime·worldsema);
|
|
runtime·starttheworld();
|
|
|
|
// give the queued finalizers, if any, a chance to run
|
|
if(finq != nil)
|
|
runtime·gosched();
|
|
}
|
|
|
|
void
|
|
runtime·ReadMemStats(MStats *stats)
|
|
{
|
|
// Have to acquire worldsema to stop the world,
|
|
// because stoptheworld can only be used by
|
|
// one goroutine at a time, and there might be
|
|
// a pending garbage collection already calling it.
|
|
runtime·semacquire(&runtime·worldsema);
|
|
m->gcing = 1;
|
|
runtime·stoptheworld();
|
|
cachestats(nil);
|
|
*stats = mstats;
|
|
m->gcing = 0;
|
|
runtime·semrelease(&runtime·worldsema);
|
|
runtime·starttheworld();
|
|
}
|
|
|
|
static void
|
|
runfinq(void)
|
|
{
|
|
Finalizer *f;
|
|
FinBlock *fb, *next;
|
|
byte *frame;
|
|
uint32 framesz, framecap, i;
|
|
|
|
frame = nil;
|
|
framecap = 0;
|
|
for(;;) {
|
|
// There's no need for a lock in this section
|
|
// because it only conflicts with the garbage
|
|
// collector, and the garbage collector only
|
|
// runs when everyone else is stopped, and
|
|
// runfinq only stops at the gosched() or
|
|
// during the calls in the for loop.
|
|
fb = finq;
|
|
finq = nil;
|
|
if(fb == nil) {
|
|
fingwait = 1;
|
|
runtime·park(nil, nil, "finalizer wait");
|
|
continue;
|
|
}
|
|
if(raceenabled)
|
|
runtime·racefingo();
|
|
for(; fb; fb=next) {
|
|
next = fb->next;
|
|
for(i=0; i<fb->cnt; i++) {
|
|
f = &fb->fin[i];
|
|
framesz = sizeof(uintptr) + f->nret;
|
|
if(framecap < framesz) {
|
|
runtime·free(frame);
|
|
frame = runtime·mal(framesz);
|
|
framecap = framesz;
|
|
}
|
|
*(void**)frame = f->arg;
|
|
reflect·call((byte*)f->fn, frame, sizeof(uintptr) + f->nret);
|
|
f->fn = nil;
|
|
f->arg = nil;
|
|
}
|
|
fb->cnt = 0;
|
|
fb->next = finc;
|
|
finc = fb;
|
|
}
|
|
runtime·gc(1); // trigger another gc to clean up the finalized objects, if possible
|
|
}
|
|
}
|
|
|
|
// mark the block at v of size n as allocated.
|
|
// If noptr is true, mark it as having no pointers.
|
|
void
|
|
runtime·markallocated(void *v, uintptr n, bool noptr)
|
|
{
|
|
uintptr *b, obits, bits, off, shift;
|
|
|
|
if(0)
|
|
runtime·printf("markallocated %p+%p\n", v, n);
|
|
|
|
if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
|
|
runtime·throw("markallocated: bad pointer");
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset
|
|
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
for(;;) {
|
|
obits = *b;
|
|
bits = (obits & ~(bitMask<<shift)) | (bitAllocated<<shift);
|
|
if(noptr)
|
|
bits |= bitNoPointers<<shift;
|
|
if(runtime·singleproc) {
|
|
*b = bits;
|
|
break;
|
|
} else {
|
|
// more than one goroutine is potentially running: use atomic op
|
|
if(runtime·casp((void**)b, (void*)obits, (void*)bits))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// mark the block at v of size n as freed.
|
|
void
|
|
runtime·markfreed(void *v, uintptr n)
|
|
{
|
|
uintptr *b, obits, bits, off, shift;
|
|
|
|
if(0)
|
|
runtime·printf("markallocated %p+%p\n", v, n);
|
|
|
|
if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
|
|
runtime·throw("markallocated: bad pointer");
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset
|
|
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
for(;;) {
|
|
obits = *b;
|
|
bits = (obits & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);
|
|
if(runtime·singleproc) {
|
|
*b = bits;
|
|
break;
|
|
} else {
|
|
// more than one goroutine is potentially running: use atomic op
|
|
if(runtime·casp((void**)b, (void*)obits, (void*)bits))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check that the block at v of size n is marked freed.
|
|
void
|
|
runtime·checkfreed(void *v, uintptr n)
|
|
{
|
|
uintptr *b, bits, off, shift;
|
|
|
|
if(!runtime·checking)
|
|
return;
|
|
|
|
if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
|
|
return; // not allocated, so okay
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset
|
|
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
bits = *b>>shift;
|
|
if((bits & bitAllocated) != 0) {
|
|
runtime·printf("checkfreed %p+%p: off=%p have=%p\n",
|
|
v, n, off, bits & bitMask);
|
|
runtime·throw("checkfreed: not freed");
|
|
}
|
|
}
|
|
|
|
// mark the span of memory at v as having n blocks of the given size.
|
|
// if leftover is true, there is left over space at the end of the span.
|
|
void
|
|
runtime·markspan(void *v, uintptr size, uintptr n, bool leftover)
|
|
{
|
|
uintptr *b, off, shift;
|
|
byte *p;
|
|
|
|
if((byte*)v+size*n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
|
|
runtime·throw("markspan: bad pointer");
|
|
|
|
p = v;
|
|
if(leftover) // mark a boundary just past end of last block too
|
|
n++;
|
|
for(; n-- > 0; p += size) {
|
|
// Okay to use non-atomic ops here, because we control
|
|
// the entire span, and each bitmap word has bits for only
|
|
// one span, so no other goroutines are changing these
|
|
// bitmap words.
|
|
off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start; // word offset
|
|
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
*b = (*b & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);
|
|
}
|
|
}
|
|
|
|
// unmark the span of memory at v of length n bytes.
|
|
void
|
|
runtime·unmarkspan(void *v, uintptr n)
|
|
{
|
|
uintptr *p, *b, off;
|
|
|
|
if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
|
|
runtime·throw("markspan: bad pointer");
|
|
|
|
p = v;
|
|
off = p - (uintptr*)runtime·mheap.arena_start; // word offset
|
|
if(off % wordsPerBitmapWord != 0)
|
|
runtime·throw("markspan: unaligned pointer");
|
|
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
n /= PtrSize;
|
|
if(n%wordsPerBitmapWord != 0)
|
|
runtime·throw("unmarkspan: unaligned length");
|
|
// Okay to use non-atomic ops here, because we control
|
|
// the entire span, and each bitmap word has bits for only
|
|
// one span, so no other goroutines are changing these
|
|
// bitmap words.
|
|
n /= wordsPerBitmapWord;
|
|
while(n-- > 0)
|
|
*b-- = 0;
|
|
}
|
|
|
|
bool
|
|
runtime·blockspecial(void *v)
|
|
{
|
|
uintptr *b, off, shift;
|
|
|
|
if(DebugMark)
|
|
return true;
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start;
|
|
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
return (*b & (bitSpecial<<shift)) != 0;
|
|
}
|
|
|
|
void
|
|
runtime·setblockspecial(void *v, bool s)
|
|
{
|
|
uintptr *b, off, shift, bits, obits;
|
|
|
|
if(DebugMark)
|
|
return;
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start;
|
|
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
for(;;) {
|
|
obits = *b;
|
|
if(s)
|
|
bits = obits | (bitSpecial<<shift);
|
|
else
|
|
bits = obits & ~(bitSpecial<<shift);
|
|
if(runtime·singleproc) {
|
|
*b = bits;
|
|
break;
|
|
} else {
|
|
// more than one goroutine is potentially running: use atomic op
|
|
if(runtime·casp((void**)b, (void*)obits, (void*)bits))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
runtime·MHeap_MapBits(MHeap *h)
|
|
{
|
|
// Caller has added extra mappings to the arena.
|
|
// Add extra mappings of bitmap words as needed.
|
|
// We allocate extra bitmap pieces in chunks of bitmapChunk.
|
|
enum {
|
|
bitmapChunk = 8192
|
|
};
|
|
uintptr n;
|
|
|
|
n = (h->arena_used - h->arena_start) / wordsPerBitmapWord;
|
|
n = (n+bitmapChunk-1) & ~(bitmapChunk-1);
|
|
if(h->bitmap_mapped >= n)
|
|
return;
|
|
|
|
runtime·SysMap(h->arena_start - n, n - h->bitmap_mapped);
|
|
h->bitmap_mapped = n;
|
|
}
|