Also undo revision a5b96b602690 used to workaround the bug.
Fixes#4643.
R=rsc, golang-dev, dave, minux.ma, lucio.dere, bradfitz
CC=golang-dev
https://golang.org/cl/7090043
Details:
- This CL is the conceptual skeleton of code found in CL 6114046
- The garbage collector uses struct Obj to specify memory blocks
- scanblock() is putting found memory blocks into an intermediate buffer
(xbuf) before adding/flushing them to the main work buffer (wbuf)
- The main loop in scanblock() is replaced with a skeleton code that
in the future will be able to recognize the type of objects and
thus will improve the garbage collector's precision.
For now, all objects are simply sequences of pointers so
the precision of the garbage collector remains unchanged.
- The code plugs .gcdata and .gcbss sections into the garbage collector.
scanblock() in this CL is unable to make any use of this.
R=rsc, dvyukov, remyoudompheng
CC=dave, golang-dev, minux.ma
https://golang.org/cl/6856121
Garbage collection code (to be merged later) is calling functions
which have many local variables. This increases the probability that
the stack capacity won't be big enough to hold the local variables.
So, start gc() on a bigger stack to eliminate a potentially large number
of calls to runtime·morestack().
R=rsc, remyoudompheng, dsymonds, minux.ma, iant, iant
CC=golang-dev
https://golang.org/cl/6846044
Currently race detector runtime just disables race detection in the finalizer goroutine.
It has false positives when a finalizer writes to shared memory -- the race with finalizer is reported in a normal goroutine that accesses the same memory.
After this change I am going to synchronize the finalizer goroutine with the rest of the world in racefingo(). This is closer to what happens in reality and so
does not have false positives.
And also add README file with instructions how to build the runtime.
R=golang-dev, minux.ma, rsc
CC=golang-dev
https://golang.org/cl/6810095
Check for specific, important misalignment in garbage collector.
Not a complete fix for issue 599 but an important workaround.
Update #599.
R=golang-dev, iant, dvyukov
CC=golang-dev
https://golang.org/cl/6641049
This CL makes the runtime understand that the type of
the len or cap of a map, slice, or string is 'int', not 'int32',
and it is also careful to distinguish between function arguments
and results of type 'int' vs type 'int32'.
In the runtime, the new typedefs 'intgo' and 'uintgo' refer
to Go int and uint. The C types int and uint continue to be
unavailable (cause intentional compile errors).
This CL does not change the meaning of int, but it should make
the eventual change of the meaning of int on amd64 a bit
smoother.
Update #2188.
R=iant, r, dave, remyoudompheng
CC=golang-dev
https://golang.org/cl/6551067
The change is a preparation for the new scheduler.
It introduces runtime.park() function,
that will atomically unlock the mutex and park the goroutine.
It will allow to remove the racy readyonstop flag
that is difficult to implement w/o the global scheduler mutex.
R=rsc, remyoudompheng, dave
CC=golang-dev
https://golang.org/cl/6501077
The issue seems to not be triggered right now,
but I've seen the deadlock after some other legal
modifications to runtime.
So I think we are safer this way.
R=rsc, r
CC=golang-dev
https://golang.org/cl/6339051
Using an int64 for a block size doesn't make
sense on 32bit platforms but extracts a performance
penalty dealing with double word quantities on Arm.
linux/arm
benchmark old ns/op new ns/op delta
BenchmarkGobDecode 155401600 144589300 -6.96%
BenchmarkGobEncode 72772220 62460940 -14.17%
BenchmarkGzip 5822632 2604797 -55.26%
BenchmarkGunzip 326321 151721 -53.51%
benchmark old MB/s new MB/s speedup
BenchmarkGobDecode 4.94 5.31 1.07x
BenchmarkGobEncode 10.55 12.29 1.16x
R=golang-dev, rsc, bradfitz
CC=golang-dev
https://golang.org/cl/6272047
A block with finalizer might also be profiled. The special bit
is needed to unregister the block from the profile. It will be
unset only when the block is freed.
Fixes#3668.
R=golang-dev, rsc
CC=golang-dev, remy
https://golang.org/cl/6249066
Parallel GC needs to know in advance how many helper threads will be there.
Hopefully it's the last patch before I can tackle parallel sweep phase.
The benchmarks are unaffected.
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/6200064
cc: add #pragma textflag to set it
runtime: mark mheap to go into noptr-bss.
remove special case in garbage collector
Remove the ARM from.flag field created by CL 5687044.
The DUPOK flag was already in p->reg, so keep using that.
Otherwise test/nilptr.go creates a very large binary.
Should fix the arm build.
Diagnosed by minux.ma; replacement for CL 5690044.
R=golang-dev, minux.ma, r
CC=golang-dev
https://golang.org/cl/5686060
Periodically browse MHeap's freelists for long unused spans and release them if any.
Current hardcoded settings:
- GC is forced if none occured over the last 2 minutes.
- spans are handed back after 5 minutes of uselessness.
SysUnused (for Unix) is a wrapper on madvise MADV_DONTNEED on Linux and MADV_FREE on BSDs.
R=rsc, dvyukov, remyoudompheng
CC=golang-dev
https://golang.org/cl/5451057
Unexports runtime.MemStats and rename MemStatsType to MemStats.
The new accessor requires passing a pointer to a user-allocated
MemStats structure.
Fixes#2572.
R=bradfitz, rsc, bradfitz, gustavo
CC=golang-dev, remy
https://golang.org/cl/5616072
Collapse the arch,os-specific directories into the main directory
by renaming xxx/foo.c to foo_xxx.c, and so on.
There are no substantial edits here, except to the Makefile.
The assumption is that the Go tool will #define GOOS_darwin
and GOARCH_amd64 and will make any file named something
like signals_darwin.h available as signals_GOOS.h during the
build. This replaces what used to be done with -I$(GOOS).
There is still work to be done to make runtime build with
standard tools, but this is a big step. After this we will have
to write a script to generate all the generated files so they
can be checked in (instead of generated during the build).
R=r, iant, r, lucio.dere
CC=golang-dev
https://golang.org/cl/5490053
The work buffer management used by the garbage
collector during parallel collections leaks buffers.
This CL tests for and fixes the leak.
R=golang-dev, dvyukov, r
CC=golang-dev
https://golang.org/cl/5254059
Fixes#2337.
Unfortunate sequence of events is:
1. maxcpu=2, mcpu=1, grunning=1
2. starttheworld creates an extra M:
maxcpu=2, mcpu=2, grunning=1
4. the goroutine calls runtime.GOMAXPROCS(1)
maxcpu=1, mcpu=2, grunning=1
5. since it sees mcpu>maxcpu, it calls gosched()
6. schedule() deschedules the goroutine:
maxcpu=1, mcpu=1, grunning=0
7. schedule() call getnextandunlock() which
fails to pick up the goroutine again,
because canaddcpu() fails, because mcpu==maxcpu
8. then it sees that grunning==0,
reports deadlock and terminates
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/5191044
When ncpu < 2, work.nproc is always 1 which results in infinite helper
threads being created if gomaxprocs > 1 and MaxGcproc > 1. Avoid this
by using the same limits as imposed helpgc().
R=golang-dev, rsc, dvyukov
CC=golang-dev
https://golang.org/cl/5176044
Running test/garbage/parser.out.
On a 4-core Lenovo X201s (Linux):
31.12u 0.60s 31.74r 1 cpu, no atomics
32.27u 0.58s 32.86r 1 cpu, atomic instructions
33.04u 0.83s 27.47r 2 cpu
On a 16-core Xeon (Linux):
33.08u 0.65s 33.80r 1 cpu, no atomics
34.87u 1.12s 29.60r 2 cpu
36.00u 1.87s 28.43r 3 cpu
36.46u 2.34s 27.10r 4 cpu
38.28u 3.85s 26.92r 5 cpu
37.72u 5.25s 26.73r 6 cpu
39.63u 7.11s 26.95r 7 cpu
39.67u 8.10s 26.68r 8 cpu
On a 2-core MacBook Pro Core 2 Duo 2.26 (circa 2009, MacBookPro5,5):
39.43u 1.45s 41.27r 1 cpu, no atomics
43.98u 2.95s 38.69r 2 cpu
On a 2-core Mac Mini Core 2 Duo 1.83 (circa 2008; Macmini2,1):
48.81u 2.12s 51.76r 1 cpu, no atomics
57.15u 4.72s 51.54r 2 cpu
The handoff algorithm is really only good for two cores.
Beyond that we will need to so something more sophisticated,
like have each core hand off to the next one, around a circle.
Even so, the code is a good checkpoint; for now we'll limit the
number of gc procs to at most 2.
R=dvyukov
CC=golang-dev
https://golang.org/cl/4641082
The Windows implementation of the net package churns through a couple of channels for every read/write operation. This translates into a lot of time spent in the kernel creating and deleting event objects.
R=rsc, dvyukov, alex.brainman, jp
CC=golang-dev
https://golang.org/cl/4997044
Make the stack traces more readable for new
Go programmers while preserving their utility for old hands.
- Change status number [4] to string.
- Elide frames in runtime package (internal details).
- Swap file:line and arguments.
- Drop 'created by' for main goroutine.
- Show goroutines in order of allocation:
implies main goroutine first if nothing else.
There is no option to get the extra frames back.
Uncomment 'return 1' at the bottom of symtab.c.
$ 6.out
throw: all goroutines are asleep - deadlock!
goroutine 1 [chan send]:
main.main()
/Users/rsc/g/go/src/pkg/runtime/x.go:22 +0x8a
goroutine 2 [select (no cases)]:
main.sel()
/Users/rsc/g/go/src/pkg/runtime/x.go:11 +0x18
created by main.main
/Users/rsc/g/go/src/pkg/runtime/x.go:19 +0x23
goroutine 3 [chan receive]:
main.recv(0xf8400010a0, 0x0)
/Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e
created by main.main
/Users/rsc/g/go/src/pkg/runtime/x.go:20 +0x50
goroutine 4 [chan receive (nil chan)]:
main.recv(0x0, 0x0)
/Users/rsc/g/go/src/pkg/runtime/x.go:15 +0x2e
created by main.main
/Users/rsc/g/go/src/pkg/runtime/x.go:21 +0x66
$
$ 6.out index
panic: runtime error: index out of range
goroutine 1 [running]:
main.main()
/Users/rsc/g/go/src/pkg/runtime/x.go:25 +0xb9
$
$ 6.out nil
panic: runtime error: invalid memory address or nil pointer dereference
[signal 0xb code=0x1 addr=0x0 pc=0x22ca]
goroutine 1 [running]:
main.main()
/Users/rsc/g/go/src/pkg/runtime/x.go:28 +0x211
$
$ 6.out panic
panic: panic
goroutine 1 [running]:
main.main()
/Users/rsc/g/go/src/pkg/runtime/x.go:30 +0x101
$
R=golang-dev, qyzhai, n13m3y3r, r
CC=golang-dev
https://golang.org/cl/4907048
The corruption can occur when GOMAXPROCS
is changed from >1 to 1, since GOMAXPROCS=1
does not imply there is only 1 goroutine running,
other goroutines can still be not parked after
the change.
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/4873050
Drops mallocrep1.go back to a reasonable
amount of time. (154 -> 0.8 seconds on my Mac)
Fixes#2085.
R=golang-dev, dvyukov, r
CC=golang-dev
https://golang.org/cl/4811045
The g->sched.sp saved stack pointer and the
g->stackbase and g->stackguard stack bounds
can change even while "the world is stopped",
because a goroutine has to call functions (and
therefore might split its stack) when exiting a
system call to check whether the world is stopped
(and if so, wait until the world continues).
That means the garbage collector cannot access
those values safely (without a race) for goroutines
executing system calls. Instead, save a consistent
triple in g->gcsp, g->gcstack, g->gcguard during
entersyscall and have the garbage collector refer
to those.
The old code was occasionally seeing (because of
the race) an sp and stk that did not correspond to
each other, so that stk - sp was not the number of
stack bytes following sp. In that case, if sp < stk
then the call scanblock(sp, stk - sp) scanned too
many bytes (anything between the two pointers,
which pointed into different allocation blocks).
If sp > stk then stk - sp wrapped around.
On 32-bit, stk - sp is a uintptr (uint32) converted
to int64 in the call to scanblock, so a large (~4G)
but positive number. Scanblock would try to scan
that many bytes and eventually fault accessing
unmapped memory. On 64-bit, stk - sp is a uintptr (uint64)
promoted to int64 in the call to scanblock, so a negative
number. Scanblock would not scan anything, possibly
causing in-use blocks to be freed.
In short, 32-bit platforms would have seen either
ineffective garbage collection or crashes during garbage
collection, while 64-bit platforms would have seen
either ineffective or incorrect garbage collection.
You can see the invalid arguments to scanblock in the
stack traces in issue 1620.
Fixes#1620.
Fixes#1746.
R=iant, r
CC=golang-dev
https://golang.org/cl/4437075