1
0
mirror of https://github.com/golang/go synced 2024-11-05 16:16:11 -07:00
go/internal/lsp/source/workspace_symbol.go
Heschi Kreinick 72051f7961 internal/lsp: pass snapshot/view to memoize.Functions
Due to the runtime's inability to collect cycles involving finalizers,
we can't close over handles in memoize.Functions without causing memory
leaks. Up until now we've dealt with that by closing over all the bits
of the snapshot that we want, but it distorts the design of all the code
used in the Functions.

We can solve the problem another way: instead of closing over the
snapshot/view, we can force the caller to pass it in. This is somewhat
scary: there is no requirement that the argument matches the data that
we're working with. But the reality is that this is not a new problem:
the Function used to calculate a cache value is not necessarily the one
that the caller expects. As long as the cache key fully identifies all
the inputs to the Function, the output should be correct. And since the
caller used the snapshot/view to calculate that cache key, it should
always be safe to pass in that snapshot/view. If it's not, then we
already had a bug.

The Arg type in memoize is clumsy, but I thought it would be nice to
have at least a little bit of type safety. I'm open to suggestions.

Change-Id: I23f546638b0c66a4698620a986949087211f4762
Reviewed-on: https://go-review.googlesource.com/c/tools/+/244019
Reviewed-by: Robert Findley <rfindley@google.com>
Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-28 17:34:46 +00:00

336 lines
9.0 KiB
Go

// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package source
import (
"context"
"go/ast"
"go/token"
"go/types"
"strings"
"golang.org/x/tools/internal/event"
"golang.org/x/tools/internal/lsp/fuzzy"
"golang.org/x/tools/internal/lsp/protocol"
)
const maxSymbols = 100
// WorkspaceSymbols matches symbols across views using the given query,
// according to the SymbolMatcher matcher.
//
// The workspace symbol method is defined in the spec as follows:
//
// > The workspace symbol request is sent from the client to the server to
// > list project-wide symbols matching the query string.
//
// It is unclear what "project-wide" means here, but given the parameters of
// workspace/symbol do not include any workspace identifier, then it has to be
// assumed that "project-wide" means "across all workspaces". Hence why
// WorkspaceSymbols receives the views []View.
//
// However, it then becomes unclear what it would mean to call WorkspaceSymbols
// with a different configured SymbolMatcher per View. Therefore we assume that
// Session level configuration will define the SymbolMatcher to be used for the
// WorkspaceSymbols method.
func WorkspaceSymbols(ctx context.Context, matcherType SymbolMatcher, style SymbolStyle, views []View, query string) ([]protocol.SymbolInformation, error) {
ctx, done := event.Start(ctx, "source.WorkspaceSymbols")
defer done()
if query == "" {
return nil, nil
}
queryMatcher := makeQueryMatcher(matcherType, query)
seen := make(map[string]struct{})
var symbols []protocol.SymbolInformation
outer:
for _, view := range views {
knownPkgs, err := view.Snapshot().KnownPackages(ctx)
if err != nil {
return nil, err
}
for _, ph := range knownPkgs {
pkg, err := ph.Check(ctx, view.Snapshot())
symbolMatcher := makePackageSymbolMatcher(style, pkg, queryMatcher)
if err != nil {
return nil, err
}
if _, ok := seen[pkg.PkgPath()]; ok {
continue
}
seen[pkg.PkgPath()] = struct{}{}
for _, fh := range pkg.CompiledGoFiles() {
file, _, _, _, err := fh.Cached()
if err != nil {
return nil, err
}
for _, si := range findSymbol(file.Decls, pkg.GetTypesInfo(), symbolMatcher) {
mrng, err := posToMappedRange(view, pkg, si.node.Pos(), si.node.End())
if err != nil {
event.Error(ctx, "Error getting mapped range for node", err)
continue
}
rng, err := mrng.Range()
if err != nil {
event.Error(ctx, "Error getting range from mapped range", err)
continue
}
symbols = append(symbols, protocol.SymbolInformation{
Name: si.name,
Kind: si.kind,
Location: protocol.Location{
URI: protocol.URIFromSpanURI(mrng.URI()),
Range: rng,
},
ContainerName: pkg.PkgPath(),
})
if len(symbols) > maxSymbols {
break outer
}
}
}
}
}
return symbols, nil
}
type symbolInformation struct {
name string
kind protocol.SymbolKind
node ast.Node
}
type matcherFunc func(string) bool
func makeQueryMatcher(m SymbolMatcher, query string) matcherFunc {
switch m {
case SymbolFuzzy:
fm := fuzzy.NewMatcher(query)
return func(s string) bool {
return fm.Score(s) > 0
}
case SymbolCaseSensitive:
return func(s string) bool {
return strings.Contains(s, query)
}
default:
q := strings.ToLower(query)
return func(s string) bool {
return strings.Contains(strings.ToLower(s), q)
}
}
}
// packageSymbolMatcher matches (possibly partially) qualified symbols within a
// package scope.
//
// The given symbolizer controls how symbol names are extracted from the
// package scope.
type packageSymbolMatcher struct {
queryMatcher matcherFunc
pkg Package
symbolize symbolizer
}
// symbolMatch returns the package symbol for name that matches the underlying
// query, or the empty string if no match is found.
func (s packageSymbolMatcher) symbolMatch(name string) string {
return s.symbolize(name, s.pkg, s.queryMatcher)
}
func makePackageSymbolMatcher(style SymbolStyle, pkg Package, matcher matcherFunc) func(string) string {
var s symbolizer
switch style {
case DynamicSymbols:
s = dynamicSymbolMatch
case FullyQualifiedSymbols:
s = fullyQualifiedSymbolMatch
default:
s = packageSymbolMatch
}
return packageSymbolMatcher{queryMatcher: matcher, pkg: pkg, symbolize: s}.symbolMatch
}
// A symbolizer returns a qualified symbol match for the unqualified name
// within pkg, if one exists, or the empty string if no match is found.
type symbolizer func(name string, pkg Package, m matcherFunc) string
func fullyQualifiedSymbolMatch(name string, pkg Package, matcher matcherFunc) string {
// TODO: this should probably include pkg.Name() as well.
fullyQualified := pkg.PkgPath() + "." + name
if matcher(fullyQualified) {
return fullyQualified
}
return ""
}
func dynamicSymbolMatch(name string, pkg Package, matcher matcherFunc) string {
pkgQualified := pkg.Name() + "." + name
if match := shortestMatch(pkgQualified, matcher); match != "" {
return match
}
fullyQualified := pkg.PkgPath() + "." + name
if match := shortestMatch(fullyQualified, matcher); match != "" {
return match
}
return ""
}
func packageSymbolMatch(name string, pkg Package, matcher matcherFunc) string {
qualified := pkg.Name() + "." + name
if matcher(qualified) {
return qualified
}
return ""
}
func shortestMatch(fullPath string, matcher func(string) bool) string {
pathParts := strings.Split(fullPath, "/")
dottedParts := strings.Split(pathParts[len(pathParts)-1], ".")
// First match the smallest package identifier.
if m := matchRight(dottedParts, ".", matcher); m != "" {
return m
}
// Then match the shortest subpath.
return matchRight(pathParts, "/", matcher)
}
func matchRight(parts []string, sep string, matcher func(string) bool) string {
for i := 0; i < len(parts); i++ {
path := strings.Join(parts[len(parts)-1-i:], sep)
if matcher(path) {
return path
}
}
return ""
}
func findSymbol(decls []ast.Decl, info *types.Info, symbolMatch func(string) string) []symbolInformation {
var result []symbolInformation
for _, decl := range decls {
switch decl := decl.(type) {
case *ast.FuncDecl:
fn := decl.Name.Name
kind := protocol.Function
if decl.Recv != nil {
kind = protocol.Method
switch typ := decl.Recv.List[0].Type.(type) {
case *ast.StarExpr:
fn = typ.X.(*ast.Ident).Name + "." + fn
case *ast.Ident:
fn = typ.Name + "." + fn
}
}
if m := symbolMatch(fn); m != "" {
result = append(result, symbolInformation{
name: m,
kind: kind,
node: decl.Name,
})
}
case *ast.GenDecl:
for _, spec := range decl.Specs {
switch spec := spec.(type) {
case *ast.TypeSpec:
target := spec.Name.Name
if m := symbolMatch(target); m != "" {
result = append(result, symbolInformation{
name: m,
kind: typeToKind(info.TypeOf(spec.Type)),
node: spec.Name,
})
}
switch st := spec.Type.(type) {
case *ast.StructType:
for _, field := range st.Fields.List {
result = append(result, findFieldSymbol(field, protocol.Field, symbolMatch, target)...)
}
case *ast.InterfaceType:
for _, field := range st.Methods.List {
kind := protocol.Method
if len(field.Names) == 0 {
kind = protocol.Interface
}
result = append(result, findFieldSymbol(field, kind, symbolMatch, target)...)
}
}
case *ast.ValueSpec:
for _, name := range spec.Names {
if m := symbolMatch(name.Name); m != "" {
kind := protocol.Variable
if decl.Tok == token.CONST {
kind = protocol.Constant
}
result = append(result, symbolInformation{
name: m,
kind: kind,
node: name,
})
}
}
}
}
}
}
return result
}
func typeToKind(typ types.Type) protocol.SymbolKind {
switch typ := typ.Underlying().(type) {
case *types.Interface:
return protocol.Interface
case *types.Struct:
return protocol.Struct
case *types.Signature:
if typ.Recv() != nil {
return protocol.Method
}
return protocol.Function
case *types.Named:
return typeToKind(typ.Underlying())
case *types.Basic:
i := typ.Info()
switch {
case i&types.IsNumeric != 0:
return protocol.Number
case i&types.IsBoolean != 0:
return protocol.Boolean
case i&types.IsString != 0:
return protocol.String
}
}
return protocol.Variable
}
func findFieldSymbol(field *ast.Field, kind protocol.SymbolKind, symbolMatch func(string) string, prefix string) []symbolInformation {
var result []symbolInformation
if len(field.Names) == 0 {
name := types.ExprString(field.Type)
target := prefix + "." + name
if m := symbolMatch(target); m != "" {
result = append(result, symbolInformation{
name: m,
kind: kind,
node: field,
})
}
return result
}
for _, name := range field.Names {
target := prefix + "." + name.Name
if m := symbolMatch(target); m != "" {
result = append(result, symbolInformation{
name: m,
kind: kind,
node: name,
})
}
}
return result
}