1
0
mirror of https://github.com/golang/go synced 2024-11-20 08:44:39 -07:00
go/src/pkg/runtime/sys_linux_amd64.s
Alan Donovan 532dee3842 runtime: discard SIGPROF delivered to non-Go threads.
Signal handlers are global resources but many language
environments (Go, C++ at Google, etc) assume they have sole
ownership of a particular handler.  Signal handlers in
mixed-language applications must therefore be robust against
unexpected delivery of certain signals, such as SIGPROF.

The default Go signal handler runtime·sigtramp assumes that it
will never be called on a non-Go thread, but this assumption
is violated by when linking in C++ code that spawns threads.
Specifically, the handler asserts the thread has an associated
"m" (Go scheduler).

This CL is a very simple workaround: discard SIGPROF delivered to non-Go threads.  runtime.badsignal(int32) now receives the signal number; if it returns without panicking (e.g. sig==SIGPROF) the signal is discarded.

I don't think there is any really satisfactory solution to the
problem of signal-based profiling in a mixed-language
application.  It's not only the issue of handler clobbering,
but also that a C++ SIGPROF handler called in a Go thread
can't unwind the Go stack (and vice versa).  The best we can
hope for is not crashing.

Note:
- I've ported this to all POSIX platforms, except ARM-linux which already ignores unexpected signals on m-less threads.
- I've avoided tail-calling runtime.badsignal because AFAICT the 6a/6l don't support it.
- I've avoided hoisting 'push sig' (common to both function calls) because it makes the code harder to read.
- Fixed an (apparently incorrect?) docstring.

R=iant, rsc, minux.ma
CC=golang-dev
https://golang.org/cl/6498057
2012-09-04 14:40:49 -04:00

323 lines
5.5 KiB
ArmAsm

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// System calls and other sys.stuff for AMD64, Linux
//
#include "zasm_GOOS_GOARCH.h"
TEXT runtime·exit(SB),7,$0-8
MOVL 8(SP), DI
MOVL $231, AX // exitgroup - force all os threads to exit
SYSCALL
RET
TEXT runtime·exit1(SB),7,$0-8
MOVL 8(SP), DI
MOVL $60, AX // exit - exit the current os thread
SYSCALL
RET
TEXT runtime·open(SB),7,$0-16
MOVQ 8(SP), DI
MOVL 16(SP), SI
MOVL 20(SP), DX
MOVL $2, AX // syscall entry
SYSCALL
RET
TEXT runtime·close(SB),7,$0-16
MOVL 8(SP), DI
MOVL $3, AX // syscall entry
SYSCALL
RET
TEXT runtime·write(SB),7,$0-24
MOVL 8(SP), DI
MOVQ 16(SP), SI
MOVL 24(SP), DX
MOVL $1, AX // syscall entry
SYSCALL
RET
TEXT runtime·read(SB),7,$0-24
MOVL 8(SP), DI
MOVQ 16(SP), SI
MOVL 24(SP), DX
MOVL $0, AX // syscall entry
SYSCALL
RET
TEXT runtime·getrlimit(SB),7,$0-24
MOVL 8(SP), DI
MOVQ 16(SP), SI
MOVL $97, AX // syscall entry
SYSCALL
RET
TEXT runtime·usleep(SB),7,$16
MOVL $0, DX
MOVL usec+0(FP), AX
MOVL $1000000, CX
DIVL CX
MOVQ AX, 0(SP)
MOVQ DX, 8(SP)
// select(0, 0, 0, 0, &tv)
MOVL $0, DI
MOVL $0, SI
MOVL $0, DX
MOVL $0, R10
MOVQ SP, R8
MOVL $23, AX
SYSCALL
RET
TEXT runtime·raisesigpipe(SB),7,$12
MOVL $186, AX // syscall - gettid
SYSCALL
MOVL AX, DI // arg 1 tid
MOVL $13, SI // arg 2 SIGPIPE
MOVL $200, AX // syscall - tkill
SYSCALL
RET
TEXT runtime·setitimer(SB),7,$0-24
MOVL 8(SP), DI
MOVQ 16(SP), SI
MOVQ 24(SP), DX
MOVL $38, AX // syscall entry
SYSCALL
RET
TEXT runtime·mincore(SB),7,$0-24
MOVQ 8(SP), DI
MOVQ 16(SP), SI
MOVQ 24(SP), DX
MOVL $27, AX // syscall entry
SYSCALL
RET
// func now() (sec int64, nsec int32)
TEXT time·now(SB), 7, $32
LEAQ 8(SP), DI
MOVQ $0, SI
MOVQ $0xffffffffff600000, AX
CALL AX
MOVQ 8(SP), AX // sec
MOVL 16(SP), DX // usec
// sec is in AX, usec in DX
MOVQ AX, sec+0(FP)
IMULQ $1000, DX
MOVL DX, nsec+8(FP)
RET
TEXT runtime·nanotime(SB), 7, $32
LEAQ 8(SP), DI
MOVQ $0, SI
MOVQ $0xffffffffff600000, AX
CALL AX
MOVQ 8(SP), AX // sec
MOVL 16(SP), DX // usec
// sec is in AX, usec in DX
// return nsec in AX
IMULQ $1000000000, AX
IMULQ $1000, DX
ADDQ DX, AX
RET
TEXT runtime·rtsigprocmask(SB),7,$0-32
MOVL 8(SP), DI
MOVQ 16(SP), SI
MOVQ 24(SP), DX
MOVL 32(SP), R10
MOVL $14, AX // syscall entry
SYSCALL
CMPQ AX, $0xfffffffffffff001
JLS 2(PC)
MOVL $0xf1, 0xf1 // crash
RET
TEXT runtime·rt_sigaction(SB),7,$0-32
MOVL 8(SP), DI
MOVQ 16(SP), SI
MOVQ 24(SP), DX
MOVQ 32(SP), R10
MOVL $13, AX // syscall entry
SYSCALL
RET
TEXT runtime·sigtramp(SB),7,$64
get_tls(BX)
// check that m exists
MOVQ m(BX), BP
CMPQ BP, $0
JNE 4(PC)
MOVQ DI, 0(SP)
CALL runtime·badsignal(SB)
RET
// save g
MOVQ g(BX), R10
MOVQ R10, 40(SP)
// g = m->gsignal
MOVQ m_gsignal(BP), BP
MOVQ BP, g(BX)
MOVQ DI, 0(SP)
MOVQ SI, 8(SP)
MOVQ DX, 16(SP)
MOVQ R10, 24(SP)
CALL runtime·sighandler(SB)
// restore g
get_tls(BX)
MOVQ 40(SP), R10
MOVQ R10, g(BX)
RET
TEXT runtime·sigreturn(SB),7,$0
MOVL $15, AX // rt_sigreturn
SYSCALL
INT $3 // not reached
TEXT runtime·mmap(SB),7,$0
MOVQ 8(SP), DI
MOVQ $0, SI
MOVQ 16(SP), SI
MOVL 24(SP), DX
MOVL 28(SP), R10
MOVL 32(SP), R8
MOVL 36(SP), R9
MOVL $9, AX // mmap
SYSCALL
CMPQ AX, $0xfffffffffffff001
JLS 3(PC)
NOTQ AX
INCQ AX
RET
TEXT runtime·munmap(SB),7,$0
MOVQ 8(SP), DI
MOVQ 16(SP), SI
MOVQ $11, AX // munmap
SYSCALL
CMPQ AX, $0xfffffffffffff001
JLS 2(PC)
MOVL $0xf1, 0xf1 // crash
RET
TEXT runtime·madvise(SB),7,$0
MOVQ 8(SP), DI
MOVQ 16(SP), SI
MOVQ 24(SP), DX
MOVQ $28, AX // madvise
SYSCALL
CMPQ AX, $0xfffffffffffff001
JLS 2(PC)
MOVL $0xf1, 0xf1 // crash
RET
// int64 futex(int32 *uaddr, int32 op, int32 val,
// struct timespec *timeout, int32 *uaddr2, int32 val2);
TEXT runtime·futex(SB),7,$0
MOVQ 8(SP), DI
MOVL 16(SP), SI
MOVL 20(SP), DX
MOVQ 24(SP), R10
MOVQ 32(SP), R8
MOVL 40(SP), R9
MOVL $202, AX
SYSCALL
RET
// int64 clone(int32 flags, void *stack, M *m, G *g, void (*fn)(void));
TEXT runtime·clone(SB),7,$0
MOVL flags+8(SP), DI
MOVQ stack+16(SP), SI
// Copy m, g, fn off parent stack for use by child.
// Careful: Linux system call clobbers CX and R11.
MOVQ mm+24(SP), R8
MOVQ gg+32(SP), R9
MOVQ fn+40(SP), R12
MOVL $56, AX
SYSCALL
// In parent, return.
CMPQ AX, $0
JEQ 2(PC)
RET
// In child, on new stack.
MOVQ SI, SP
// Initialize m->procid to Linux tid
MOVL $186, AX // gettid
SYSCALL
MOVQ AX, m_procid(R8)
// Set FS to point at m->tls.
LEAQ m_tls(R8), DI
CALL runtime·settls(SB)
// In child, set up new stack
get_tls(CX)
MOVQ R8, m(CX)
MOVQ R9, g(CX)
CALL runtime·stackcheck(SB)
// Call fn
CALL R12
// It shouldn't return. If it does, exit
MOVL $111, DI
MOVL $60, AX
SYSCALL
JMP -3(PC) // keep exiting
TEXT runtime·sigaltstack(SB),7,$-8
MOVQ new+8(SP), DI
MOVQ old+16(SP), SI
MOVQ $131, AX
SYSCALL
CMPQ AX, $0xfffffffffffff001
JLS 2(PC)
MOVL $0xf1, 0xf1 // crash
RET
// set tls base to DI
TEXT runtime·settls(SB),7,$32
ADDQ $16, DI // ELF wants to use -16(FS), -8(FS)
MOVQ DI, SI
MOVQ $0x1002, DI // ARCH_SET_FS
MOVQ $158, AX // arch_prctl
SYSCALL
CMPQ AX, $0xfffffffffffff001
JLS 2(PC)
MOVL $0xf1, 0xf1 // crash
RET
TEXT runtime·osyield(SB),7,$0
MOVL $24, AX
SYSCALL
RET
TEXT runtime·sched_getaffinity(SB),7,$0
MOVQ 8(SP), DI
MOVL 16(SP), SI
MOVQ 24(SP), DX
MOVL $204, AX // syscall entry
SYSCALL
RET