Without an explicit signal for a truncation, copy propagation
will sometimes propagate a 32-bit truncation and end up
overwriting uses of the original 64-bit value.
The case that arose in practice is in C but I believe
that the same could plausibly happen in Go.
The main reason we didn't run into the same in Go
is that I (perhaps incorrectly?) drop MOVL AX, AX
during gins, so the truncation was never generated, so
it didn't confuse the optimizer.
Fixes#1315.
Fixes#3488.
R=ken2
CC=golang-dev
https://golang.org/cl/6002043
Such variables would be put at 0(SP), leading to serious
corruptions at zero initialization.
Fixes#3084.
R=golang-dev, r
CC=golang-dev, remy
https://golang.org/cl/5683052
The alternative is to record enough information that the
trap handler know which registers contain cached globals
and can flush the registers back to their original locations.
That's significantly more work.
This only affects globals that have been written to.
Code that reads from a global should continue to registerize
as well as before.
Fixes#1304.
R=ken2
CC=golang-dev
https://golang.org/cl/5687046
The garbage collector can avoid scanning this section, with
reduces collection time as well as the number of false positives.
Helps a little bit with issue 909, but certainly does not solve it.
R=ken2
CC=golang-dev
https://golang.org/cl/5671099
If the values being compared have different concrete types,
then they're clearly unequal without needing to invoke the
actual interface compare routine. This speeds tests for
specific values, like if err == io.EOF, by about 3x.
benchmark old ns/op new ns/op delta
BenchmarkIfaceCmp100 843 287 -65.95%
BenchmarkIfaceCmpNil100 184 182 -1.09%
Fixes#2591.
R=ken2
CC=golang-dev
https://golang.org/cl/5651073
Fix it twice: reuse registers more aggressively in cgen abop,
and also release R14 and R15, which are no longer m and g.
Fixes#2669.
R=ken2
CC=golang-dev
https://golang.org/cl/5655056
This changes makes constant propagation compare 'from' values using node
pointers rather than symbol names when checking to see whether a set
operation is redundant. When a function is inlined multiple times in a
calling function its arguments will share symbol names even though the values
are different. Prior to this fix the bug409 test would hit a case with 6g
where an LEAQ instruction was incorrectly eliminated from the second inlined
function call. 8g appears to have had the same bug, but the test did not fail
there.
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/5646044
As a convenience to people working on the tools,
leave Makefiles that invoke the go dist tool appropriately.
They are not used during the build.
R=golang-dev, bradfitz, n13m3y3r, gustavo
CC=golang-dev
https://golang.org/cl/5636050
This can happen on Plan 9 if we we're building
with the 32-bit and 64-bit host compilers, one
after the other.
R=rsc
CC=golang-dev
https://golang.org/cl/5599053
Also delete gotest, since it's messy to fix and slated for deletion anyway.
A couple of things outside src can't be tested any more. "go test" will be
fixed and these tests will be re-enabled. They're noisy for now.
Fixes#284.
R=rsc
CC=golang-dev
https://golang.org/cl/5598049
This fixes issue 2444.
A big cleanup of all 31/32bit size boundaries i'll leave for another cl though. (see also issue 1700).
R=rsc
CC=golang-dev
https://golang.org/cl/5484058
To allow these types as map keys, we must fill in
equal and hash functions in their algorithm tables.
Structs or arrays that are "just memory", like [2]int,
can and do continue to use the AMEM algorithm.
Structs or arrays that contain special values like
strings or interface values use generated functions
for both equal and hash.
The runtime helper func runtime.equal(t, x, y) bool handles
the general equality case for x == y and calls out to
the equal implementation in the algorithm table.
For short values (<= 4 struct fields or array elements),
the sequence of elementwise comparisons is inlined
instead of calling runtime.equal.
R=ken, mpimenov
CC=golang-dev
https://golang.org/cl/5451105
The loop recognizer uses the standard dominance
frontiers but gets confused by dead code, which
has a (not explicitly set) rpo number of 0, meaning it
looks like the head of the function, so it dominates
everything. If the loop recognizer encounters dead
code while tracking backward through the graph
it fails to recognize where it started as a loop, and
then the optimizer does not registerize values loaded
inside that loop. Fix by checking rpo against rpo2r.
Separately, run a quick pass over the generated
code to squash JMPs to JMP instructions, which
are convenient to emit during code generation but
difficult to read when debugging the -S output.
A side effect of this pass is to eliminate dead code,
so the output files may be slightly smaller and the
optimizer may have less work to do.
There is no semantic effect, because the linkers
flatten JMP chains and delete dead instructions
when laying out the final code. Doing it here too
just makes the -S output easier to read and more
like what the final binary will contain.
The "dead code breaks loop finding" bug is thus
fixed twice over. It seemed prudent to fix loopit
separately just in case dead code ever sneaks back
in for one reason or another.
R=ken2
CC=golang-dev
https://golang.org/cl/5190043
My previous CL:
changeset: 9645:ce2e5f44b310
user: Russ Cox <rsc@golang.org>
date: Tue Sep 06 10:24:21 2011 -0400
summary: gc: unify stack frame layout
introduced a bug wherein no variables were
being registerized, making Go programs 2-3x
slower than they had been before.
This CL fixes that bug (along with some others
it was hiding) and adds a test that optimization
makes at least one test case faster.
R=ken2
CC=golang-dev
https://golang.org/cl/5174045
allocparams + tempname + compactframe
all knew about how to place stack variables.
Now only compactframe, renamed to allocauto,
does the work. Until the last minute, each PAUTO
variable is in its own space and has xoffset == 0.
This might break 5g. I get failures in concurrent
code running under qemu and I can't tell whether
it's 5g's fault or qemu's. We'll see what the real
ARM builders say.
R=ken2
CC=golang-dev
https://golang.org/cl/4973057
Does as much as possible in data layout instead
of during the init function.
Handles var x = y; var y = z as a special case too,
because it is so prevalent in package unicode
(var Greek = _Greek; var _Greek = []...).
Introduces InitPlan description of initialized data
so that it can be traversed multiple times (for example,
in the copy handler).
Cuts package unicode's init function size by 8x.
All that remains there is map initialization, which
is on the chopping block too.
Fixes sinit.go test case.
Aggregate DATA instructions at end of object file.
Checkpoint. More to come.
R=ken2
CC=golang-dev
https://golang.org/cl/4969051
#include "go.h" (or "gg.h")
becomes
#include <u.h>
#include <libc.h>
#include "go.h"
so that go.y can #include <stdio.h>
after <u.h> but before "go.h".
This is necessary on Plan 9.
R=ken2
CC=golang-dev
https://golang.org/cl/4971041
Required moving some parts of gc/pgen.c to ?g/ggen.c
on linux tests pass for all 3 architectures, and
frames are actually compacted (diagnostic code for
that has been removed from the CL).
R=rsc
CC=golang-dev
https://golang.org/cl/4571071
After allocparams and walk, remove unused auto variables
and re-layout the remaining in reverse alignment order.
R=rsc
CC=golang-dev
https://golang.org/cl/4568068
Input code like
0000 (x.go:2) TEXT main+0(SB),$36-0
0001 (x.go:3) MOVL $5,i+-8(SP)
0002 (x.go:3) MOVL $0,i+-4(SP)
0003 (x.go:4) MOVL $1,BX
0004 (x.go:4) MOVL i+-8(SP),AX
0005 (x.go:4) MOVL i+-4(SP),DX
0006 (x.go:4) MOVL AX,autotmp_0000+-20(SP)
0007 (x.go:4) MOVL DX,autotmp_0000+-16(SP)
0008 (x.go:4) MOVL autotmp_0000+-20(SP),CX
0009 (x.go:4) CMPL autotmp_0000+-16(SP),$0
0010 (x.go:4) JNE ,13
0011 (x.go:4) CMPL CX,$32
0012 (x.go:4) JCS ,14
0013 (x.go:4) MOVL $0,BX
0014 (x.go:4) SHLL CX,BX
0015 (x.go:4) MOVL BX,x+-12(SP)
0016 (x.go:5) MOVL x+-12(SP),AX
0017 (x.go:5) CDQ ,
0018 (x.go:5) MOVL AX,autotmp_0001+-28(SP)
0019 (x.go:5) MOVL DX,autotmp_0001+-24(SP)
0020 (x.go:5) MOVL autotmp_0001+-28(SP),AX
0021 (x.go:5) MOVL autotmp_0001+-24(SP),DX
0022 (x.go:5) MOVL AX,(SP)
0023 (x.go:5) MOVL DX,4(SP)
0024 (x.go:5) CALL ,runtime.printint+0(SB)
0025 (x.go:5) CALL ,runtime.printnl+0(SB)
0026 (x.go:6) RET ,
is problematic because the liveness range for
autotmp_0000 (0006-0009) is nested completely
inside a span where BX holds a live value (0003-0015).
Because the register allocator only looks at 0006-0009
to see which registers are used, it misses the fact that
BX is unavailable and uses it anyway.
The n->pun = anyregalloc() check in tempname is
a workaround for this bug, but I hit it again because
I did the tempname call before allocating BX, even
though I then used the temporary after storing in BX.
This should fix the real bug, and then we can remove
the workaround in tempname.
The code creates pseudo-variables for each register
and includes that information in the liveness propagation.
Then the regu fields can be populated using that more
complete information. With that approach, BX is marked
as in use on every line in the whole span 0003-0015,
so that the decision about autotmp_0000
(using only 0006-0009) still has all the information
it needs.
This is not specific to the 386, but it only happens in
generated code of the form
load R1
...
load var into R2
...
store R2 back into var
...
use R1
and for the most part the other compilers generate
the loads for a given compiled line before any of
the stores. Even so, this may not be the case everywhere,
so the change is worth making in all three.
R=ken2, ken, ken
CC=golang-dev
https://golang.org/cl/4529106
Also, 6g was passing uninitialized
Node &n2 to regalloc, causing non-deterministic
register collisions (but only when both left and
right hand side of comparison had function calls).
Fixes#1728.
R=ken2
CC=golang-dev
https://golang.org/cl/4425070
The ld time was dominated by symbol table processing, so
* increase hash table size
* emit fewer symbols in gc (just 1 per string, 1 per type)
* add read-only lookup to avoid creating spurious symbols
* add linked list to speed whole-table traversals
Breaks dwarf generator (no idea why), so disable dwarf.
Reduces time for 6l to link godoc by 25%.
R=ken2
CC=golang-dev
https://golang.org/cl/4383047