This reverts CL 169501.
Reason for revert: The new tests fail at least on s390x and MIPS. This is likely a minor bug in the compiler or runtime. But this point in the release cycle is not the time to debug these details, which are unlikely to be new. Let's try again for 1.15.
Updates #29320Fixes#35443
Change-Id: I2218b2083f8974b57d528e3742524393fc72b355
Reviewed-on: https://go-review.googlesource.com/c/go/+/206037
Run-TryBot: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Bryan C. Mills <bcmills@google.com>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
The pprof profile proto message expects inlined functions of a PC
to be encoded in one Location entry using multiple Line entries.
https://github.com/google/pprof/blob/5e96527/proto/profile.proto#L177-L184
runtime/pprof has encoded the symbolization information by creating
a Location for each PC found in the stack trace and including info
from all the frames expanded from the PC using runtime.CallersFrames.
This assumes inlined functions are represented as a single PC in the
stack trace. (https://go-review.googlesource.com/41256)
In the recent years, behavior around inlining and the traceback
changed significantly (e.g. https://golang.org/cl/152537,
https://golang.org/issue/29582, and many changes). Now the PCs
in the stack trace represent user frames even including inline
marks. As a result, the profile proto started to allocate a Location
entry for each user frame, lose the inline information (so pprof
presented incorrect results when inlined functions are involved),
and confuse the pprof tool with those PCs made up for inline marks.
This CL attempts to detect inlined call frames from the stack traces
of CPU profiles, and organize the Location information as intended.
Currently, runtime does not provide a reliable and convenient way to
detect inlined call frames and expand user frames from a given externally
recognizable PCs. So we use heuristics to recover the groups
- inlined call frames have nil Func field
- inlined call frames will have the same Entry point
- but must be careful with recursive functions that have the
same Entry point by definition, and non-Go functions that
may lack most of the fields of Frame.
The followup CL will address the issue with other profile types.
Change-Id: I0c9667ab016a3e898d648f31c3f82d84c15398db
Reviewed-on: https://go-review.googlesource.com/c/go/+/204636
Reviewed-by: Keith Randall <khr@golang.org>
This change removes the old page allocator from the runtime.
Updates #35112.
Change-Id: Ib20e1c030f869b6318cd6f4288a9befdbae1b771
Reviewed-on: https://go-review.googlesource.com/c/go/+/195700
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
This change flips the oldPageAllocator constant enabling the new page
allocator in the Go runtime.
Updates #35112.
Change-Id: I7fc8332af9fd0e43ce28dd5ebc1c1ce519ce6d0c
Reviewed-on: https://go-review.googlesource.com/c/go/+/201765
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
This accidentally got committed - please review the whole paragraph
as if it was new.
Change-Id: I98e1db4670634c6e792d26201ce0cd329a6928b6
Reviewed-on: https://go-review.googlesource.com/c/go/+/202579
Reviewed-by: Ian Lance Taylor <iant@golang.org>
This CL also restores analysis details for (1) expressions that are
directly heap allocated because of being too large for the stack or
non-constant in size, and (2) for assignments that we short circuit
because we flow their address to another escaping object.
No change to normal compilation behavior. Only adds additional Printfs
guarded by -m=2.
Updates #31489.
Change-Id: I43682195d389398d75ced2054e29d9907bb966e7
Reviewed-on: https://go-review.googlesource.com/c/go/+/205917
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
Reviewed-by: David Chase <drchase@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
This CL adds support of call injection and async preemption on
MIPS and MIPS64.
Like ARM64, we need to clobber one register (REGTMP) for
returning from the injected call. Previous CLs have marked code
sequences that use REGTMP async-nonpreemtible.
It seems on MIPS/MIPS64, a CALL instruction is not "atomic" (!).
If a signal is delivered right at the CALL instruction, we may
see an updated LR with a not-yet-updated PC. In some cases this
may lead to failed stack unwinding. Don't preempt in this case.
Change-Id: I99437b2d05869ded5c0c8cb55265dbfc933aedab
Reviewed-on: https://go-review.googlesource.com/c/go/+/203720
Reviewed-by: Keith Randall <khr@golang.org>
This change adds the allocNeedZero method to mheap which uses the new
heapArena field zeroedBase to determine whether a new allocation needs
zeroing. The purpose of this work is to avoid zeroing memory that is
fresh from the OS in the context of the new allocator, where we no
longer have the concept of a free span to track this information.
The new field in heapArena, zeroedBase, is small, which runs counter to
the advice in the doc comment for heapArena. Since heapArenas are
already not a multiple of the system page size, this advice seems stale,
and we're OK with using an extra physical page for a heapArena. So, this
change also deletes the comment with that advice.
Updates #35112.
Change-Id: I688cd9fd3c57a98a6d43c45cf699543ce16697e2
Reviewed-on: https://go-review.googlesource.com/c/go/+/203858
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
This CL adds support of call injection and async preemption on
S390X.
Like ARM64, we need to clobber one register (REGTMP) for
returning from the injected call. Previous CLs have marked code
sequences that use REGTMP async-nonpreemtible.
Change-Id: I78adbc5fd70ca245da390f6266623385b45c9dfc
Reviewed-on: https://go-review.googlesource.com/c/go/+/204106
Reviewed-by: Keith Randall <khr@golang.org>
For async preemption, we will be using REGTMP as a temporary
register in injected call on S390X, which will clobber it. So any
code that uses REGTMP is not safe for async preemption.
In the assembler backend, we expand a Prog to multiple machine
instructions and use REGTMP as a temporary register if necessary.
These need to be marked unsafe. Unlike ARM64 and MIPS,
instructions on S390X are variable length so we don't use the
length as a condition. Instead, we set a bit on the Prog whenever
REGTMP is used.
Change-Id: Ie5d14068a950f4c7cea51dff2c4a8bdc19ec9348
Reviewed-on: https://go-review.googlesource.com/c/go/+/204105
Run-TryBot: Cherry Zhang <cherryyz@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
This change integrates all the bits and pieces of the new page allocator
into the runtime, behind a global constant.
Updates #35112.
Change-Id: I6696bde7bab098a498ab37ed2a2caad2a05d30ec
Reviewed-on: https://go-review.googlesource.com/c/go/+/201764
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
Currently the runtime background scavenger is paced externally,
controlled by a collection of variables which together describe a line
that we'd like to stay under.
However, the line to stay under is computed as a function of the number
of free and unscavenged huge pages in the heap at the end of the last
GC. Aside from this number being inaccurate (which is still acceptable),
the scavenging system also makes an order-of-magnitude assumption as to
how expensive scavenging a single page actually is.
This change simplifies the scavenger in preparation for making it
operate on bitmaps. It makes it so that the scavenger paces itself, by
measuring the amount of time it takes to scavenge a single page. The
scavenging methods on mheap already avoid breaking huge pages, so if we
scavenge a real huge page, then we'll have paced correctly, otherwise
we'll sleep for longer to avoid using more than scavengePercent wall
clock time.
Unfortunately, all this involves measuring time, which is quite tricky.
Currently we don't directly account for long process sleeps or OS-level
context switches (which is quite difficult to do in general), but we do
account for Go scheduler overhead and variations in it by maintaining an
EWMA of the ratio of time spent scavenging to the time spent sleeping.
This ratio, as well as the sleep time, are bounded in order to deal with
the aforementioned OS-related anomalies.
Updates #35112.
Change-Id: Ieca8b088fdfca2bebb06bcde25ef14a42fd5216b
Reviewed-on: https://go-review.googlesource.com/c/go/+/201763
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
Implement special case handling and testing to ensure
conformance with the C99 standard annex G.6 Complex arithmetic.
Fixes#29320
Change-Id: Ieb0527191dd7fdea5b1aecb42b9e23aae3f74260
Reviewed-on: https://go-review.googlesource.com/c/go/+/169501
Run-TryBot: Brian Kessler <brian.m.kessler@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
If a MOVDU instruction is used with an offset of SP, the
instruction changes SP therefore needs an SP delta, which is used
for generating the PC-SP table for stack unwinding. MOVDU is
frequently used for allocating the frame and saving the LR in the
same instruction, so this is particularly useful.
Change-Id: Icb63eb55aa01c3dc350ac4e4cff6371f4c3c5867
Reviewed-on: https://go-review.googlesource.com/c/go/+/205279
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
We'll use CTR as a scratch register for call injection. Mark code
sequences that use CTR as unsafe for async preemption. Currently
it is only used in LoweredZero and LoweredMove. It is unfortunate
that they are nonpreemptible. But I think it is still better than
using LR for call injection and marking all leaf functions
nonpreemptible.
Also mark the prologue of large frame functions nonpreemptible,
as we write below SP.
Change-Id: I05a75431499f3f4b2f23651a7b17f7fcf2afbe06
Reviewed-on: https://go-review.googlesource.com/c/go/+/203823
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
On PPC64, indirect calls can be made through LR or CTR. Currently
both are used. This CL changes it to always use LR.
For async preemption, to return from the injected call, we need
an indirect jump back to the PC we preeempted. This jump can be
made through LR or CTR. So we'll have to clobber either LR or CTR.
Currently, LR is used more frequently. In particular, for a leaf
function, LR is live throughout the function. We don't want to
make leaf functions nonpreemptible. So we choose CTR for the call
injection. For code sequences that use CTR, if it is ok to use
another register, change it to.
Plus, it is a call so it will clobber LR anyway. It doesn't need
to also clobber CTR (even without preemption).
Change-Id: I07bd0e93b94a1a3aa2be2cd465801136165d8ab8
Reviewed-on: https://go-review.googlesource.com/c/go/+/203822
Run-TryBot: Cherry Zhang <cherryyz@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
Mark atomic LL/SC loops as unsafe for async preemption, as they
use REGTMP.
Change-Id: I5be7f93ad3ee337049ec7c3efd6fdc30eef87d97
Reviewed-on: https://go-review.googlesource.com/c/go/+/203719
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
For async preemption, we will be using REGTMP as a temporary
register in injected call on MIPS, which will clobber it. So any
code that uses REGTMP is not safe for async preemption.
In the assembler backend, we expand a Prog to multiple machine
instructions and use REGTMP as a temporary register if necessary.
These need to be marked unsafe. In fact, most of the
multi-instruction Progs use REGTMP, so we mark all of them,
except ones that are whitelisted.
Change-Id: Ic00ae5589683c2c9525abdaee076d884df6b0d1e
Reviewed-on: https://go-review.googlesource.com/c/go/+/203718
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
This CL adds support of call injection and async preemption on
ARM64.
There seems no way to return from the injected call without
clobbering *any* register. So we have to clobber one, which is
chosen to be REGTMP. Previous CLs have marked code sequences
that use REGTMP async-nonpreemtible.
Change-Id: Ieca4e3ba5557adf3d0f5d923bce5f1769b58e30b
Reviewed-on: https://go-review.googlesource.com/c/go/+/203461
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
For async preemption, we will be using REGTMP as a temporary
register in injected call on ARM64, which will clobber it. So any
code that uses REGTMP is not safe for async preemption.
In the assembler backend, we expand a Prog to multiple machine
instructions and use REGTMP as a temporary register if necessary.
These need to be marked unsafe. In fact, most of the
multi-instruction Progs use REGTMP, so we mark all of them,
except ones that are whitelisted.
Change-Id: I6e97805a13950e3b693fb606d77834940ac3722e
Reviewed-on: https://go-review.googlesource.com/c/go/+/203460
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
This change adds a "locked" parameter to scavenge() and scavengeone()
which allows these methods to be run with the heap lock acquired, and
synchronously with respect to others which acquire the heap lock.
This mode is necessary for both heap-growth scavenging (multiple
asynchronous scavengers here could be problematic) and
debug.FreeOSMemory.
Updates #35112.
Change-Id: I24eea8e40f971760999c980981893676b4c9b666
Reviewed-on: https://go-review.googlesource.com/c/go/+/195699
Reviewed-by: Austin Clements <austin@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
This change makes it so that the new page allocator returns the number
of pages that are scavenged in a new allocation so that mheap can update
memstats appropriately.
The accounting could be embedded into pageAlloc, but that would make
the new allocator more difficult to test.
Updates #35112.
Change-Id: I0f94f563d7af2458e6d534f589d2e7dd6af26d12
Reviewed-on: https://go-review.googlesource.com/c/go/+/195698
Reviewed-by: Austin Clements <austin@google.com>
This change adds a scavenger for the new page allocator along with
tests. The scavenger walks over the heap backwards once per GC, looking
for memory to scavenge. It walks across the heap without any lock held,
searching optimistically. If it finds what appears to be a scavenging
candidate it acquires the heap lock and attempts to verify it. Upon
verification it then scavenges.
Notably, unlike the old scavenger, it doesn't show any preference for
huge pages and instead follows a more strict last-page-first policy.
Updates #35112.
Change-Id: I0621ef73c999a471843eab2d1307ae5679dd18d6
Reviewed-on: https://go-review.googlesource.com/c/go/+/195697
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
This change adds a new bitmap-based allocator to the runtime with tests.
It does not yet integrate the page allocator into the runtime and thus
this change is almost purely additive.
Updates #35112.
Change-Id: Ic3d024c28abee8be8797d3918116a80f901cc2bf
Reviewed-on: https://go-review.googlesource.com/c/go/+/190622
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
This fixes a test failure introduced in CL 190620.
Updates #35112
Change-Id: I568ae85a456ccd8103563b0ce2e42b7348776a5c
Reviewed-on: https://go-review.googlesource.com/c/go/+/205877
Run-TryBot: Bryan C. Mills <bcmills@google.com>
Reviewed-by: Michael Knyszek <mknyszek@google.com>
This change ensures js-wasm returns page-aligned memory. While today
its lack of alignment doesn't cause problems, this is an invariant of
sysAlloc which is documented in HACKING.md but isn't upheld by js-wasm.
Any code that calls sysAlloc directly for small structures expects a
certain alignment (e.g. debuglog, tracebufs) but this is not maintained
by js-wasm's sysAlloc.
Where sysReserve comes into play is that sysAlloc is implemented in
terms of sysReserve on js-wasm. Also, the documentation of sysReserve
says that the returned memory is "OS-aligned" which on most platforms
means page-aligned, but the "OS-alignment" on js-wasm is effectively 1,
which doesn't seem right either.
The expected impact of this change is increased memory use on wasm,
since there's no way to decommit memory, and any small structures
allocated with sysAlloc won't be packed quite as tightly. However, any
memory increase should be minimal. Most calls to sysReserve and sysAlloc
already aligned their request to physPageSize before calling it; there
are only a few circumstances where this is not true, and they involve
allocating an amount of memory returned by unsafe.Sizeof where it's
actually quite important that we get the alignment right.
Updates #35112.
Change-Id: I9ca171e507ff3bd186326ccf611b35b9ebea1bfe
Reviewed-on: https://go-review.googlesource.com/c/go/+/205277
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Reviewed-by: Richard Musiol <neelance@gmail.com>
This change adds the concept of summaries and of summarizing a set of
pallocBits, a core concept in the new page allocator. These summaries
are really just three integers packed into a uint64. This change also
adds tests and a benchmark for generating these summaries.
Updates #35112.
Change-Id: I69686316086c820c792b7a54235859c2105e5fee
Reviewed-on: https://go-review.googlesource.com/c/go/+/190621
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
This change adds a per-chunk bitmap for page allocation called
pallocBits with algorithms for allocating and freeing pages out of the
bitmap. This change also adds tests for pallocBits, but does not yet
integrate it into the runtime.
Updates #35112.
Change-Id: I479006ed9f1609c80eedfff0580d5426b064b0ff
Reviewed-on: https://go-review.googlesource.com/c/go/+/190620
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
This change is the first of a series of changes which replace the
current page allocator (which is based on the contents of mgclarge.go
and some of mheap.go) with one based on free/used bitmaps.
It adds in the key constants for the page allocator as well as a comment
describing the implementation.
Updates #35112.
Change-Id: I839d3a07f46842ad379701d27aa691885afdba63
Reviewed-on: https://go-review.googlesource.com/c/go/+/190619
Run-TryBot: Michael Knyszek <mknyszek@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
zip.Create is now used to filter and translate zip files from VCS tools.
zip.Unzip is now used instead of Unzip.
Fixes#35290
Change-Id: I4aa41b2e96bf147c09db43d1d189b8393cafb06f
Reviewed-on: https://go-review.googlesource.com/c/go/+/204917
Run-TryBot: Jay Conrod <jayconrod@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Bryan C. Mills <bcmills@google.com>
This changes makes it so that sysReserve, which creates a PROT_NONE
mapping, maps that memory as NORESERVE. Before this change, relatively
large PROT_NONE mappings could cause fork to fail with ENOMEM, reported
as "not enough space". Presumably this refers to swap space, since
adding this flag causes the failures to go away.
This helps unblock page allocator work, since it allows us to make large
PROT_NONE mappings on solaris safely.
Updates #35112.
Change-Id: Ic3cba310c626e93d5db0f27269e2569bb7bc393e
Reviewed-on: https://go-review.googlesource.com/c/go/+/205759
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
This CL adds a new test package which downloads specific versions of
~1000 modules in direct mode and verifies that modules have the same
sums and the zip files have the same SHA-256 hashes.
This test takes a long time to run and depends heavily on external
data that may disappear. It must be enabled manually with -zipsum.
Fixes#35290
Change-Id: Ic6959e685096e8b09cea291f19d5bd0255432284
Reviewed-on: https://go-review.googlesource.com/c/go/+/204838
Reviewed-by: Bryan C. Mills <bcmills@google.com>
This makes it a little less likely the portable FMA will be
broken without realizing it.
Change-Id: I7f7f4509b35160a9709f8b8a0e494c09ea6e410a
Reviewed-on: https://go-review.googlesource.com/c/go/+/205337
Run-TryBot: Russ Cox <rsc@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
This API was added for #25819, where it was discussed as math.FMA.
The commit adding it used math.Fma, presumably for consistency
with the rest of the unusual names in package math
(Sincos, Acosh, Erfcinv, Float32bits, etc).
I believe that using an idiomatic Go name is more important here
than consistency with these other names, most of which are historical
baggage from C's standard library.
Early additions like Float32frombits happened before "uppercase for export"
(so they were originally like "float32frombits") and they were not properly
reconsidered when we uppercased the symbols to export them.
That's a mistake we live with.
The names of functions we have added since then, and even a few
that were legacy, are more properly Go-cased, such as IsNaN, IsInf,
and RoundToEven, rather than Isnan, Isinf, and Roundtoeven.
And also constants like MaxFloat32.
For new API, we should keep using proper Go-cased symbols
instead of minimally-upper-cased-C symbols.
So math.FMA, not math.Fma.
This API has not yet been released, so this change does not break
the compatibility promise.
This CL also modifies cmd/compile, since the compiler knows
the name of the function. I could have stopped at changing the
string constants, but it seemed to make more sense to use a
consistent casing everywhere.
Change-Id: I0f6f3407f41e99bfa8239467345c33945088896e
Reviewed-on: https://go-review.googlesource.com/c/go/+/205317
Run-TryBot: Russ Cox <rsc@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
This CL was verified by running:
go test -gcflags=all=-d=checkptr=2 internal/syscall/windows
internal/syscall/windows.TestRunAtLowIntegrity uses code in question.
Updates #34972
Change-Id: I434530058e2d41f132e9bf154e8c64c03894e9c4
Reviewed-on: https://go-review.googlesource.com/c/go/+/204117
Run-TryBot: Cuong Manh Le <cuong.manhle.vn@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
No need to check as pieces further down do so anyway:
% go doc '&&.%$^'
doc: symbol && is not a type in package fmt installed in "fmt"
exit status 1
%
Removing this check allows 'go doc sort.interface' or 'go doc
types.type' to discover sort.Interface and go/types.Type.
Easily
Fixes#34656.
Change-Id: I84352e83dd7f91a232f45a44d1a52f019a1a9a06
Reviewed-on: https://go-review.googlesource.com/c/go/+/205778
Reviewed-by: Caleb Spare <cespare@gmail.com>
Reviewed-by: Daniel Martí <mvdan@mvdan.cc>
Run-TryBot: Daniel Martí <mvdan@mvdan.cc>
Allow the inputs a and b to be zero or negative to GCD
with the following definitions.
If x or y are not nil, GCD sets their value such that z = a*x + b*y.
Regardless of the signs of a and b, z is always >= 0.
If a == b == 0, GCD sets z = x = y = 0.
If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
Fixes#28878
Change-Id: Ia83fce66912a96545c95cd8df0549bfd852652f3
Reviewed-on: https://go-review.googlesource.com/c/go/+/164972
Run-TryBot: Brian Kessler <brian.m.kessler@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
When we have already assigned the semaphore ticket to a specific
waiter, we want to get the waiter running as fast as possible since
no other G waiting on the semaphore can acquire it optimistically.
The net effect is that, when a sync.Mutex is contented, the code in
the critical section guarded by the Mutex gets a priority boost.
Fixes#33747
Change-Id: I9967f0f763c25504010651bdd7f944ee0189cd45
Reviewed-on: https://go-review.googlesource.com/c/go/+/200577
Reviewed-by: Rhys Hiltner <rhys@justin.tv>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Emmanuel Odeke <emm.odeke@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
On iOS, the address space is not 48 bits as one might believe, since
it's arm64 hardware. In fact, all pointers are truncated to 33 bits, and
the OS only gives applications access to the range [1<<32, 2<<32).
While today this has no effect on the Go runtime, future changes which
care about address space size need this to be correct.
Updates #35112.
Change-Id: Id518a2298080f7e3d31cf7d909506a37748cc49a
Reviewed-on: https://go-review.googlesource.com/c/go/+/205758
Run-TryBot: Michael Knyszek <mknyszek@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
This change removes a hack which was added to deal with Darwin 10.10's
weird ignorance of mapping hints which would cause race mode to fail
since it requires the heap to live within a certain address range.
We no longer support 10.10, and this is potentially causing problems
related to the page allocator, so drop this code.
Updates #26475.
Updates #35112.
Change-Id: I0e1c6f8c924afe715a2aceb659a969d7c7b6f749
Reviewed-on: https://go-review.googlesource.com/c/go/+/205757
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
The test deliberately constructs an invalid pointer, so don't check it.
Fixes#35379
Change-Id: Ifeff3484740786b0470de3a4d2d4103d91e06f5d
Reviewed-on: https://go-review.googlesource.com/c/go/+/205717
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
This change is based on the previous discussion in CL 202442.
Fixes#34634
Change-Id: I1319aa26d5cfcd034bc576555787b3ca79968c38
Reviewed-on: https://go-review.googlesource.com/c/go/+/205637
Run-TryBot: Bryan C. Mills <bcmills@google.com>
Reviewed-by: Jay Conrod <jayconrod@google.com>