These are used by DIV[U] and MOD[U] assembly instructions.
Add a test in the stdlib so we actually exercise linking
to these routines.
Update #19507
Change-Id: I0d8e19a53e3744abc0c661ea95486f94ec67585e
Reviewed-on: https://go-review.googlesource.com/45703
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Also add runtime· prefixes to the code that is still used.
Fixes#19507
Change-Id: Ib6da6b2a9e398061d3f93958ee1258295b6cc33b
Reviewed-on: https://go-review.googlesource.com/45699
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Add some simplification rules for floating point ops.
cmd/internal/obj/arm supports instructions that compare FP register
to 0, but runtime softfloat simulator does not. This CL adds these
instructions to softfloat simulator as well.
Updates #15365.
Change-Id: I29405b2bfcb4c8cf106cb7a1a811409fec91b170
Reviewed-on: https://go-review.googlesource.com/24790
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
Negative-case conversion code was wrong for minimum int32,
used negate-then-widen instead of widen-then-negate.
Test already exists; this fixes the failure.
Fixes#15563.
Change-Id: I4b0b3ae8f2c9714bdcc405d4d0b1502ccfba2b40
Reviewed-on: https://go-review.googlesource.com/22830
Run-TryBot: David Chase <drchase@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
The code sequence for large-offset floating-point stores
includes adding the base pointer to r11. Make sure we
can interpret that instruction correctly.
Fixes build.
Fixes#15440
Change-Id: I7fe5a4a57e08682967052bf77c54e0ec47fcb53e
Reviewed-on: https://go-review.googlesource.com/22440
Reviewed-by: Michael Hudson-Doyle <michael.hudson@canonical.com>
This is generated during fp code when -shared is active.
Change-Id: Ia1092299b9c3b63ff771ca4842158b42c34bd008
Reviewed-on: https://go-review.googlesource.com/14286
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Dave Cheney <dave@cheney.net>
Removes the remains of the old C based stepflt implementation.
Also removed goto usage.
Change-Id: Ida4742c49000fae4fea4649f28afde630ce4c577
Reviewed-on: https://go-review.googlesource.com/9600
Reviewed-by: Russ Cox <rsc@golang.org>
When emulating ARM FSQRT instruction, the sqrt function itself
should not use any floating point arithmetics, otherwise it will
clobber the user software FP registers.
Fortunately, the sqrt function only uses floating point instructions
to test for corner cases, so it's easy to make that function does
all it job using pure integer arithmetic only. I've verified that
after this change, runtime.stepflt and runtime.sqrt doesn't contain
any call to _sfloat. (Perhaps we should add //go:nosfloat to make
the compiler enforce this?)
Fixes#10641.
Change-Id: Ida4742c49000fae4fea4649f28afde630ce4c576
Signed-off-by: Shenghou Ma <minux@golang.org>
Reviewed-on: https://go-review.googlesource.com/9570
Reviewed-by: Dave Cheney <dave@cheney.net>
Reviewed-by: Keith Randall <khr@golang.org>
Rename "gothrow" to "throw" now that the C version of "throw"
is no longer needed.
This change is purely mechanical except in panic.go where the
old version of "throw" has been deleted.
sed -i "" 's/[[:<:]]gothrow[[:>:]]/throw/g' runtime/*.go
Change-Id: Icf0752299c35958b92870a97111c67bcd9159dc3
Reviewed-on: https://go-review.googlesource.com/2150
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Dave Cheney <dave@cheney.net>
* _sfloat dispatches to runtime._sfloat2 with the Go calling convention, so the seecond argument is a [15]uint32, not a *[15]uint32.
* adjust _sfloat2 to return the new pc in 68(R13) as expected.
LGTM=rsc
R=minux, austin, rsc
CC=golang-codereviews
https://golang.org/cl/174160043
Scalararg and ptrarg are not "signal safe".
Go code filling them out can be interrupted by a signal,
and then the signal handler runs, and if it also ends up
in Go code that uses scalararg or ptrarg, now the old
values have been smashed.
For the pieces of code that do need to run in a signal handler,
we introduced onM_signalok, which is really just onM
except that the _signalok is meant to convey that the caller
asserts that scalarg and ptrarg will be restored to their old
values after the call (instead of the usual behavior, zeroing them).
Scalararg and ptrarg are also untyped and therefore error-prone.
Go code can always pass a closure instead of using scalararg
and ptrarg; they were only really necessary for C code.
And there's no more C code.
For all these reasons, delete scalararg and ptrarg, converting
the few remaining references to use closures.
Once those are gone, there is no need for a distinction between
onM and onM_signalok, so replace both with a single function
equivalent to the current onM_signalok (that is, it can be called
on any of the curg, g0, and gsignal stacks).
The name onM and the phrase 'm stack' are misnomers,
because on most system an M has two system stacks:
the main thread stack and the signal handling stack.
Correct the misnomer by naming the replacement function systemstack.
Fix a few references to "M stack" in code.
The main motivation for this change is to eliminate scalararg/ptrarg.
Rick and I have already seen them cause problems because
the calling sequence m.ptrarg[0] = p is a heap pointer assignment,
so it gets a write barrier. The write barrier also uses onM, so it has
all the same problems as if it were being invoked by a signal handler.
We worked around this by saving and restoring the old values
and by calling onM_signalok, but there's no point in keeping this nice
home for bugs around any longer.
This CL also changes funcline to return the file name as a result
instead of filling in a passed-in *string. (The *string signature is
left over from when the code was written in and called from C.)
That's arguably an unrelated change, except that once I had done
the ptrarg/scalararg/onM cleanup I started getting false positives
about the *string argument escaping (not allowed in package runtime).
The compiler is wrong, but the easiest fix is to write the code like
Go code instead of like C code. I am a bit worried that the compiler
is wrong because of some use of uninitialized memory in the escape
analysis. If that's the reason, it will go away when we convert the
compiler to Go. (And if not, we'll debug it the next time.)
LGTM=khr
R=r, khr
CC=austin, golang-codereviews, iant, rlh
https://golang.org/cl/174950043
Also include onM_signalok fix from issue 8995.
Fixes linux/arm build.
Fixes#8995.
LGTM=r
R=r, dave
CC=golang-codereviews
https://golang.org/cl/168580043