1
0
mirror of https://github.com/golang/go synced 2024-10-02 10:18:33 -06:00
Commit Graph

15 Commits

Author SHA1 Message Date
Russ Cox
4a19081358 runtime: run on GOARM=5 and GOARM=6 uniprocessor freebsd/arm systems
Also, crash early on non-Linux SMP ARM systems when GOARM < 7;
without the proper synchronization, SMP cannot work.

Linux is okay because we call kernel-provided routines for
synchronization and barriers, and the kernel takes care of
providing the right routines for the current system.
On non-Linux systems we are left to fend for ourselves.

It is possible to use different synchronization on GOARM=6,
but it's too late to do that in the Go 1.5 cycle.
We don't believe there are any non-Linux SMP GOARM=6 systems anyway.

Fixes #12067.

Change-Id: I771a556e47893ed540ec2cd33d23c06720157ea3
Reviewed-on: https://go-review.googlesource.com/13363
Reviewed-by: Austin Clements <austin@google.com>
2015-08-07 17:39:07 +00:00
Ian Lance Taylor
872b168fe3 runtime: if we don't handle a signal on a non-Go thread, raise it
In the past badsignal would crash the program.  In
https://golang.org/cl/10757044 badsignal was changed to call sigsend,
to fix issue #3250.  The effect of this was that when a non-Go thread
received a signal, and os/signal.Notify was not being used to check
for occurrences of the signal, the signal was ignored.

This changes the code so that if os/signal.Notify is not being used,
then the signal handler is reset to what it was, and the signal is
raised again.  This lets non-Go threads handle the signal as they
wish.  In particular, it means that a segmentation violation in a
non-Go thread will ordinarily crash the process, as it should.

Fixes #10139.
Update #11794.

Change-Id: I2109444aaada9d963ad03b1d071ec667760515e5
Reviewed-on: https://go-review.googlesource.com/12503
Reviewed-by: Russ Cox <rsc@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
2015-07-22 20:26:29 +00:00
Austin Clements
c02b8911d8 runtime: clean up signalstack API
Currently signalstack takes a lower limit and a length and all calls
hard-code the passed length. Change the API to take a *stack and
compute the lower limit and length from the passed stack.

This will make it easier for the runtime to steal some space from the
top of the stack since it eliminates the hard-coded stack sizes.

Change-Id: I7d2a9f45894b221f4e521628c2165530bbc57d53
Reviewed-on: https://go-review.googlesource.com/10311
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
2015-06-02 19:57:42 +00:00
Elias Naur
84cfba17c2 runtime: don't always unblock all signals
Ian proposed an improved way of handling signals masks in Go, motivated
by a problem where the Android java runtime expects certain signals to
be blocked for all JVM threads. Discussion here

https://groups.google.com/forum/#!topic/golang-dev/_TSCkQHJt6g

Ian's text is used in the following:

A Go program always needs to have the synchronous signals enabled.
These are the signals for which _SigPanic is set in sigtable, namely
SIGSEGV, SIGBUS, SIGFPE.

A Go program that uses the os/signal package, and calls signal.Notify,
needs to have at least one thread which is not blocking that signal,
but it doesn't matter much which one.

Unix programs do not change signal mask across execve.  They inherit
signal masks across fork.  The shell uses this fact to some extent;
for example, the job control signals (SIGTTIN, SIGTTOU, SIGTSTP) are
blocked for commands run due to backquote quoting or $().

Our current position on signal masks was not thought out.  We wandered
into step by step, e.g., http://golang.org/cl/7323067 .

This CL does the following:

Introduce a new platform hook, msigsave, that saves the signal mask of
the current thread to m.sigsave.

Call msigsave from needm and newm.

In minit grab set up the signal mask from m.sigsave and unblock the
essential synchronous signals, and SIGILL, SIGTRAP, SIGPROF, SIGSTKFLT
(for systems that have it).

In unminit, restore the signal mask from m.sigsave.

The first time that os/signal.Notify is called, start a new thread whose
only purpose is to update its signal mask to make sure signals for
signal.Notify are unblocked on at least one thread.

The effect on Go programs will be that if they are invoked with some
non-synchronous signals blocked, those signals will normally be
ignored.  Previously, those signals would mostly be ignored.  A change
in behaviour will occur for programs started with any of these signals
blocked, if they receive the signal: SIGHUP, SIGINT, SIGQUIT, SIGABRT,
SIGTERM.  Previously those signals would always cause a crash (unless
using the os/signal package); with this change, they will be ignored
if the program is started with the signal blocked (and does not use
the os/signal package).

./all.bash completes successfully on linux/amd64.

OpenBSD is missing the implementation.

Change-Id: I188098ba7eb85eae4c14861269cc466f2aa40e8c
Reviewed-on: https://go-review.googlesource.com/10173
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-05-22 20:24:08 +00:00
Srdjan Petrovic
6ad33be2d9 runtime: implement xadduintptr and update system mstats using it
The motivation is that sysAlloc/Free() currently aren't safe to be
called without a valid G, because arm's xadd64() uses locks that require
a valid G.

The solution here was proposed by Dmitry Vyukov: use xadduintptr()
instead of xadd64(), until arm can support xadd64 on all of its
architectures (not a trivial task for arm).

Change-Id: I250252079357ea2e4360e1235958b1c22051498f
Reviewed-on: https://go-review.googlesource.com/9002
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
2015-04-24 16:53:26 +00:00
David Crawshaw
cea272de30 runtime: rename close to closefd
Avoids shadowing the builtin channel close function.

Change-Id: I7a729b0937c8248fe27222be61318a88db995eee
Reviewed-on: https://go-review.googlesource.com/8898
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: David Crawshaw <crawshaw@golang.org>
2015-04-14 12:31:29 +00:00
David Crawshaw
b0a85f5d93 runtime: darwin/amd64 library entry point
This is a practice run for darwin/arm.

Similar to the linux/amd64 shared library entry point. With several
pending linker changes I am successfully using this to implement
-buildmode=c-archive on darwin/amd64 with external linking.

The same entry point can be reused to implement -buildmode=c-shared
on darwin/amd64, however that will require further ld changes to
remove all text relocations.

One extra runtime change will follow this. According to the Go
execution modes document, -buildmode=c-archive should ignore the Go
main function. Right now it is being executed (and the process exits
if it doesn't block). I'm still searching for the right way to do
this.

Change-Id: Id97901ddd4d46970996f222bd79731dabff66a3d
Reviewed-on: https://go-review.googlesource.com/8652
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-04-08 21:53:52 +00:00
Austin Clements
9e6f7aac28 runtime: make "write barriers are not allowed" comments more precise
Currently, various functions are marked with the comment

  // May run without a P, so write barriers are not allowed.

However, "running without a P" is ambiguous. We intended these to mean
that m.p may be nil (which is the condition checked by the write
barrier). The comment could also be taken to mean that a
stop-the-world may happen, which is not the case for these functions
because they run in situations where there is in fact a function on
the stack holding a P locally, it just isn't in m.p.

Change these comments to state precisely what we mean, that m.p may be
nil.

Change-Id: I4a4a1d26aebd455e5067540e13b9f96a7482146c
Reviewed-on: https://go-review.googlesource.com/8209
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
2015-03-30 15:13:53 +00:00
Austin Clements
392336f94e runtime: disallow write barriers in handoffp and callees
handoffp by definition runs without a P, so it's not allowed to have
write barriers. It doesn't have any right now, but mark it
nowritebarrier to disallow any creeping in in the future. handoffp in
turns calls startm, newm, and newosproc, all of which are "below Go"
and make sense to run without a P, so disallow write barriers in these
as well.

For most functions, we've done this because they may race with
stoptheworld() and hence must not have write barriers. For these
functions, it's a little different: the world can't stop while we're
in handoffp, so this race isn't present. But we implement this
restriction with a somewhat broader rule that you can't have a write
barrier without a P. We like this rule because it's simple and means
that our write barriers can depend on there being a P, even though
this rule is actually a little broader than necessary. Hence, even
though there's no danger of the race in these functions, we want to
adhere to the broader rule.

Change-Id: Ie22319c30eea37d703eb52f5c7ca5da872030b88
Reviewed-on: https://go-review.googlesource.com/8130
Run-TryBot: Austin Clements <austin@google.com>
Reviewed-by: Minux Ma <minux@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
2015-03-26 20:38:59 +00:00
Keith Randall
1de9c4073b runtime: use urandom instead of random
Random is bad, it can block and prevent binaries from starting.
Use urandom instead.  We'd rather have bad random bits than no
random bits.

Change-Id: I360e1cb90ace5518a1b51708822a1dae27071ebd
Reviewed-on: https://go-review.googlesource.com/2582
Reviewed-by: Dave Cheney <dave@cheney.net>
Reviewed-by: Minux Ma <minux@golang.org>
2015-01-09 00:09:42 +00:00
Keith Randall
b2a950bb73 runtime: rename gothrow to throw
Rename "gothrow" to "throw" now that the C version of "throw"
is no longer needed.

This change is purely mechanical except in panic.go where the
old version of "throw" has been deleted.

sed -i "" 's/[[:<:]]gothrow[[:>:]]/throw/g' runtime/*.go

Change-Id: Icf0752299c35958b92870a97111c67bcd9159dc3
Reviewed-on: https://go-review.googlesource.com/2150
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Dave Cheney <dave@cheney.net>
2014-12-28 06:16:16 +00:00
Austin Clements
675eb72c28 runtime: run libc SIGSETXID and SIGCANCEL handlers on signal stack
These signals are used by glibc to broadcast setuid/setgid to all
threads and to send pthread cancellations.  Unlike other signals, the
Go runtime does not intercept these because they must invoke the libc
handlers (see issues #3871 and #6997).  However, because 1) these
signals may be issued asynchronously by a thread running C code to
another thread running Go code and 2) glibc does not set SA_ONSTACK
for its handlers, glibc's signal handler may be run on a Go stack.
Signal frames range from 1.5K on amd64 to many kilobytes on ppc64, so
this may overflow the Go stack and corrupt heap (or other stack) data.

Fix this by ensuring that these signal handlers have the SA_ONSTACK
flag (but not otherwise taking over the handler).

This has been a problem since Go 1.1, but it's likely that people
haven't encountered it because it only affects setuid/setgid and
pthread_cancel.

Fixes #9600.

Change-Id: I6cf5f5c2d3aa48998d632f61f1ddc2778dcfd300
Reviewed-on: https://go-review.googlesource.com/1887
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2014-12-23 01:33:36 +00:00
Keith Randall
6820be25da runtime: clean up & go-ify the hash function seeder
Change-Id: I0e95f8a5962c547da20e19a356ae1cf8375c9107
Reviewed-on: https://go-review.googlesource.com/1270
Reviewed-by: Russ Cox <rsc@golang.org>
2014-12-10 21:15:35 +00:00
Russ Cox
656be317d0 [dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack
Scalararg and ptrarg are not "signal safe".
Go code filling them out can be interrupted by a signal,
and then the signal handler runs, and if it also ends up
in Go code that uses scalararg or ptrarg, now the old
values have been smashed.
For the pieces of code that do need to run in a signal handler,
we introduced onM_signalok, which is really just onM
except that the _signalok is meant to convey that the caller
asserts that scalarg and ptrarg will be restored to their old
values after the call (instead of the usual behavior, zeroing them).

Scalararg and ptrarg are also untyped and therefore error-prone.

Go code can always pass a closure instead of using scalararg
and ptrarg; they were only really necessary for C code.
And there's no more C code.

For all these reasons, delete scalararg and ptrarg, converting
the few remaining references to use closures.

Once those are gone, there is no need for a distinction between
onM and onM_signalok, so replace both with a single function
equivalent to the current onM_signalok (that is, it can be called
on any of the curg, g0, and gsignal stacks).

The name onM and the phrase 'm stack' are misnomers,
because on most system an M has two system stacks:
the main thread stack and the signal handling stack.

Correct the misnomer by naming the replacement function systemstack.

Fix a few references to "M stack" in code.

The main motivation for this change is to eliminate scalararg/ptrarg.
Rick and I have already seen them cause problems because
the calling sequence m.ptrarg[0] = p is a heap pointer assignment,
so it gets a write barrier. The write barrier also uses onM, so it has
all the same problems as if it were being invoked by a signal handler.
We worked around this by saving and restoring the old values
and by calling onM_signalok, but there's no point in keeping this nice
home for bugs around any longer.

This CL also changes funcline to return the file name as a result
instead of filling in a passed-in *string. (The *string signature is
left over from when the code was written in and called from C.)
That's arguably an unrelated change, except that once I had done
the ptrarg/scalararg/onM cleanup I started getting false positives
about the *string argument escaping (not allowed in package runtime).
The compiler is wrong, but the easiest fix is to write the code like
Go code instead of like C code. I am a bit worried that the compiler
is wrong because of some use of uninitialized memory in the escape
analysis. If that's the reason, it will go away when we convert the
compiler to Go. (And if not, we'll debug it the next time.)

LGTM=khr
R=r, khr
CC=austin, golang-codereviews, iant, rlh
https://golang.org/cl/174950043
2014-11-12 14:54:31 -05:00
Russ Cox
e785e3acf8 [dev.cc] runtime: convert operating system support code from C to Go
The conversion was done with an automated tool and then
modified only as necessary to make it compile and run.

[This CL is part of the removal of C code from package runtime.
See golang.org/s/dev.cc for an overview.]

LGTM=r
R=r
CC=austin, dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/174830044
2014-11-11 17:08:54 -05:00