mirror of
https://github.com/golang/go
synced 2024-11-12 00:30:22 -07:00
[dev.cc] runtime: convert operating system support code from C to Go
The conversion was done with an automated tool and then modified only as necessary to make it compile and run. [This CL is part of the removal of C code from package runtime. See golang.org/s/dev.cc for an overview.] LGTM=r R=r CC=austin, dvyukov, golang-codereviews, iant, khr https://golang.org/cl/174830044
This commit is contained in:
parent
b2cdf30eb6
commit
e785e3acf8
@ -314,9 +314,6 @@ const hashRandomBytes = 32
|
||||
|
||||
var aeskeysched [hashRandomBytes]byte
|
||||
|
||||
//go:noescape
|
||||
func get_random_data(rnd *unsafe.Pointer, n *int32)
|
||||
|
||||
func init() {
|
||||
if theGoos == "nacl" {
|
||||
return
|
||||
|
423
src/runtime/os1_darwin.go
Normal file
423
src/runtime/os1_darwin.go
Normal file
@ -0,0 +1,423 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package runtime
|
||||
|
||||
import "unsafe"
|
||||
|
||||
//extern SigTabTT runtime·sigtab[];
|
||||
|
||||
var sigset_none = uint32(0)
|
||||
var sigset_all = ^uint32(0)
|
||||
|
||||
func unimplemented(name string) {
|
||||
println(name, "not implemented")
|
||||
*(*int)(unsafe.Pointer(uintptr(1231))) = 1231
|
||||
}
|
||||
|
||||
//go:nosplit
|
||||
func semawakeup(mp *m) {
|
||||
mach_semrelease(uint32(mp.waitsema))
|
||||
}
|
||||
|
||||
//go:nosplit
|
||||
func semacreate() uintptr {
|
||||
var x uintptr
|
||||
onM(func() {
|
||||
x = uintptr(mach_semcreate())
|
||||
})
|
||||
return x
|
||||
}
|
||||
|
||||
// BSD interface for threading.
|
||||
func osinit() {
|
||||
// bsdthread_register delayed until end of goenvs so that we
|
||||
// can look at the environment first.
|
||||
|
||||
// Use sysctl to fetch hw.ncpu.
|
||||
mib := [2]uint32{6, 3}
|
||||
out := uint32(0)
|
||||
nout := unsafe.Sizeof(out)
|
||||
ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0)
|
||||
if ret >= 0 {
|
||||
ncpu = int32(out)
|
||||
}
|
||||
}
|
||||
|
||||
var urandom_data [_HashRandomBytes]byte
|
||||
var urandom_dev = []byte("/dev/random\x00")
|
||||
|
||||
//go:nosplit
|
||||
func get_random_data(rnd *unsafe.Pointer, rnd_len *int32) {
|
||||
fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
|
||||
if read(fd, unsafe.Pointer(&urandom_data), _HashRandomBytes) == _HashRandomBytes {
|
||||
*rnd = unsafe.Pointer(&urandom_data[0])
|
||||
*rnd_len = _HashRandomBytes
|
||||
} else {
|
||||
*rnd = nil
|
||||
*rnd_len = 0
|
||||
}
|
||||
close(fd)
|
||||
}
|
||||
|
||||
func goenvs() {
|
||||
goenvs_unix()
|
||||
|
||||
// Register our thread-creation callback (see sys_darwin_{amd64,386}.s)
|
||||
// but only if we're not using cgo. If we are using cgo we need
|
||||
// to let the C pthread library install its own thread-creation callback.
|
||||
if !iscgo {
|
||||
if bsdthread_register() != 0 {
|
||||
if gogetenv("DYLD_INSERT_LIBRARIES") != "" {
|
||||
gothrow("runtime: bsdthread_register error (unset DYLD_INSERT_LIBRARIES)")
|
||||
}
|
||||
gothrow("runtime: bsdthread_register error")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func newosproc(mp *m, stk unsafe.Pointer) {
|
||||
mp.tls[0] = uintptr(mp.id) // so 386 asm can find it
|
||||
if false {
|
||||
print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " id=", mp.id, "/", int(mp.tls[0]), " ostk=", &mp, "\n")
|
||||
}
|
||||
|
||||
var oset uint32
|
||||
sigprocmask(_SIG_SETMASK, &sigset_all, &oset)
|
||||
errno := bsdthread_create(stk, mp, mp.g0, funcPC(mstart))
|
||||
sigprocmask(_SIG_SETMASK, &oset, nil)
|
||||
|
||||
if errno < 0 {
|
||||
print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -errno, ")\n")
|
||||
gothrow("runtime.newosproc")
|
||||
}
|
||||
}
|
||||
|
||||
// Called to initialize a new m (including the bootstrap m).
|
||||
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
|
||||
func mpreinit(mp *m) {
|
||||
mp.gsignal = malg(32 * 1024) // OS X wants >= 8K
|
||||
mp.gsignal.m = mp
|
||||
}
|
||||
|
||||
// Called to initialize a new m (including the bootstrap m).
|
||||
// Called on the new thread, can not allocate memory.
|
||||
func minit() {
|
||||
// Initialize signal handling.
|
||||
_g_ := getg()
|
||||
signalstack((*byte)(unsafe.Pointer(_g_.m.gsignal.stack.lo)), 32*1024)
|
||||
sigprocmask(_SIG_SETMASK, &sigset_none, nil)
|
||||
}
|
||||
|
||||
// Called from dropm to undo the effect of an minit.
|
||||
func unminit() {
|
||||
signalstack(nil, 0)
|
||||
}
|
||||
|
||||
// Mach IPC, to get at semaphores
|
||||
// Definitions are in /usr/include/mach on a Mac.
|
||||
|
||||
func macherror(r int32, fn string) {
|
||||
print("mach error ", fn, ": ", r, "\n")
|
||||
gothrow("mach error")
|
||||
}
|
||||
|
||||
const _DebugMach = false
|
||||
|
||||
var zerondr machndr
|
||||
|
||||
func mach_msgh_bits(a, b uint32) uint32 {
|
||||
return a | b<<8
|
||||
}
|
||||
|
||||
func mach_msg(h *machheader, op int32, send_size, rcv_size, rcv_name, timeout, notify uint32) int32 {
|
||||
// TODO: Loop on interrupt.
|
||||
return mach_msg_trap(unsafe.Pointer(h), op, send_size, rcv_size, rcv_name, timeout, notify)
|
||||
}
|
||||
|
||||
// Mach RPC (MIG)
|
||||
const (
|
||||
_MinMachMsg = 48
|
||||
_MachReply = 100
|
||||
)
|
||||
|
||||
type codemsg struct {
|
||||
h machheader
|
||||
ndr machndr
|
||||
code int32
|
||||
}
|
||||
|
||||
func machcall(h *machheader, maxsize int32, rxsize int32) int32 {
|
||||
_g_ := getg()
|
||||
port := _g_.m.machport
|
||||
if port == 0 {
|
||||
port = mach_reply_port()
|
||||
_g_.m.machport = port
|
||||
}
|
||||
|
||||
h.msgh_bits |= mach_msgh_bits(_MACH_MSG_TYPE_COPY_SEND, _MACH_MSG_TYPE_MAKE_SEND_ONCE)
|
||||
h.msgh_local_port = port
|
||||
h.msgh_reserved = 0
|
||||
id := h.msgh_id
|
||||
|
||||
if _DebugMach {
|
||||
p := (*[10000]unsafe.Pointer)(unsafe.Pointer(h))
|
||||
print("send:\t")
|
||||
var i uint32
|
||||
for i = 0; i < h.msgh_size/uint32(unsafe.Sizeof(p[0])); i++ {
|
||||
print(" ", p[i])
|
||||
if i%8 == 7 {
|
||||
print("\n\t")
|
||||
}
|
||||
}
|
||||
if i%8 != 0 {
|
||||
print("\n")
|
||||
}
|
||||
}
|
||||
ret := mach_msg(h, _MACH_SEND_MSG|_MACH_RCV_MSG, h.msgh_size, uint32(maxsize), port, 0, 0)
|
||||
if ret != 0 {
|
||||
if _DebugMach {
|
||||
print("mach_msg error ", ret, "\n")
|
||||
}
|
||||
return ret
|
||||
}
|
||||
if _DebugMach {
|
||||
p := (*[10000]unsafe.Pointer)(unsafe.Pointer(h))
|
||||
var i uint32
|
||||
for i = 0; i < h.msgh_size/uint32(unsafe.Sizeof(p[0])); i++ {
|
||||
print(" ", p[i])
|
||||
if i%8 == 7 {
|
||||
print("\n\t")
|
||||
}
|
||||
}
|
||||
if i%8 != 0 {
|
||||
print("\n")
|
||||
}
|
||||
}
|
||||
if h.msgh_id != id+_MachReply {
|
||||
if _DebugMach {
|
||||
print("mach_msg _MachReply id mismatch ", h.msgh_id, " != ", id+_MachReply, "\n")
|
||||
}
|
||||
return -303 // MIG_REPLY_MISMATCH
|
||||
}
|
||||
// Look for a response giving the return value.
|
||||
// Any call can send this back with an error,
|
||||
// and some calls only have return values so they
|
||||
// send it back on success too. I don't quite see how
|
||||
// you know it's one of these and not the full response
|
||||
// format, so just look if the message is right.
|
||||
c := (*codemsg)(unsafe.Pointer(h))
|
||||
if uintptr(h.msgh_size) == unsafe.Sizeof(*c) && h.msgh_bits&_MACH_MSGH_BITS_COMPLEX == 0 {
|
||||
if _DebugMach {
|
||||
print("mig result ", c.code, "\n")
|
||||
}
|
||||
return c.code
|
||||
}
|
||||
if h.msgh_size != uint32(rxsize) {
|
||||
if _DebugMach {
|
||||
print("mach_msg _MachReply size mismatch ", h.msgh_size, " != ", rxsize, "\n")
|
||||
}
|
||||
return -307 // MIG_ARRAY_TOO_LARGE
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// Semaphores!
|
||||
|
||||
const (
|
||||
tmach_semcreate = 3418
|
||||
rmach_semcreate = tmach_semcreate + _MachReply
|
||||
|
||||
tmach_semdestroy = 3419
|
||||
rmach_semdestroy = tmach_semdestroy + _MachReply
|
||||
|
||||
_KERN_ABORTED = 14
|
||||
_KERN_OPERATION_TIMED_OUT = 49
|
||||
)
|
||||
|
||||
type tmach_semcreatemsg struct {
|
||||
h machheader
|
||||
ndr machndr
|
||||
policy int32
|
||||
value int32
|
||||
}
|
||||
|
||||
type rmach_semcreatemsg struct {
|
||||
h machheader
|
||||
body machbody
|
||||
semaphore machport
|
||||
}
|
||||
|
||||
type tmach_semdestroymsg struct {
|
||||
h machheader
|
||||
body machbody
|
||||
semaphore machport
|
||||
}
|
||||
|
||||
func mach_semcreate() uint32 {
|
||||
var m [256]uint8
|
||||
tx := (*tmach_semcreatemsg)(unsafe.Pointer(&m))
|
||||
rx := (*rmach_semcreatemsg)(unsafe.Pointer(&m))
|
||||
|
||||
tx.h.msgh_bits = 0
|
||||
tx.h.msgh_size = uint32(unsafe.Sizeof(*tx))
|
||||
tx.h.msgh_remote_port = mach_task_self()
|
||||
tx.h.msgh_id = tmach_semcreate
|
||||
tx.ndr = zerondr
|
||||
|
||||
tx.policy = 0 // 0 = SYNC_POLICY_FIFO
|
||||
tx.value = 0
|
||||
|
||||
for {
|
||||
r := machcall(&tx.h, int32(unsafe.Sizeof(m)), int32(unsafe.Sizeof(*rx)))
|
||||
if r == 0 {
|
||||
break
|
||||
}
|
||||
if r == _KERN_ABORTED { // interrupted
|
||||
continue
|
||||
}
|
||||
macherror(r, "semaphore_create")
|
||||
}
|
||||
if rx.body.msgh_descriptor_count != 1 {
|
||||
unimplemented("mach_semcreate desc count")
|
||||
}
|
||||
return rx.semaphore.name
|
||||
}
|
||||
|
||||
func mach_semdestroy(sem uint32) {
|
||||
var m [256]uint8
|
||||
tx := (*tmach_semdestroymsg)(unsafe.Pointer(&m))
|
||||
|
||||
tx.h.msgh_bits = _MACH_MSGH_BITS_COMPLEX
|
||||
tx.h.msgh_size = uint32(unsafe.Sizeof(*tx))
|
||||
tx.h.msgh_remote_port = mach_task_self()
|
||||
tx.h.msgh_id = tmach_semdestroy
|
||||
tx.body.msgh_descriptor_count = 1
|
||||
tx.semaphore.name = sem
|
||||
tx.semaphore.disposition = _MACH_MSG_TYPE_MOVE_SEND
|
||||
tx.semaphore._type = 0
|
||||
|
||||
for {
|
||||
r := machcall(&tx.h, int32(unsafe.Sizeof(m)), 0)
|
||||
if r == 0 {
|
||||
break
|
||||
}
|
||||
if r == _KERN_ABORTED { // interrupted
|
||||
continue
|
||||
}
|
||||
macherror(r, "semaphore_destroy")
|
||||
}
|
||||
}
|
||||
|
||||
// The other calls have simple system call traps in sys_darwin_{amd64,386}.s
|
||||
|
||||
func mach_semaphore_wait(sema uint32) int32
|
||||
func mach_semaphore_timedwait(sema, sec, nsec uint32) int32
|
||||
func mach_semaphore_signal(sema uint32) int32
|
||||
func mach_semaphore_signal_all(sema uint32) int32
|
||||
|
||||
func semasleep1(ns int64) int32 {
|
||||
_g_ := getg()
|
||||
|
||||
if ns >= 0 {
|
||||
var nsecs int32
|
||||
secs := timediv(ns, 1000000000, &nsecs)
|
||||
r := mach_semaphore_timedwait(uint32(_g_.m.waitsema), uint32(secs), uint32(nsecs))
|
||||
if r == _KERN_ABORTED || r == _KERN_OPERATION_TIMED_OUT {
|
||||
return -1
|
||||
}
|
||||
if r != 0 {
|
||||
macherror(r, "semaphore_wait")
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
for {
|
||||
r := mach_semaphore_wait(uint32(_g_.m.waitsema))
|
||||
if r == 0 {
|
||||
break
|
||||
}
|
||||
if r == _KERN_ABORTED { // interrupted
|
||||
continue
|
||||
}
|
||||
macherror(r, "semaphore_wait")
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
//go:nosplit
|
||||
func semasleep(ns int64) int32 {
|
||||
var r int32
|
||||
onM(func() {
|
||||
r = semasleep1(ns)
|
||||
})
|
||||
return r
|
||||
}
|
||||
|
||||
//go:nosplit
|
||||
func mach_semrelease(sem uint32) {
|
||||
for {
|
||||
r := mach_semaphore_signal(sem)
|
||||
if r == 0 {
|
||||
break
|
||||
}
|
||||
if r == _KERN_ABORTED { // interrupted
|
||||
continue
|
||||
}
|
||||
|
||||
// mach_semrelease must be completely nosplit,
|
||||
// because it is called from Go code.
|
||||
// If we're going to die, start that process on the m stack
|
||||
// to avoid a Go stack split.
|
||||
onM_signalok(func() { macherror(r, "semaphore_signal") })
|
||||
}
|
||||
}
|
||||
|
||||
//go:nosplit
|
||||
func osyield() {
|
||||
usleep(1)
|
||||
}
|
||||
|
||||
func memlimit() uintptr {
|
||||
// NOTE(rsc): Could use getrlimit here,
|
||||
// like on FreeBSD or Linux, but Darwin doesn't enforce
|
||||
// ulimit -v, so it's unclear why we'd try to stay within
|
||||
// the limit.
|
||||
return 0
|
||||
}
|
||||
|
||||
func setsig(i int32, fn uintptr, restart bool) {
|
||||
var sa sigactiont
|
||||
memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
|
||||
sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK
|
||||
if restart {
|
||||
sa.sa_flags |= _SA_RESTART
|
||||
}
|
||||
sa.sa_mask = ^uint32(0)
|
||||
sa.sa_tramp = unsafe.Pointer(funcPC(sigtramp)) // runtime·sigtramp's job is to call into real handler
|
||||
*(*uintptr)(unsafe.Pointer(&sa.__sigaction_u)) = fn
|
||||
sigaction(uint32(i), &sa, nil)
|
||||
}
|
||||
|
||||
func getsig(i int32) uintptr {
|
||||
var sa sigactiont
|
||||
memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
|
||||
sigaction(uint32(i), nil, &sa)
|
||||
return *(*uintptr)(unsafe.Pointer(&sa.__sigaction_u))
|
||||
}
|
||||
|
||||
func signalstack(p *byte, n int32) {
|
||||
var st stackt
|
||||
st.ss_sp = p
|
||||
st.ss_size = uintptr(n)
|
||||
st.ss_flags = 0
|
||||
if p == nil {
|
||||
st.ss_flags = _SS_DISABLE
|
||||
}
|
||||
sigaltstack(&st, nil)
|
||||
}
|
||||
|
||||
func unblocksignals() {
|
||||
sigprocmask(_SIG_SETMASK, &sigset_none, nil)
|
||||
}
|
277
src/runtime/os1_linux.go
Normal file
277
src/runtime/os1_linux.go
Normal file
@ -0,0 +1,277 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package runtime
|
||||
|
||||
import "unsafe"
|
||||
|
||||
var sigset_none sigset
|
||||
var sigset_all sigset = sigset{^uint32(0), ^uint32(0)}
|
||||
|
||||
// Linux futex.
|
||||
//
|
||||
// futexsleep(uint32 *addr, uint32 val)
|
||||
// futexwakeup(uint32 *addr)
|
||||
//
|
||||
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
|
||||
// Futexwakeup wakes up threads sleeping on addr.
|
||||
// Futexsleep is allowed to wake up spuriously.
|
||||
|
||||
const (
|
||||
_FUTEX_WAIT = 0
|
||||
_FUTEX_WAKE = 1
|
||||
)
|
||||
|
||||
// Atomically,
|
||||
// if(*addr == val) sleep
|
||||
// Might be woken up spuriously; that's allowed.
|
||||
// Don't sleep longer than ns; ns < 0 means forever.
|
||||
//go:nosplit
|
||||
func futexsleep(addr *uint32, val uint32, ns int64) {
|
||||
var ts timespec
|
||||
|
||||
// Some Linux kernels have a bug where futex of
|
||||
// FUTEX_WAIT returns an internal error code
|
||||
// as an errno. Libpthread ignores the return value
|
||||
// here, and so can we: as it says a few lines up,
|
||||
// spurious wakeups are allowed.
|
||||
if ns < 0 {
|
||||
futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, nil, nil, 0)
|
||||
return
|
||||
}
|
||||
|
||||
// NOTE: tv_nsec is int64 on amd64, so this assumes a little-endian system.
|
||||
ts.tv_nsec = 0
|
||||
ts.set_sec(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec))))
|
||||
futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, unsafe.Pointer(&ts), nil, 0)
|
||||
}
|
||||
|
||||
// If any procs are sleeping on addr, wake up at most cnt.
|
||||
//go:nosplit
|
||||
func futexwakeup(addr *uint32, cnt uint32) {
|
||||
ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE, cnt, nil, nil, 0)
|
||||
if ret >= 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// I don't know that futex wakeup can return
|
||||
// EAGAIN or EINTR, but if it does, it would be
|
||||
// safe to loop and call futex again.
|
||||
onM_signalok(func() {
|
||||
print("futexwakeup addr=", addr, " returned ", ret, "\n")
|
||||
})
|
||||
|
||||
*(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
|
||||
}
|
||||
|
||||
func getproccount() int32 {
|
||||
var buf [16]uintptr
|
||||
r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0])
|
||||
n := int32(0)
|
||||
for _, v := range buf[:r/ptrSize] {
|
||||
for i := 0; i < 64; i++ {
|
||||
n += int32(v & 1)
|
||||
v >>= 1
|
||||
}
|
||||
}
|
||||
if n == 0 {
|
||||
n = 1
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
// Clone, the Linux rfork.
|
||||
const (
|
||||
_CLONE_VM = 0x100
|
||||
_CLONE_FS = 0x200
|
||||
_CLONE_FILES = 0x400
|
||||
_CLONE_SIGHAND = 0x800
|
||||
_CLONE_PTRACE = 0x2000
|
||||
_CLONE_VFORK = 0x4000
|
||||
_CLONE_PARENT = 0x8000
|
||||
_CLONE_THREAD = 0x10000
|
||||
_CLONE_NEWNS = 0x20000
|
||||
_CLONE_SYSVSEM = 0x40000
|
||||
_CLONE_SETTLS = 0x80000
|
||||
_CLONE_PARENT_SETTID = 0x100000
|
||||
_CLONE_CHILD_CLEARTID = 0x200000
|
||||
_CLONE_UNTRACED = 0x800000
|
||||
_CLONE_CHILD_SETTID = 0x1000000
|
||||
_CLONE_STOPPED = 0x2000000
|
||||
_CLONE_NEWUTS = 0x4000000
|
||||
_CLONE_NEWIPC = 0x8000000
|
||||
)
|
||||
|
||||
func newosproc(mp *m, stk unsafe.Pointer) {
|
||||
/*
|
||||
* note: strace gets confused if we use CLONE_PTRACE here.
|
||||
*/
|
||||
var flags int32 = _CLONE_VM | /* share memory */
|
||||
_CLONE_FS | /* share cwd, etc */
|
||||
_CLONE_FILES | /* share fd table */
|
||||
_CLONE_SIGHAND | /* share sig handler table */
|
||||
_CLONE_THREAD /* revisit - okay for now */
|
||||
|
||||
mp.tls[0] = uintptr(mp.id) // so 386 asm can find it
|
||||
if false {
|
||||
print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", funcPC(clone), " id=", mp.id, "/", mp.tls[0], " ostk=", &mp, "\n")
|
||||
}
|
||||
|
||||
// Disable signals during clone, so that the new thread starts
|
||||
// with signals disabled. It will enable them in minit.
|
||||
var oset sigset
|
||||
rtsigprocmask(_SIG_SETMASK, &sigset_all, &oset, int32(unsafe.Sizeof(oset)))
|
||||
ret := clone(flags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(funcPC(mstart)))
|
||||
rtsigprocmask(_SIG_SETMASK, &oset, nil, int32(unsafe.Sizeof(oset)))
|
||||
|
||||
if ret < 0 {
|
||||
print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n")
|
||||
gothrow("newosproc")
|
||||
}
|
||||
}
|
||||
|
||||
func osinit() {
|
||||
ncpu = getproccount()
|
||||
}
|
||||
|
||||
// Random bytes initialized at startup. These come
|
||||
// from the ELF AT_RANDOM auxiliary vector (vdso_linux_amd64.c).
|
||||
// byte* runtime·startup_random_data;
|
||||
// uint32 runtime·startup_random_data_len;
|
||||
|
||||
var urandom_data [_HashRandomBytes]byte
|
||||
var urandom_dev = []byte("/dev/random\x00")
|
||||
|
||||
//go:nosplit
|
||||
func get_random_data(rnd *unsafe.Pointer, rnd_len *int32) {
|
||||
if startup_random_data != nil {
|
||||
*rnd = unsafe.Pointer(startup_random_data)
|
||||
*rnd_len = int32(startup_random_data_len)
|
||||
return
|
||||
}
|
||||
fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
|
||||
if read(fd, unsafe.Pointer(&urandom_data), _HashRandomBytes) == _HashRandomBytes {
|
||||
*rnd = unsafe.Pointer(&urandom_data[0])
|
||||
*rnd_len = _HashRandomBytes
|
||||
} else {
|
||||
*rnd = nil
|
||||
*rnd_len = 0
|
||||
}
|
||||
close(fd)
|
||||
}
|
||||
|
||||
func goenvs() {
|
||||
goenvs_unix()
|
||||
}
|
||||
|
||||
// Called to initialize a new m (including the bootstrap m).
|
||||
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
|
||||
func mpreinit(mp *m) {
|
||||
mp.gsignal = malg(32 * 1024) // Linux wants >= 2K
|
||||
mp.gsignal.m = mp
|
||||
}
|
||||
|
||||
// Called to initialize a new m (including the bootstrap m).
|
||||
// Called on the new thread, can not allocate memory.
|
||||
func minit() {
|
||||
// Initialize signal handling.
|
||||
_g_ := getg()
|
||||
signalstack((*byte)(unsafe.Pointer(_g_.m.gsignal.stack.lo)), 32*1024)
|
||||
rtsigprocmask(_SIG_SETMASK, &sigset_none, nil, int32(unsafe.Sizeof(sigset_none)))
|
||||
}
|
||||
|
||||
// Called from dropm to undo the effect of an minit.
|
||||
func unminit() {
|
||||
signalstack(nil, 0)
|
||||
}
|
||||
|
||||
func memlimit() uintptr {
|
||||
/*
|
||||
TODO: Convert to Go when something actually uses the result.
|
||||
|
||||
Rlimit rl;
|
||||
extern byte runtime·text[], runtime·end[];
|
||||
uintptr used;
|
||||
|
||||
if(runtime·getrlimit(RLIMIT_AS, &rl) != 0)
|
||||
return 0;
|
||||
if(rl.rlim_cur >= 0x7fffffff)
|
||||
return 0;
|
||||
|
||||
// Estimate our VM footprint excluding the heap.
|
||||
// Not an exact science: use size of binary plus
|
||||
// some room for thread stacks.
|
||||
used = runtime·end - runtime·text + (64<<20);
|
||||
if(used >= rl.rlim_cur)
|
||||
return 0;
|
||||
|
||||
// If there's not at least 16 MB left, we're probably
|
||||
// not going to be able to do much. Treat as no limit.
|
||||
rl.rlim_cur -= used;
|
||||
if(rl.rlim_cur < (16<<20))
|
||||
return 0;
|
||||
|
||||
return rl.rlim_cur - used;
|
||||
*/
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
//#ifdef GOARCH_386
|
||||
//#define sa_handler k_sa_handler
|
||||
//#endif
|
||||
|
||||
func sigreturn()
|
||||
func sigtramp()
|
||||
|
||||
func setsig(i int32, fn uintptr, restart bool) {
|
||||
var sa sigactiont
|
||||
memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
|
||||
sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER
|
||||
if restart {
|
||||
sa.sa_flags |= _SA_RESTART
|
||||
}
|
||||
sa.sa_mask = ^uint64(0)
|
||||
// Although Linux manpage says "sa_restorer element is obsolete and
|
||||
// should not be used". x86_64 kernel requires it. Only use it on
|
||||
// x86.
|
||||
if GOARCH == "386" || GOARCH == "amd64" {
|
||||
sa.sa_restorer = funcPC(sigreturn)
|
||||
}
|
||||
if fn == funcPC(sighandler) {
|
||||
fn = funcPC(sigtramp)
|
||||
}
|
||||
sa.sa_handler = fn
|
||||
if rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask)) != 0 {
|
||||
gothrow("rt_sigaction failure")
|
||||
}
|
||||
}
|
||||
|
||||
func getsig(i int32) uintptr {
|
||||
var sa sigactiont
|
||||
|
||||
memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
|
||||
if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 {
|
||||
gothrow("rt_sigaction read failure")
|
||||
}
|
||||
if sa.sa_handler == funcPC(sigtramp) {
|
||||
return funcPC(sighandler)
|
||||
}
|
||||
return sa.sa_handler
|
||||
}
|
||||
|
||||
func signalstack(p *byte, n int32) {
|
||||
var st sigaltstackt
|
||||
st.ss_sp = p
|
||||
st.ss_size = uintptr(n)
|
||||
st.ss_flags = 0
|
||||
if p == nil {
|
||||
st.ss_flags = _SS_DISABLE
|
||||
}
|
||||
sigaltstack(&st, nil)
|
||||
}
|
||||
|
||||
func unblocksignals() {
|
||||
rtsigprocmask(_SIG_SETMASK, &sigset_none, nil, int32(unsafe.Sizeof(sigset_none)))
|
||||
}
|
14
src/runtime/os2_darwin.go
Normal file
14
src/runtime/os2_darwin.go
Normal file
@ -0,0 +1,14 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package runtime
|
||||
|
||||
const (
|
||||
_NSIG = 32
|
||||
_SI_USER = 0 /* empirically true, but not what headers say */
|
||||
_SIG_BLOCK = 1
|
||||
_SIG_UNBLOCK = 2
|
||||
_SIG_SETMASK = 3
|
||||
_SS_DISABLE = 4
|
||||
)
|
23
src/runtime/os2_linux.go
Normal file
23
src/runtime/os2_linux.go
Normal file
@ -0,0 +1,23 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package runtime
|
||||
|
||||
const (
|
||||
_SS_DISABLE = 2
|
||||
_NSIG = 65
|
||||
_SI_USER = 0
|
||||
_SIG_SETMASK = 2
|
||||
_RLIMIT_AS = 9
|
||||
)
|
||||
|
||||
// It's hard to tease out exactly how big a Sigset is, but
|
||||
// rt_sigprocmask crashes if we get it wrong, so if binaries
|
||||
// are running, this is right.
|
||||
type sigset [2]uint32
|
||||
|
||||
type rlimit struct {
|
||||
rlim_cur uintptr
|
||||
rlim_max uintptr
|
||||
}
|
@ -1,567 +0,0 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include "runtime.h"
|
||||
#include "defs_GOOS_GOARCH.h"
|
||||
#include "os_GOOS.h"
|
||||
#include "signal_unix.h"
|
||||
#include "stack.h"
|
||||
#include "textflag.h"
|
||||
|
||||
extern SigTab runtime·sigtab[];
|
||||
|
||||
static Sigset sigset_none;
|
||||
static Sigset sigset_all = ~(Sigset)0;
|
||||
|
||||
static void
|
||||
unimplemented(int8 *name)
|
||||
{
|
||||
runtime·prints(name);
|
||||
runtime·prints(" not implemented\n");
|
||||
*(int32*)1231 = 1231;
|
||||
}
|
||||
|
||||
#pragma textflag NOSPLIT
|
||||
void
|
||||
runtime·semawakeup(M *mp)
|
||||
{
|
||||
runtime·mach_semrelease(mp->waitsema);
|
||||
}
|
||||
|
||||
static void
|
||||
semacreate(void)
|
||||
{
|
||||
g->m->scalararg[0] = runtime·mach_semcreate();
|
||||
}
|
||||
|
||||
#pragma textflag NOSPLIT
|
||||
uintptr
|
||||
runtime·semacreate(void)
|
||||
{
|
||||
uintptr x;
|
||||
void (*fn)(void);
|
||||
|
||||
fn = semacreate;
|
||||
runtime·onM(&fn);
|
||||
x = g->m->scalararg[0];
|
||||
g->m->scalararg[0] = 0;
|
||||
return x;
|
||||
}
|
||||
|
||||
// BSD interface for threading.
|
||||
void
|
||||
runtime·osinit(void)
|
||||
{
|
||||
// bsdthread_register delayed until end of goenvs so that we
|
||||
// can look at the environment first.
|
||||
|
||||
// Use sysctl to fetch hw.ncpu.
|
||||
uint32 mib[2];
|
||||
uint32 out;
|
||||
int32 ret;
|
||||
uintptr nout;
|
||||
|
||||
mib[0] = 6;
|
||||
mib[1] = 3;
|
||||
nout = sizeof out;
|
||||
out = 0;
|
||||
ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0);
|
||||
if(ret >= 0)
|
||||
runtime·ncpu = out;
|
||||
}
|
||||
|
||||
#pragma textflag NOSPLIT
|
||||
void
|
||||
runtime·get_random_data(byte **rnd, int32 *rnd_len)
|
||||
{
|
||||
#pragma dataflag NOPTR
|
||||
static byte urandom_data[HashRandomBytes];
|
||||
int32 fd;
|
||||
fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0);
|
||||
if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) {
|
||||
*rnd = urandom_data;
|
||||
*rnd_len = HashRandomBytes;
|
||||
} else {
|
||||
*rnd = nil;
|
||||
*rnd_len = 0;
|
||||
}
|
||||
runtime·close(fd);
|
||||
}
|
||||
|
||||
void
|
||||
runtime·goenvs(void)
|
||||
{
|
||||
runtime·goenvs_unix();
|
||||
|
||||
// Register our thread-creation callback (see sys_darwin_{amd64,386}.s)
|
||||
// but only if we're not using cgo. If we are using cgo we need
|
||||
// to let the C pthread library install its own thread-creation callback.
|
||||
if(!runtime·iscgo) {
|
||||
if(runtime·bsdthread_register() != 0) {
|
||||
if(runtime·getenv("DYLD_INSERT_LIBRARIES"))
|
||||
runtime·throw("runtime: bsdthread_register error (unset DYLD_INSERT_LIBRARIES)");
|
||||
runtime·throw("runtime: bsdthread_register error");
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void
|
||||
runtime·newosproc(M *mp, void *stk)
|
||||
{
|
||||
int32 errno;
|
||||
Sigset oset;
|
||||
|
||||
mp->tls[0] = mp->id; // so 386 asm can find it
|
||||
if(0){
|
||||
runtime·printf("newosproc stk=%p m=%p g=%p id=%d/%d ostk=%p\n",
|
||||
stk, mp, mp->g0, mp->id, (int32)mp->tls[0], &mp);
|
||||
}
|
||||
|
||||
runtime·sigprocmask(SIG_SETMASK, &sigset_all, &oset);
|
||||
errno = runtime·bsdthread_create(stk, mp, mp->g0, runtime·mstart);
|
||||
runtime·sigprocmask(SIG_SETMASK, &oset, nil);
|
||||
|
||||
if(errno < 0) {
|
||||
runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -errno);
|
||||
runtime·throw("runtime.newosproc");
|
||||
}
|
||||
}
|
||||
|
||||
// Called to initialize a new m (including the bootstrap m).
|
||||
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
|
||||
void
|
||||
runtime·mpreinit(M *mp)
|
||||
{
|
||||
mp->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K
|
||||
mp->gsignal->m = mp;
|
||||
}
|
||||
|
||||
// Called to initialize a new m (including the bootstrap m).
|
||||
// Called on the new thread, can not allocate memory.
|
||||
void
|
||||
runtime·minit(void)
|
||||
{
|
||||
// Initialize signal handling.
|
||||
runtime·signalstack((byte*)g->m->gsignal->stack.lo, 32*1024);
|
||||
|
||||
runtime·sigprocmask(SIG_SETMASK, &sigset_none, nil);
|
||||
}
|
||||
|
||||
// Called from dropm to undo the effect of an minit.
|
||||
void
|
||||
runtime·unminit(void)
|
||||
{
|
||||
runtime·signalstack(nil, 0);
|
||||
}
|
||||
|
||||
// Mach IPC, to get at semaphores
|
||||
// Definitions are in /usr/include/mach on a Mac.
|
||||
|
||||
static void
|
||||
macherror(int32 r, int8 *fn)
|
||||
{
|
||||
runtime·prints("mach error ");
|
||||
runtime·prints(fn);
|
||||
runtime·prints(": ");
|
||||
runtime·printint(r);
|
||||
runtime·prints("\n");
|
||||
runtime·throw("mach error");
|
||||
}
|
||||
|
||||
enum
|
||||
{
|
||||
DebugMach = 0
|
||||
};
|
||||
|
||||
static MachNDR zerondr;
|
||||
|
||||
#define MACH_MSGH_BITS(a, b) ((a) | ((b)<<8))
|
||||
|
||||
static int32
|
||||
mach_msg(MachHeader *h,
|
||||
int32 op,
|
||||
uint32 send_size,
|
||||
uint32 rcv_size,
|
||||
uint32 rcv_name,
|
||||
uint32 timeout,
|
||||
uint32 notify)
|
||||
{
|
||||
// TODO: Loop on interrupt.
|
||||
return runtime·mach_msg_trap(h, op, send_size, rcv_size, rcv_name, timeout, notify);
|
||||
}
|
||||
|
||||
// Mach RPC (MIG)
|
||||
|
||||
enum
|
||||
{
|
||||
MinMachMsg = 48,
|
||||
Reply = 100,
|
||||
};
|
||||
|
||||
#pragma pack on
|
||||
typedef struct CodeMsg CodeMsg;
|
||||
struct CodeMsg
|
||||
{
|
||||
MachHeader h;
|
||||
MachNDR NDR;
|
||||
int32 code;
|
||||
};
|
||||
#pragma pack off
|
||||
|
||||
static int32
|
||||
machcall(MachHeader *h, int32 maxsize, int32 rxsize)
|
||||
{
|
||||
uint32 *p;
|
||||
int32 i, ret, id;
|
||||
uint32 port;
|
||||
CodeMsg *c;
|
||||
|
||||
if((port = g->m->machport) == 0){
|
||||
port = runtime·mach_reply_port();
|
||||
g->m->machport = port;
|
||||
}
|
||||
|
||||
h->msgh_bits |= MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND_ONCE);
|
||||
h->msgh_local_port = port;
|
||||
h->msgh_reserved = 0;
|
||||
id = h->msgh_id;
|
||||
|
||||
if(DebugMach){
|
||||
p = (uint32*)h;
|
||||
runtime·prints("send:\t");
|
||||
for(i=0; i<h->msgh_size/sizeof(p[0]); i++){
|
||||
runtime·prints(" ");
|
||||
runtime·printpointer((void*)p[i]);
|
||||
if(i%8 == 7)
|
||||
runtime·prints("\n\t");
|
||||
}
|
||||
if(i%8)
|
||||
runtime·prints("\n");
|
||||
}
|
||||
|
||||
ret = mach_msg(h, MACH_SEND_MSG|MACH_RCV_MSG,
|
||||
h->msgh_size, maxsize, port, 0, 0);
|
||||
if(ret != 0){
|
||||
if(DebugMach){
|
||||
runtime·prints("mach_msg error ");
|
||||
runtime·printint(ret);
|
||||
runtime·prints("\n");
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
if(DebugMach){
|
||||
p = (uint32*)h;
|
||||
runtime·prints("recv:\t");
|
||||
for(i=0; i<h->msgh_size/sizeof(p[0]); i++){
|
||||
runtime·prints(" ");
|
||||
runtime·printpointer((void*)p[i]);
|
||||
if(i%8 == 7)
|
||||
runtime·prints("\n\t");
|
||||
}
|
||||
if(i%8)
|
||||
runtime·prints("\n");
|
||||
}
|
||||
|
||||
if(h->msgh_id != id+Reply){
|
||||
if(DebugMach){
|
||||
runtime·prints("mach_msg reply id mismatch ");
|
||||
runtime·printint(h->msgh_id);
|
||||
runtime·prints(" != ");
|
||||
runtime·printint(id+Reply);
|
||||
runtime·prints("\n");
|
||||
}
|
||||
return -303; // MIG_REPLY_MISMATCH
|
||||
}
|
||||
|
||||
// Look for a response giving the return value.
|
||||
// Any call can send this back with an error,
|
||||
// and some calls only have return values so they
|
||||
// send it back on success too. I don't quite see how
|
||||
// you know it's one of these and not the full response
|
||||
// format, so just look if the message is right.
|
||||
c = (CodeMsg*)h;
|
||||
if(h->msgh_size == sizeof(CodeMsg)
|
||||
&& !(h->msgh_bits & MACH_MSGH_BITS_COMPLEX)){
|
||||
if(DebugMach){
|
||||
runtime·prints("mig result ");
|
||||
runtime·printint(c->code);
|
||||
runtime·prints("\n");
|
||||
}
|
||||
return c->code;
|
||||
}
|
||||
|
||||
if(h->msgh_size != rxsize){
|
||||
if(DebugMach){
|
||||
runtime·prints("mach_msg reply size mismatch ");
|
||||
runtime·printint(h->msgh_size);
|
||||
runtime·prints(" != ");
|
||||
runtime·printint(rxsize);
|
||||
runtime·prints("\n");
|
||||
}
|
||||
return -307; // MIG_ARRAY_TOO_LARGE
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// Semaphores!
|
||||
|
||||
enum
|
||||
{
|
||||
Tmach_semcreate = 3418,
|
||||
Rmach_semcreate = Tmach_semcreate + Reply,
|
||||
|
||||
Tmach_semdestroy = 3419,
|
||||
Rmach_semdestroy = Tmach_semdestroy + Reply,
|
||||
|
||||
// Mach calls that get interrupted by Unix signals
|
||||
// return this error code. We retry them.
|
||||
KERN_ABORTED = 14,
|
||||
KERN_OPERATION_TIMED_OUT = 49,
|
||||
};
|
||||
|
||||
typedef struct Tmach_semcreateMsg Tmach_semcreateMsg;
|
||||
typedef struct Rmach_semcreateMsg Rmach_semcreateMsg;
|
||||
typedef struct Tmach_semdestroyMsg Tmach_semdestroyMsg;
|
||||
// Rmach_semdestroyMsg = CodeMsg
|
||||
|
||||
#pragma pack on
|
||||
struct Tmach_semcreateMsg
|
||||
{
|
||||
MachHeader h;
|
||||
MachNDR ndr;
|
||||
int32 policy;
|
||||
int32 value;
|
||||
};
|
||||
|
||||
struct Rmach_semcreateMsg
|
||||
{
|
||||
MachHeader h;
|
||||
MachBody body;
|
||||
MachPort semaphore;
|
||||
};
|
||||
|
||||
struct Tmach_semdestroyMsg
|
||||
{
|
||||
MachHeader h;
|
||||
MachBody body;
|
||||
MachPort semaphore;
|
||||
};
|
||||
#pragma pack off
|
||||
|
||||
uint32
|
||||
runtime·mach_semcreate(void)
|
||||
{
|
||||
union {
|
||||
Tmach_semcreateMsg tx;
|
||||
Rmach_semcreateMsg rx;
|
||||
uint8 pad[MinMachMsg];
|
||||
} m;
|
||||
int32 r;
|
||||
|
||||
m.tx.h.msgh_bits = 0;
|
||||
m.tx.h.msgh_size = sizeof(m.tx);
|
||||
m.tx.h.msgh_remote_port = runtime·mach_task_self();
|
||||
m.tx.h.msgh_id = Tmach_semcreate;
|
||||
m.tx.ndr = zerondr;
|
||||
|
||||
m.tx.policy = 0; // 0 = SYNC_POLICY_FIFO
|
||||
m.tx.value = 0;
|
||||
|
||||
while((r = machcall(&m.tx.h, sizeof m, sizeof(m.rx))) != 0){
|
||||
if(r == KERN_ABORTED) // interrupted
|
||||
continue;
|
||||
macherror(r, "semaphore_create");
|
||||
}
|
||||
if(m.rx.body.msgh_descriptor_count != 1)
|
||||
unimplemented("mach_semcreate desc count");
|
||||
return m.rx.semaphore.name;
|
||||
}
|
||||
|
||||
void
|
||||
runtime·mach_semdestroy(uint32 sem)
|
||||
{
|
||||
union {
|
||||
Tmach_semdestroyMsg tx;
|
||||
uint8 pad[MinMachMsg];
|
||||
} m;
|
||||
int32 r;
|
||||
|
||||
m.tx.h.msgh_bits = MACH_MSGH_BITS_COMPLEX;
|
||||
m.tx.h.msgh_size = sizeof(m.tx);
|
||||
m.tx.h.msgh_remote_port = runtime·mach_task_self();
|
||||
m.tx.h.msgh_id = Tmach_semdestroy;
|
||||
m.tx.body.msgh_descriptor_count = 1;
|
||||
m.tx.semaphore.name = sem;
|
||||
m.tx.semaphore.disposition = MACH_MSG_TYPE_MOVE_SEND;
|
||||
m.tx.semaphore.type = 0;
|
||||
|
||||
while((r = machcall(&m.tx.h, sizeof m, 0)) != 0){
|
||||
if(r == KERN_ABORTED) // interrupted
|
||||
continue;
|
||||
macherror(r, "semaphore_destroy");
|
||||
}
|
||||
}
|
||||
|
||||
// The other calls have simple system call traps in sys_darwin_{amd64,386}.s
|
||||
int32 runtime·mach_semaphore_wait(uint32 sema);
|
||||
int32 runtime·mach_semaphore_timedwait(uint32 sema, uint32 sec, uint32 nsec);
|
||||
int32 runtime·mach_semaphore_signal(uint32 sema);
|
||||
int32 runtime·mach_semaphore_signal_all(uint32 sema);
|
||||
|
||||
static void
|
||||
semasleep(void)
|
||||
{
|
||||
int32 r, secs, nsecs;
|
||||
int64 ns;
|
||||
|
||||
ns = (int64)(uint32)g->m->scalararg[0] | (int64)(uint32)g->m->scalararg[1]<<32;
|
||||
g->m->scalararg[0] = 0;
|
||||
g->m->scalararg[1] = 0;
|
||||
|
||||
if(ns >= 0) {
|
||||
secs = runtime·timediv(ns, 1000000000, &nsecs);
|
||||
r = runtime·mach_semaphore_timedwait(g->m->waitsema, secs, nsecs);
|
||||
if(r == KERN_ABORTED || r == KERN_OPERATION_TIMED_OUT) {
|
||||
g->m->scalararg[0] = -1;
|
||||
return;
|
||||
}
|
||||
if(r != 0)
|
||||
macherror(r, "semaphore_wait");
|
||||
g->m->scalararg[0] = 0;
|
||||
return;
|
||||
}
|
||||
while((r = runtime·mach_semaphore_wait(g->m->waitsema)) != 0) {
|
||||
if(r == KERN_ABORTED) // interrupted
|
||||
continue;
|
||||
macherror(r, "semaphore_wait");
|
||||
}
|
||||
g->m->scalararg[0] = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
#pragma textflag NOSPLIT
|
||||
int32
|
||||
runtime·semasleep(int64 ns)
|
||||
{
|
||||
int32 r;
|
||||
void (*fn)(void);
|
||||
|
||||
g->m->scalararg[0] = (uint32)ns;
|
||||
g->m->scalararg[1] = (uint32)(ns>>32);
|
||||
fn = semasleep;
|
||||
runtime·onM(&fn);
|
||||
r = g->m->scalararg[0];
|
||||
g->m->scalararg[0] = 0;
|
||||
return r;
|
||||
}
|
||||
|
||||
static int32 mach_semrelease_errno;
|
||||
|
||||
static void
|
||||
mach_semrelease_fail(void)
|
||||
{
|
||||
macherror(mach_semrelease_errno, "semaphore_signal");
|
||||
}
|
||||
|
||||
#pragma textflag NOSPLIT
|
||||
void
|
||||
runtime·mach_semrelease(uint32 sem)
|
||||
{
|
||||
int32 r;
|
||||
void (*fn)(void);
|
||||
|
||||
while((r = runtime·mach_semaphore_signal(sem)) != 0) {
|
||||
if(r == KERN_ABORTED) // interrupted
|
||||
continue;
|
||||
|
||||
// mach_semrelease must be completely nosplit,
|
||||
// because it is called from Go code.
|
||||
// If we're going to die, start that process on the m stack
|
||||
// to avoid a Go stack split.
|
||||
// Only do that if we're actually running on the g stack.
|
||||
// We might be on the gsignal stack, and if so, onM will abort.
|
||||
// We use the global variable instead of scalararg because
|
||||
// we might be on the gsignal stack, having interrupted a
|
||||
// normal call to onM. It doesn't quite matter, since the
|
||||
// program is about to die, but better to be clean.
|
||||
mach_semrelease_errno = r;
|
||||
fn = mach_semrelease_fail;
|
||||
if(g == g->m->curg)
|
||||
runtime·onM(&fn);
|
||||
else
|
||||
fn();
|
||||
}
|
||||
}
|
||||
|
||||
#pragma textflag NOSPLIT
|
||||
void
|
||||
runtime·osyield(void)
|
||||
{
|
||||
runtime·usleep(1);
|
||||
}
|
||||
|
||||
uintptr
|
||||
runtime·memlimit(void)
|
||||
{
|
||||
// NOTE(rsc): Could use getrlimit here,
|
||||
// like on FreeBSD or Linux, but Darwin doesn't enforce
|
||||
// ulimit -v, so it's unclear why we'd try to stay within
|
||||
// the limit.
|
||||
return 0;
|
||||
}
|
||||
|
||||
void
|
||||
runtime·setsig(int32 i, GoSighandler *fn, bool restart)
|
||||
{
|
||||
SigactionT sa;
|
||||
|
||||
runtime·memclr((byte*)&sa, sizeof sa);
|
||||
sa.sa_flags = SA_SIGINFO|SA_ONSTACK;
|
||||
if(restart)
|
||||
sa.sa_flags |= SA_RESTART;
|
||||
sa.sa_mask = ~(uintptr)0;
|
||||
sa.sa_tramp = (void*)runtime·sigtramp; // runtime·sigtramp's job is to call into real handler
|
||||
*(uintptr*)sa.__sigaction_u = (uintptr)fn;
|
||||
runtime·sigaction(i, &sa, nil);
|
||||
}
|
||||
|
||||
GoSighandler*
|
||||
runtime·getsig(int32 i)
|
||||
{
|
||||
SigactionT sa;
|
||||
|
||||
runtime·memclr((byte*)&sa, sizeof sa);
|
||||
runtime·sigaction(i, nil, &sa);
|
||||
return *(void**)sa.__sigaction_u;
|
||||
}
|
||||
|
||||
void
|
||||
runtime·signalstack(byte *p, int32 n)
|
||||
{
|
||||
StackT st;
|
||||
|
||||
st.ss_sp = (void*)p;
|
||||
st.ss_size = n;
|
||||
st.ss_flags = 0;
|
||||
if(p == nil)
|
||||
st.ss_flags = SS_DISABLE;
|
||||
runtime·sigaltstack(&st, nil);
|
||||
}
|
||||
|
||||
void
|
||||
runtime·unblocksignals(void)
|
||||
{
|
||||
runtime·sigprocmask(SIG_SETMASK, &sigset_none, nil);
|
||||
}
|
||||
|
||||
#pragma textflag NOSPLIT
|
||||
int8*
|
||||
runtime·signame(int32 sig)
|
||||
{
|
||||
return runtime·sigtab[sig].name;
|
||||
}
|
@ -6,19 +6,35 @@ package runtime
|
||||
|
||||
import "unsafe"
|
||||
|
||||
func bsdthread_create(stk, mm, gg, fn unsafe.Pointer) int32
|
||||
func bsdthread_create(stk unsafe.Pointer, mm *m, gg *g, fn uintptr) int32
|
||||
func bsdthread_register() int32
|
||||
|
||||
//go:noescape
|
||||
func mach_msg_trap(h unsafe.Pointer, op int32, send_size, rcv_size, rcv_name, timeout, notify uint32) int32
|
||||
|
||||
func mach_reply_port() uint32
|
||||
func mach_task_self() uint32
|
||||
func mach_thread_self() uint32
|
||||
|
||||
//go:noescape
|
||||
func sysctl(mib *uint32, miblen uint32, out *byte, size *uintptr, dst *byte, ndst uintptr) int32
|
||||
func sigprocmask(sig int32, new, old unsafe.Pointer)
|
||||
func sigaction(mode uint32, new, old unsafe.Pointer)
|
||||
func sigaltstack(new, old unsafe.Pointer)
|
||||
|
||||
//go:noescape
|
||||
func sigprocmask(sig uint32, new, old *uint32)
|
||||
|
||||
//go:noescape
|
||||
func sigaction(mode uint32, new, old *sigactiont)
|
||||
|
||||
//go:noescape
|
||||
func sigaltstack(new, old *stackt)
|
||||
|
||||
func sigtramp()
|
||||
func setitimer(mode int32, new, old unsafe.Pointer)
|
||||
func mach_semaphore_wait(sema uint32) int32
|
||||
func mach_semaphore_timedwait(sema, sec, nsec uint32) int32
|
||||
func mach_semaphore_signal(sema uint32) int32
|
||||
func mach_semaphore_signal_all(sema uint32) int32
|
||||
|
||||
//go:noescape
|
||||
func setitimer(mode int32, new, old *itimerval)
|
||||
|
||||
func raise(int32)
|
||||
|
||||
// careful: cputicks is not guaranteed to be monotonic! In particular, we have
|
||||
// noticed drift between cpus on certain os/arch combinations. See issue 8976.
|
||||
func cputicks() int64
|
||||
|
@ -1,43 +0,0 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
typedef byte* kevent_udata;
|
||||
|
||||
int32 runtime·bsdthread_create(void*, M*, G*, void(*)(void));
|
||||
int32 runtime·bsdthread_register(void);
|
||||
int32 runtime·mach_msg_trap(MachHeader*, int32, uint32, uint32, uint32, uint32, uint32);
|
||||
uint32 runtime·mach_reply_port(void);
|
||||
int32 runtime·mach_semacquire(uint32, int64);
|
||||
uint32 runtime·mach_semcreate(void);
|
||||
void runtime·mach_semdestroy(uint32);
|
||||
void runtime·mach_semrelease(uint32);
|
||||
void runtime·mach_semreset(uint32);
|
||||
uint32 runtime·mach_task_self(void);
|
||||
uint32 runtime·mach_task_self(void);
|
||||
uint32 runtime·mach_thread_self(void);
|
||||
uint32 runtime·mach_thread_self(void);
|
||||
int32 runtime·sysctl(uint32*, uint32, byte*, uintptr*, byte*, uintptr);
|
||||
|
||||
typedef uint32 Sigset;
|
||||
void runtime·sigprocmask(int32, Sigset*, Sigset*);
|
||||
void runtime·unblocksignals(void);
|
||||
|
||||
struct SigactionT;
|
||||
void runtime·sigaction(uintptr, struct SigactionT*, struct SigactionT*);
|
||||
|
||||
struct StackT;
|
||||
void runtime·sigaltstack(struct StackT*, struct StackT*);
|
||||
void runtime·sigtramp(void);
|
||||
void runtime·sigpanic(void);
|
||||
void runtime·setitimer(int32, Itimerval*, Itimerval*);
|
||||
|
||||
|
||||
enum {
|
||||
NSIG = 32,
|
||||
SI_USER = 0, /* empirically true, but not what headers say */
|
||||
SIG_BLOCK = 1,
|
||||
SIG_UNBLOCK = 2,
|
||||
SIG_SETMASK = 3,
|
||||
SS_DISABLE = 4,
|
||||
};
|
@ -9,7 +9,7 @@
|
||||
#include "stack.h"
|
||||
#include "textflag.h"
|
||||
|
||||
extern SigTab runtime·sigtab[];
|
||||
extern SigTabT runtime·sigtab[];
|
||||
extern int32 runtime·sys_umtx_sleep(uint32*, int32, int32);
|
||||
extern int32 runtime·sys_umtx_wakeup(uint32*, int32);
|
||||
|
||||
|
@ -9,7 +9,7 @@
|
||||
#include "stack.h"
|
||||
#include "textflag.h"
|
||||
|
||||
extern SigTab runtime·sigtab[];
|
||||
extern SigTabT runtime·sigtab[];
|
||||
extern int32 runtime·sys_umtx_op(uint32*, int32, uint32, void*, void*);
|
||||
|
||||
// From FreeBSD's <sys/sysctl.h>
|
||||
|
@ -1,342 +0,0 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include "runtime.h"
|
||||
#include "defs_GOOS_GOARCH.h"
|
||||
#include "os_GOOS.h"
|
||||
#include "signal_unix.h"
|
||||
#include "stack.h"
|
||||
#include "textflag.h"
|
||||
|
||||
extern SigTab runtime·sigtab[];
|
||||
|
||||
static Sigset sigset_none;
|
||||
static Sigset sigset_all = { ~(uint32)0, ~(uint32)0 };
|
||||
|
||||
// Linux futex.
|
||||
//
|
||||
// futexsleep(uint32 *addr, uint32 val)
|
||||
// futexwakeup(uint32 *addr)
|
||||
//
|
||||
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
|
||||
// Futexwakeup wakes up threads sleeping on addr.
|
||||
// Futexsleep is allowed to wake up spuriously.
|
||||
|
||||
enum
|
||||
{
|
||||
FUTEX_WAIT = 0,
|
||||
FUTEX_WAKE = 1,
|
||||
};
|
||||
|
||||
// Atomically,
|
||||
// if(*addr == val) sleep
|
||||
// Might be woken up spuriously; that's allowed.
|
||||
// Don't sleep longer than ns; ns < 0 means forever.
|
||||
#pragma textflag NOSPLIT
|
||||
void
|
||||
runtime·futexsleep(uint32 *addr, uint32 val, int64 ns)
|
||||
{
|
||||
Timespec ts;
|
||||
|
||||
// Some Linux kernels have a bug where futex of
|
||||
// FUTEX_WAIT returns an internal error code
|
||||
// as an errno. Libpthread ignores the return value
|
||||
// here, and so can we: as it says a few lines up,
|
||||
// spurious wakeups are allowed.
|
||||
|
||||
if(ns < 0) {
|
||||
runtime·futex(addr, FUTEX_WAIT, val, nil, nil, 0);
|
||||
return;
|
||||
}
|
||||
// NOTE: tv_nsec is int64 on amd64, so this assumes a little-endian system.
|
||||
ts.tv_nsec = 0;
|
||||
ts.tv_sec = runtime·timediv(ns, 1000000000LL, (int32*)&ts.tv_nsec);
|
||||
runtime·futex(addr, FUTEX_WAIT, val, &ts, nil, 0);
|
||||
}
|
||||
|
||||
static void badfutexwakeup(void);
|
||||
|
||||
// If any procs are sleeping on addr, wake up at most cnt.
|
||||
#pragma textflag NOSPLIT
|
||||
void
|
||||
runtime·futexwakeup(uint32 *addr, uint32 cnt)
|
||||
{
|
||||
int64 ret;
|
||||
void (*fn)(void);
|
||||
|
||||
ret = runtime·futex(addr, FUTEX_WAKE, cnt, nil, nil, 0);
|
||||
if(ret >= 0)
|
||||
return;
|
||||
|
||||
// I don't know that futex wakeup can return
|
||||
// EAGAIN or EINTR, but if it does, it would be
|
||||
// safe to loop and call futex again.
|
||||
g->m->ptrarg[0] = addr;
|
||||
g->m->scalararg[0] = (int32)ret; // truncated but fine
|
||||
fn = badfutexwakeup;
|
||||
if(g == g->m->gsignal)
|
||||
fn();
|
||||
else
|
||||
runtime·onM(&fn);
|
||||
*(int32*)0x1006 = 0x1006;
|
||||
}
|
||||
|
||||
static void
|
||||
badfutexwakeup(void)
|
||||
{
|
||||
void *addr;
|
||||
int64 ret;
|
||||
|
||||
addr = g->m->ptrarg[0];
|
||||
ret = (int32)g->m->scalararg[0];
|
||||
runtime·printf("futexwakeup addr=%p returned %D\n", addr, ret);
|
||||
}
|
||||
|
||||
extern runtime·sched_getaffinity(uintptr pid, uintptr len, uintptr *buf);
|
||||
static int32
|
||||
getproccount(void)
|
||||
{
|
||||
uintptr buf[16], t;
|
||||
int32 r, cnt, i;
|
||||
|
||||
cnt = 0;
|
||||
r = runtime·sched_getaffinity(0, sizeof(buf), buf);
|
||||
if(r > 0)
|
||||
for(i = 0; i < r/sizeof(buf[0]); i++) {
|
||||
t = buf[i];
|
||||
t = t - ((t >> 1) & 0x5555555555555555ULL);
|
||||
t = (t & 0x3333333333333333ULL) + ((t >> 2) & 0x3333333333333333ULL);
|
||||
cnt += (int32)((((t + (t >> 4)) & 0xF0F0F0F0F0F0F0FULL) * 0x101010101010101ULL) >> 56);
|
||||
}
|
||||
|
||||
return cnt ? cnt : 1;
|
||||
}
|
||||
|
||||
// Clone, the Linux rfork.
|
||||
enum
|
||||
{
|
||||
CLONE_VM = 0x100,
|
||||
CLONE_FS = 0x200,
|
||||
CLONE_FILES = 0x400,
|
||||
CLONE_SIGHAND = 0x800,
|
||||
CLONE_PTRACE = 0x2000,
|
||||
CLONE_VFORK = 0x4000,
|
||||
CLONE_PARENT = 0x8000,
|
||||
CLONE_THREAD = 0x10000,
|
||||
CLONE_NEWNS = 0x20000,
|
||||
CLONE_SYSVSEM = 0x40000,
|
||||
CLONE_SETTLS = 0x80000,
|
||||
CLONE_PARENT_SETTID = 0x100000,
|
||||
CLONE_CHILD_CLEARTID = 0x200000,
|
||||
CLONE_UNTRACED = 0x800000,
|
||||
CLONE_CHILD_SETTID = 0x1000000,
|
||||
CLONE_STOPPED = 0x2000000,
|
||||
CLONE_NEWUTS = 0x4000000,
|
||||
CLONE_NEWIPC = 0x8000000,
|
||||
};
|
||||
|
||||
void
|
||||
runtime·newosproc(M *mp, void *stk)
|
||||
{
|
||||
int32 ret;
|
||||
int32 flags;
|
||||
Sigset oset;
|
||||
|
||||
/*
|
||||
* note: strace gets confused if we use CLONE_PTRACE here.
|
||||
*/
|
||||
flags = CLONE_VM /* share memory */
|
||||
| CLONE_FS /* share cwd, etc */
|
||||
| CLONE_FILES /* share fd table */
|
||||
| CLONE_SIGHAND /* share sig handler table */
|
||||
| CLONE_THREAD /* revisit - okay for now */
|
||||
;
|
||||
|
||||
mp->tls[0] = mp->id; // so 386 asm can find it
|
||||
if(0){
|
||||
runtime·printf("newosproc stk=%p m=%p g=%p clone=%p id=%d/%d ostk=%p\n",
|
||||
stk, mp, mp->g0, runtime·clone, mp->id, (int32)mp->tls[0], &mp);
|
||||
}
|
||||
|
||||
// Disable signals during clone, so that the new thread starts
|
||||
// with signals disabled. It will enable them in minit.
|
||||
runtime·rtsigprocmask(SIG_SETMASK, &sigset_all, &oset, sizeof oset);
|
||||
ret = runtime·clone(flags, stk, mp, mp->g0, runtime·mstart);
|
||||
runtime·rtsigprocmask(SIG_SETMASK, &oset, nil, sizeof oset);
|
||||
|
||||
if(ret < 0) {
|
||||
runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -ret);
|
||||
runtime·throw("runtime.newosproc");
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
runtime·osinit(void)
|
||||
{
|
||||
runtime·ncpu = getproccount();
|
||||
}
|
||||
|
||||
// Random bytes initialized at startup. These come
|
||||
// from the ELF AT_RANDOM auxiliary vector (vdso_linux_amd64.c).
|
||||
byte* runtime·startup_random_data;
|
||||
uint32 runtime·startup_random_data_len;
|
||||
|
||||
#pragma textflag NOSPLIT
|
||||
void
|
||||
runtime·get_random_data(byte **rnd, int32 *rnd_len)
|
||||
{
|
||||
if(runtime·startup_random_data != nil) {
|
||||
*rnd = runtime·startup_random_data;
|
||||
*rnd_len = runtime·startup_random_data_len;
|
||||
} else {
|
||||
#pragma dataflag NOPTR
|
||||
static byte urandom_data[HashRandomBytes];
|
||||
int32 fd;
|
||||
fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0);
|
||||
if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) {
|
||||
*rnd = urandom_data;
|
||||
*rnd_len = HashRandomBytes;
|
||||
} else {
|
||||
*rnd = nil;
|
||||
*rnd_len = 0;
|
||||
}
|
||||
runtime·close(fd);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
runtime·goenvs(void)
|
||||
{
|
||||
runtime·goenvs_unix();
|
||||
}
|
||||
|
||||
// Called to initialize a new m (including the bootstrap m).
|
||||
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
|
||||
void
|
||||
runtime·mpreinit(M *mp)
|
||||
{
|
||||
mp->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K
|
||||
mp->gsignal->m = mp;
|
||||
}
|
||||
|
||||
// Called to initialize a new m (including the bootstrap m).
|
||||
// Called on the new thread, can not allocate memory.
|
||||
void
|
||||
runtime·minit(void)
|
||||
{
|
||||
// Initialize signal handling.
|
||||
runtime·signalstack((byte*)g->m->gsignal->stack.lo, 32*1024);
|
||||
runtime·rtsigprocmask(SIG_SETMASK, &sigset_none, nil, sizeof(Sigset));
|
||||
}
|
||||
|
||||
// Called from dropm to undo the effect of an minit.
|
||||
void
|
||||
runtime·unminit(void)
|
||||
{
|
||||
runtime·signalstack(nil, 0);
|
||||
}
|
||||
|
||||
uintptr
|
||||
runtime·memlimit(void)
|
||||
{
|
||||
Rlimit rl;
|
||||
extern byte runtime·text[], runtime·end[];
|
||||
uintptr used;
|
||||
|
||||
if(runtime·getrlimit(RLIMIT_AS, &rl) != 0)
|
||||
return 0;
|
||||
if(rl.rlim_cur >= 0x7fffffff)
|
||||
return 0;
|
||||
|
||||
// Estimate our VM footprint excluding the heap.
|
||||
// Not an exact science: use size of binary plus
|
||||
// some room for thread stacks.
|
||||
used = runtime·end - runtime·text + (64<<20);
|
||||
if(used >= rl.rlim_cur)
|
||||
return 0;
|
||||
|
||||
// If there's not at least 16 MB left, we're probably
|
||||
// not going to be able to do much. Treat as no limit.
|
||||
rl.rlim_cur -= used;
|
||||
if(rl.rlim_cur < (16<<20))
|
||||
return 0;
|
||||
|
||||
return rl.rlim_cur - used;
|
||||
}
|
||||
|
||||
#ifdef GOARCH_386
|
||||
#define sa_handler k_sa_handler
|
||||
#endif
|
||||
|
||||
/*
|
||||
* This assembler routine takes the args from registers, puts them on the stack,
|
||||
* and calls sighandler().
|
||||
*/
|
||||
extern void runtime·sigtramp(void);
|
||||
extern void runtime·sigreturn(void); // calls rt_sigreturn, only used with SA_RESTORER
|
||||
|
||||
void
|
||||
runtime·setsig(int32 i, GoSighandler *fn, bool restart)
|
||||
{
|
||||
SigactionT sa;
|
||||
|
||||
runtime·memclr((byte*)&sa, sizeof sa);
|
||||
sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER;
|
||||
if(restart)
|
||||
sa.sa_flags |= SA_RESTART;
|
||||
sa.sa_mask = ~0ULL;
|
||||
// Although Linux manpage says "sa_restorer element is obsolete and
|
||||
// should not be used". x86_64 kernel requires it. Only use it on
|
||||
// x86.
|
||||
#ifdef GOARCH_386
|
||||
sa.sa_restorer = (void*)runtime·sigreturn;
|
||||
#endif
|
||||
#ifdef GOARCH_amd64
|
||||
sa.sa_restorer = (void*)runtime·sigreturn;
|
||||
#endif
|
||||
if(fn == runtime·sighandler)
|
||||
fn = (void*)runtime·sigtramp;
|
||||
sa.sa_handler = fn;
|
||||
if(runtime·rt_sigaction(i, &sa, nil, sizeof(sa.sa_mask)) != 0)
|
||||
runtime·throw("rt_sigaction failure");
|
||||
}
|
||||
|
||||
GoSighandler*
|
||||
runtime·getsig(int32 i)
|
||||
{
|
||||
SigactionT sa;
|
||||
|
||||
runtime·memclr((byte*)&sa, sizeof sa);
|
||||
if(runtime·rt_sigaction(i, nil, &sa, sizeof(sa.sa_mask)) != 0)
|
||||
runtime·throw("rt_sigaction read failure");
|
||||
if((void*)sa.sa_handler == runtime·sigtramp)
|
||||
return runtime·sighandler;
|
||||
return (void*)sa.sa_handler;
|
||||
}
|
||||
|
||||
void
|
||||
runtime·signalstack(byte *p, int32 n)
|
||||
{
|
||||
SigaltstackT st;
|
||||
|
||||
st.ss_sp = p;
|
||||
st.ss_size = n;
|
||||
st.ss_flags = 0;
|
||||
if(p == nil)
|
||||
st.ss_flags = SS_DISABLE;
|
||||
runtime·sigaltstack(&st, nil);
|
||||
}
|
||||
|
||||
void
|
||||
runtime·unblocksignals(void)
|
||||
{
|
||||
runtime·rtsigprocmask(SIG_SETMASK, &sigset_none, nil, sizeof sigset_none);
|
||||
}
|
||||
|
||||
#pragma textflag NOSPLIT
|
||||
int8*
|
||||
runtime·signame(int32 sig)
|
||||
{
|
||||
return runtime·sigtab[sig].name;
|
||||
}
|
@ -6,12 +6,28 @@ package runtime
|
||||
|
||||
import "unsafe"
|
||||
|
||||
//go:noescape
|
||||
func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32
|
||||
|
||||
//go:noescape
|
||||
func clone(flags int32, stk, mm, gg, fn unsafe.Pointer) int32
|
||||
func rt_sigaction(sig uintptr, new, old unsafe.Pointer, size uintptr) int32
|
||||
func sigaltstack(new, old unsafe.Pointer)
|
||||
func setitimer(mode int32, new, old unsafe.Pointer)
|
||||
func rtsigprocmask(sig int32, new, old unsafe.Pointer, size int32)
|
||||
|
||||
//go:noescape
|
||||
func rt_sigaction(sig uintptr, new, old *sigactiont, size uintptr) int32
|
||||
|
||||
//go:noescape
|
||||
func sigaltstack(new, old *sigaltstackt)
|
||||
|
||||
//go:noescape
|
||||
func setitimer(mode int32, new, old *itimerval)
|
||||
|
||||
//go:noescape
|
||||
func rtsigprocmask(sig uint32, new, old *sigset, size int32)
|
||||
|
||||
//go:noescape
|
||||
func getrlimit(kind int32, limit unsafe.Pointer) int32
|
||||
func raise(sig int32)
|
||||
func raise(sig uint32)
|
||||
|
||||
//go:noescape
|
||||
func sched_getaffinity(pid, len uintptr, buf *uintptr) int32
|
||||
func osyield()
|
||||
|
@ -1,41 +0,0 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
|
||||
// Linux-specific system calls
|
||||
int32 runtime·futex(uint32*, int32, uint32, Timespec*, uint32*, uint32);
|
||||
int32 runtime·clone(int32, void*, M*, G*, void(*)(void));
|
||||
|
||||
struct SigactionT;
|
||||
int32 runtime·rt_sigaction(uintptr, struct SigactionT*, void*, uintptr);
|
||||
|
||||
void runtime·sigaltstack(SigaltstackT*, SigaltstackT*);
|
||||
void runtime·sigpanic(void);
|
||||
void runtime·setitimer(int32, Itimerval*, Itimerval*);
|
||||
|
||||
enum {
|
||||
SS_DISABLE = 2,
|
||||
NSIG = 65,
|
||||
SI_USER = 0,
|
||||
SIG_SETMASK = 2,
|
||||
RLIMIT_AS = 9,
|
||||
};
|
||||
|
||||
// It's hard to tease out exactly how big a Sigset is, but
|
||||
// rt_sigprocmask crashes if we get it wrong, so if binaries
|
||||
// are running, this is right.
|
||||
typedef struct Sigset Sigset;
|
||||
struct Sigset
|
||||
{
|
||||
uint32 mask[2];
|
||||
};
|
||||
void runtime·rtsigprocmask(int32, Sigset*, Sigset*, int32);
|
||||
void runtime·unblocksignals(void);
|
||||
|
||||
typedef struct Rlimit Rlimit;
|
||||
struct Rlimit {
|
||||
uintptr rlim_cur;
|
||||
uintptr rlim_max;
|
||||
};
|
||||
int32 runtime·getrlimit(int32, Rlimit*);
|
@ -1,38 +0,0 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include "runtime.h"
|
||||
#include "defs_GOOS_GOARCH.h"
|
||||
#include "os_GOOS.h"
|
||||
#include "textflag.h"
|
||||
|
||||
#define AT_NULL 0
|
||||
#define AT_RANDOM 25
|
||||
#define AT_SYSINFO 32
|
||||
extern uint32 runtime·_vdso;
|
||||
|
||||
#pragma textflag NOSPLIT
|
||||
void
|
||||
runtime·linux_setup_vdso(int32 argc, byte **argv)
|
||||
{
|
||||
byte **envp;
|
||||
uint32 *auxv;
|
||||
|
||||
// skip envp to get to ELF auxiliary vector.
|
||||
for(envp = &argv[argc+1]; *envp != nil; envp++)
|
||||
;
|
||||
envp++;
|
||||
|
||||
for(auxv=(uint32*)envp; auxv[0] != AT_NULL; auxv += 2) {
|
||||
if(auxv[0] == AT_SYSINFO) {
|
||||
runtime·_vdso = auxv[1];
|
||||
continue;
|
||||
}
|
||||
if(auxv[0] == AT_RANDOM) {
|
||||
runtime·startup_random_data = (byte*)auxv[1];
|
||||
runtime·startup_random_data_len = 16;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
41
src/runtime/os_linux_386.go
Normal file
41
src/runtime/os_linux_386.go
Normal file
@ -0,0 +1,41 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package runtime
|
||||
|
||||
import "unsafe"
|
||||
|
||||
const (
|
||||
_AT_NULL = 0
|
||||
_AT_RANDOM = 25
|
||||
_AT_SYSINFO = 32
|
||||
)
|
||||
|
||||
var _vdso uint32
|
||||
|
||||
//go:nosplit
|
||||
func linux_setup_vdso(argc int32, argv **byte) {
|
||||
// skip over argv, envv to get to auxv
|
||||
n := argc + 1
|
||||
for argv_index(argv, n) != nil {
|
||||
n++
|
||||
}
|
||||
n++
|
||||
auxv := (*[1 << 28]uint32)(add(unsafe.Pointer(argv), uintptr(n)*ptrSize))
|
||||
|
||||
for i := 0; auxv[i] != _AT_NULL; i += 2 {
|
||||
switch auxv[i] {
|
||||
case _AT_SYSINFO:
|
||||
_vdso = auxv[i+1]
|
||||
|
||||
case _AT_RANDOM:
|
||||
startup_random_data = (*byte)(unsafe.Pointer(uintptr(auxv[i+1])))
|
||||
startup_random_data_len = 16
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// careful: cputicks is not guaranteed to be monotonic! In particular, we have
|
||||
// noticed drift between cpus on certain os/arch combinations. See issue 8976.
|
||||
func cputicks() int64
|
9
src/runtime/os_linux_amd64.go
Normal file
9
src/runtime/os_linux_amd64.go
Normal file
@ -0,0 +1,9 @@
|
||||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package runtime
|
||||
|
||||
// careful: cputicks is not guaranteed to be monotonic! In particular, we have
|
||||
// noticed drift between cpus on certain os/arch combinations. See issue 8976.
|
||||
func cputicks() int64
|
@ -1,80 +0,0 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include "runtime.h"
|
||||
#include "defs_GOOS_GOARCH.h"
|
||||
#include "os_GOOS.h"
|
||||
#include "textflag.h"
|
||||
|
||||
#define AT_NULL 0
|
||||
#define AT_PLATFORM 15 // introduced in at least 2.6.11
|
||||
#define AT_HWCAP 16 // introduced in at least 2.6.11
|
||||
#define AT_RANDOM 25 // introduced in 2.6.29
|
||||
#define HWCAP_VFP (1 << 6) // introduced in at least 2.6.11
|
||||
#define HWCAP_VFPv3 (1 << 13) // introduced in 2.6.30
|
||||
static uint32 runtime·randomNumber;
|
||||
uint8 runtime·armArch = 6; // we default to ARMv6
|
||||
uint32 runtime·hwcap; // set by setup_auxv
|
||||
extern uint8 runtime·goarm; // set by 5l
|
||||
|
||||
void
|
||||
runtime·checkgoarm(void)
|
||||
{
|
||||
if(runtime·goarm > 5 && !(runtime·hwcap & HWCAP_VFP)) {
|
||||
runtime·printf("runtime: this CPU has no floating point hardware, so it cannot run\n");
|
||||
runtime·printf("this GOARM=%d binary. Recompile using GOARM=5.\n", runtime·goarm);
|
||||
runtime·exit(1);
|
||||
}
|
||||
if(runtime·goarm > 6 && !(runtime·hwcap & HWCAP_VFPv3)) {
|
||||
runtime·printf("runtime: this CPU has no VFPv3 floating point hardware, so it cannot run\n");
|
||||
runtime·printf("this GOARM=%d binary. Recompile using GOARM=6.\n", runtime·goarm);
|
||||
runtime·exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
#pragma textflag NOSPLIT
|
||||
void
|
||||
runtime·setup_auxv(int32 argc, byte **argv)
|
||||
{
|
||||
byte **envp;
|
||||
byte *rnd;
|
||||
uint32 *auxv;
|
||||
uint32 t;
|
||||
|
||||
// skip envp to get to ELF auxiliary vector.
|
||||
for(envp = &argv[argc+1]; *envp != nil; envp++)
|
||||
;
|
||||
envp++;
|
||||
|
||||
for(auxv=(uint32*)envp; auxv[0] != AT_NULL; auxv += 2) {
|
||||
switch(auxv[0]) {
|
||||
case AT_RANDOM: // kernel provided 16-byte worth of random data
|
||||
if(auxv[1]) {
|
||||
rnd = (byte*)auxv[1];
|
||||
runtime·randomNumber = rnd[4] | rnd[5]<<8 | rnd[6]<<16 | rnd[7]<<24;
|
||||
}
|
||||
break;
|
||||
case AT_PLATFORM: // v5l, v6l, v7l
|
||||
if(auxv[1]) {
|
||||
t = *(uint8*)(auxv[1]+1);
|
||||
if(t >= '5' && t <= '7')
|
||||
runtime·armArch = t - '0';
|
||||
}
|
||||
break;
|
||||
case AT_HWCAP: // CPU capability bit flags
|
||||
runtime·hwcap = auxv[1];
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma textflag NOSPLIT
|
||||
int64
|
||||
runtime·cputicks(void)
|
||||
{
|
||||
// Currently cputicks() is used in blocking profiler and to seed runtime·fastrand1().
|
||||
// runtime·nanotime() is a poor approximation of CPU ticks that is enough for the profiler.
|
||||
// runtime·randomNumber provides better seeding of fastrand1.
|
||||
return runtime·nanotime() + runtime·randomNumber;
|
||||
}
|
75
src/runtime/os_linux_arm.go
Normal file
75
src/runtime/os_linux_arm.go
Normal file
@ -0,0 +1,75 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package runtime
|
||||
|
||||
import "unsafe"
|
||||
|
||||
const (
|
||||
_AT_NULL = 0
|
||||
_AT_PLATFORM = 15 // introduced in at least 2.6.11
|
||||
_AT_HWCAP = 16 // introduced in at least 2.6.11
|
||||
_AT_RANDOM = 25 // introduced in 2.6.29
|
||||
|
||||
_HWCAP_VFP = 1 << 6 // introduced in at least 2.6.11
|
||||
_HWCAP_VFPv3 = 1 << 13 // introduced in 2.6.30
|
||||
)
|
||||
|
||||
var randomNumber uint32
|
||||
var armArch uint8 = 6 // we default to ARMv6
|
||||
var hwcap uint32 // set by setup_auxv
|
||||
var goarm uint8 // set by 5l
|
||||
|
||||
func checkgoarm() {
|
||||
if goarm > 5 && hwcap&_HWCAP_VFP == 0 {
|
||||
print("runtime: this CPU has no floating point hardware, so it cannot run\n")
|
||||
print("this GOARM=", goarm, " binary. Recompile using GOARM=5.\n")
|
||||
exit(1)
|
||||
}
|
||||
if goarm > 6 && hwcap&_HWCAP_VFPv3 == 0 {
|
||||
print("runtime: this CPU has no VFPv3 floating point hardware, so it cannot run\n")
|
||||
print("this GOARM=", goarm, " binary. Recompile using GOARM=5.\n")
|
||||
exit(1)
|
||||
}
|
||||
}
|
||||
|
||||
//go:nosplit
|
||||
func setup_auxv(argc int32, argv **byte) {
|
||||
// skip over argv, envv to get to auxv
|
||||
n := argc + 1
|
||||
for argv_index(argv, n) != nil {
|
||||
n++
|
||||
}
|
||||
n++
|
||||
auxv := (*[1 << 28]uint32)(add(unsafe.Pointer(argv), uintptr(n)*ptrSize))
|
||||
|
||||
for i := 0; auxv[i] != _AT_NULL; i += 2 {
|
||||
switch auxv[i] {
|
||||
case _AT_RANDOM: // kernel provided 16-byte worth of random data
|
||||
if auxv[i+1] != 0 {
|
||||
randomNumber = *(*uint32)(unsafe.Pointer(uintptr(auxv[i+1])))
|
||||
}
|
||||
|
||||
case _AT_PLATFORM: // v5l, v6l, v7l
|
||||
t := *(*uint8)(unsafe.Pointer(uintptr(auxv[i+1] + 1)))
|
||||
if '5' <= t && t <= '7' {
|
||||
armArch = t - '0'
|
||||
}
|
||||
|
||||
case _AT_HWCAP: // CPU capability bit flags
|
||||
hwcap = auxv[i+1]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func cputicks() int64 {
|
||||
// Currently cputicks() is used in blocking profiler and to seed fastrand1().
|
||||
// nanotime() is a poor approximation of CPU ticks that is enough for the profiler.
|
||||
// randomNumber provides better seeding of fastrand1.
|
||||
return nanotime() + int64(randomNumber)
|
||||
}
|
@ -1,371 +0,0 @@
|
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include "runtime.h"
|
||||
#include "textflag.h"
|
||||
|
||||
// Look up symbols in the Linux vDSO.
|
||||
|
||||
// This code was originally based on the sample Linux vDSO parser at
|
||||
// https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/vDSO/parse_vdso.c
|
||||
|
||||
// This implements the ELF dynamic linking spec at
|
||||
// http://sco.com/developers/gabi/latest/ch5.dynamic.html
|
||||
|
||||
// The version section is documented at
|
||||
// http://refspecs.linuxfoundation.org/LSB_3.2.0/LSB-Core-generic/LSB-Core-generic/symversion.html
|
||||
|
||||
#define AT_RANDOM 25
|
||||
#define AT_SYSINFO_EHDR 33
|
||||
#define AT_NULL 0 /* End of vector */
|
||||
#define PT_LOAD 1 /* Loadable program segment */
|
||||
#define PT_DYNAMIC 2 /* Dynamic linking information */
|
||||
#define DT_NULL 0 /* Marks end of dynamic section */
|
||||
#define DT_HASH 4 /* Dynamic symbol hash table */
|
||||
#define DT_STRTAB 5 /* Address of string table */
|
||||
#define DT_SYMTAB 6 /* Address of symbol table */
|
||||
#define DT_VERSYM 0x6ffffff0
|
||||
#define DT_VERDEF 0x6ffffffc
|
||||
|
||||
#define VER_FLG_BASE 0x1 /* Version definition of file itself */
|
||||
#define SHN_UNDEF 0 /* Undefined section */
|
||||
#define SHT_DYNSYM 11 /* Dynamic linker symbol table */
|
||||
#define STT_FUNC 2 /* Symbol is a code object */
|
||||
#define STB_GLOBAL 1 /* Global symbol */
|
||||
#define STB_WEAK 2 /* Weak symbol */
|
||||
|
||||
/* How to extract and insert information held in the st_info field. */
|
||||
#define ELF64_ST_BIND(val) (((byte) (val)) >> 4)
|
||||
#define ELF64_ST_TYPE(val) ((val) & 0xf)
|
||||
|
||||
#define EI_NIDENT (16)
|
||||
|
||||
typedef uint16 Elf64_Half;
|
||||
typedef uint32 Elf64_Word;
|
||||
typedef int32 Elf64_Sword;
|
||||
typedef uint64 Elf64_Xword;
|
||||
typedef int64 Elf64_Sxword;
|
||||
typedef uint64 Elf64_Addr;
|
||||
typedef uint64 Elf64_Off;
|
||||
typedef uint16 Elf64_Section;
|
||||
typedef Elf64_Half Elf64_Versym;
|
||||
|
||||
|
||||
typedef struct Elf64_Sym
|
||||
{
|
||||
Elf64_Word st_name;
|
||||
byte st_info;
|
||||
byte st_other;
|
||||
Elf64_Section st_shndx;
|
||||
Elf64_Addr st_value;
|
||||
Elf64_Xword st_size;
|
||||
} Elf64_Sym;
|
||||
|
||||
typedef struct Elf64_Verdef
|
||||
{
|
||||
Elf64_Half vd_version; /* Version revision */
|
||||
Elf64_Half vd_flags; /* Version information */
|
||||
Elf64_Half vd_ndx; /* Version Index */
|
||||
Elf64_Half vd_cnt; /* Number of associated aux entries */
|
||||
Elf64_Word vd_hash; /* Version name hash value */
|
||||
Elf64_Word vd_aux; /* Offset in bytes to verdaux array */
|
||||
Elf64_Word vd_next; /* Offset in bytes to next verdef entry */
|
||||
} Elf64_Verdef;
|
||||
|
||||
typedef struct Elf64_Ehdr
|
||||
{
|
||||
byte e_ident[EI_NIDENT]; /* Magic number and other info */
|
||||
Elf64_Half e_type; /* Object file type */
|
||||
Elf64_Half e_machine; /* Architecture */
|
||||
Elf64_Word e_version; /* Object file version */
|
||||
Elf64_Addr e_entry; /* Entry point virtual address */
|
||||
Elf64_Off e_phoff; /* Program header table file offset */
|
||||
Elf64_Off e_shoff; /* Section header table file offset */
|
||||
Elf64_Word e_flags; /* Processor-specific flags */
|
||||
Elf64_Half e_ehsize; /* ELF header size in bytes */
|
||||
Elf64_Half e_phentsize; /* Program header table entry size */
|
||||
Elf64_Half e_phnum; /* Program header table entry count */
|
||||
Elf64_Half e_shentsize; /* Section header table entry size */
|
||||
Elf64_Half e_shnum; /* Section header table entry count */
|
||||
Elf64_Half e_shstrndx; /* Section header string table index */
|
||||
} Elf64_Ehdr;
|
||||
|
||||
typedef struct Elf64_Phdr
|
||||
{
|
||||
Elf64_Word p_type; /* Segment type */
|
||||
Elf64_Word p_flags; /* Segment flags */
|
||||
Elf64_Off p_offset; /* Segment file offset */
|
||||
Elf64_Addr p_vaddr; /* Segment virtual address */
|
||||
Elf64_Addr p_paddr; /* Segment physical address */
|
||||
Elf64_Xword p_filesz; /* Segment size in file */
|
||||
Elf64_Xword p_memsz; /* Segment size in memory */
|
||||
Elf64_Xword p_align; /* Segment alignment */
|
||||
} Elf64_Phdr;
|
||||
|
||||
typedef struct Elf64_Shdr
|
||||
{
|
||||
Elf64_Word sh_name; /* Section name (string tbl index) */
|
||||
Elf64_Word sh_type; /* Section type */
|
||||
Elf64_Xword sh_flags; /* Section flags */
|
||||
Elf64_Addr sh_addr; /* Section virtual addr at execution */
|
||||
Elf64_Off sh_offset; /* Section file offset */
|
||||
Elf64_Xword sh_size; /* Section size in bytes */
|
||||
Elf64_Word sh_link; /* Link to another section */
|
||||
Elf64_Word sh_info; /* Additional section information */
|
||||
Elf64_Xword sh_addralign; /* Section alignment */
|
||||
Elf64_Xword sh_entsize; /* Entry size if section holds table */
|
||||
} Elf64_Shdr;
|
||||
|
||||
typedef struct Elf64_Dyn
|
||||
{
|
||||
Elf64_Sxword d_tag; /* Dynamic entry type */
|
||||
union
|
||||
{
|
||||
Elf64_Xword d_val; /* Integer value */
|
||||
Elf64_Addr d_ptr; /* Address value */
|
||||
} d_un;
|
||||
} Elf64_Dyn;
|
||||
|
||||
typedef struct Elf64_Verdaux
|
||||
{
|
||||
Elf64_Word vda_name; /* Version or dependency names */
|
||||
Elf64_Word vda_next; /* Offset in bytes to next verdaux entry */
|
||||
} Elf64_Verdaux;
|
||||
|
||||
typedef struct Elf64_auxv_t
|
||||
{
|
||||
uint64 a_type; /* Entry type */
|
||||
union
|
||||
{
|
||||
uint64 a_val; /* Integer value */
|
||||
} a_un;
|
||||
} Elf64_auxv_t;
|
||||
|
||||
|
||||
typedef struct symbol_key {
|
||||
byte* name;
|
||||
int32 sym_hash;
|
||||
void** var_ptr;
|
||||
} symbol_key;
|
||||
|
||||
typedef struct version_key {
|
||||
byte* version;
|
||||
int32 ver_hash;
|
||||
} version_key;
|
||||
|
||||
struct vdso_info {
|
||||
bool valid;
|
||||
|
||||
/* Load information */
|
||||
uintptr load_addr;
|
||||
uintptr load_offset; /* load_addr - recorded vaddr */
|
||||
|
||||
/* Symbol table */
|
||||
Elf64_Sym *symtab;
|
||||
const byte *symstrings;
|
||||
Elf64_Word *bucket, *chain;
|
||||
Elf64_Word nbucket, nchain;
|
||||
|
||||
/* Version table */
|
||||
Elf64_Versym *versym;
|
||||
Elf64_Verdef *verdef;
|
||||
};
|
||||
|
||||
#pragma dataflag NOPTR
|
||||
static version_key linux26 = { (byte*)"LINUX_2.6", 0x3ae75f6 };
|
||||
|
||||
// initialize with vsyscall fallbacks
|
||||
#pragma dataflag NOPTR
|
||||
void* runtime·__vdso_time_sym = (void*)0xffffffffff600400ULL;
|
||||
#pragma dataflag NOPTR
|
||||
void* runtime·__vdso_gettimeofday_sym = (void*)0xffffffffff600000ULL;
|
||||
#pragma dataflag NOPTR
|
||||
void* runtime·__vdso_clock_gettime_sym = (void*)0;
|
||||
|
||||
#pragma dataflag NOPTR
|
||||
static symbol_key sym_keys[] = {
|
||||
{ (byte*)"__vdso_time", 0xa33c485, &runtime·__vdso_time_sym },
|
||||
{ (byte*)"__vdso_gettimeofday", 0x315ca59, &runtime·__vdso_gettimeofday_sym },
|
||||
{ (byte*)"__vdso_clock_gettime", 0xd35ec75, &runtime·__vdso_clock_gettime_sym },
|
||||
};
|
||||
|
||||
static void
|
||||
vdso_init_from_sysinfo_ehdr(struct vdso_info *vdso_info, Elf64_Ehdr* hdr)
|
||||
{
|
||||
uint64 i;
|
||||
bool found_vaddr = false;
|
||||
Elf64_Phdr *pt;
|
||||
Elf64_Dyn *dyn;
|
||||
Elf64_Word *hash;
|
||||
|
||||
vdso_info->valid = false;
|
||||
vdso_info->load_addr = (uintptr) hdr;
|
||||
|
||||
pt = (Elf64_Phdr*)(vdso_info->load_addr + hdr->e_phoff);
|
||||
dyn = nil;
|
||||
|
||||
// We need two things from the segment table: the load offset
|
||||
// and the dynamic table.
|
||||
for(i=0; i<hdr->e_phnum; i++) {
|
||||
if(pt[i].p_type == PT_LOAD && found_vaddr == false) {
|
||||
found_vaddr = true;
|
||||
vdso_info->load_offset = (uintptr)hdr
|
||||
+ (uintptr)pt[i].p_offset
|
||||
- (uintptr)pt[i].p_vaddr;
|
||||
} else if(pt[i].p_type == PT_DYNAMIC) {
|
||||
dyn = (Elf64_Dyn*)((uintptr)hdr + pt[i].p_offset);
|
||||
}
|
||||
}
|
||||
|
||||
if(found_vaddr == false || dyn == nil)
|
||||
return; // Failed
|
||||
|
||||
// Fish out the useful bits of the dynamic table.
|
||||
hash = nil;
|
||||
vdso_info->symstrings = nil;
|
||||
vdso_info->symtab = nil;
|
||||
vdso_info->versym = nil;
|
||||
vdso_info->verdef = nil;
|
||||
for(i=0; dyn[i].d_tag!=DT_NULL; i++) {
|
||||
switch(dyn[i].d_tag) {
|
||||
case DT_STRTAB:
|
||||
vdso_info->symstrings = (const byte *)
|
||||
((uintptr)dyn[i].d_un.d_ptr
|
||||
+ vdso_info->load_offset);
|
||||
break;
|
||||
case DT_SYMTAB:
|
||||
vdso_info->symtab = (Elf64_Sym *)
|
||||
((uintptr)dyn[i].d_un.d_ptr
|
||||
+ vdso_info->load_offset);
|
||||
break;
|
||||
case DT_HASH:
|
||||
hash = (Elf64_Word *)
|
||||
((uintptr)dyn[i].d_un.d_ptr
|
||||
+ vdso_info->load_offset);
|
||||
break;
|
||||
case DT_VERSYM:
|
||||
vdso_info->versym = (Elf64_Versym *)
|
||||
((uintptr)dyn[i].d_un.d_ptr
|
||||
+ vdso_info->load_offset);
|
||||
break;
|
||||
case DT_VERDEF:
|
||||
vdso_info->verdef = (Elf64_Verdef *)
|
||||
((uintptr)dyn[i].d_un.d_ptr
|
||||
+ vdso_info->load_offset);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(vdso_info->symstrings == nil || vdso_info->symtab == nil || hash == nil)
|
||||
return; // Failed
|
||||
|
||||
if(vdso_info->verdef == nil)
|
||||
vdso_info->versym = 0;
|
||||
|
||||
// Parse the hash table header.
|
||||
vdso_info->nbucket = hash[0];
|
||||
vdso_info->nchain = hash[1];
|
||||
vdso_info->bucket = &hash[2];
|
||||
vdso_info->chain = &hash[vdso_info->nbucket + 2];
|
||||
|
||||
// That's all we need.
|
||||
vdso_info->valid = true;
|
||||
}
|
||||
|
||||
static int32
|
||||
vdso_find_version(struct vdso_info *vdso_info, version_key* ver)
|
||||
{
|
||||
if(vdso_info->valid == false) {
|
||||
return 0;
|
||||
}
|
||||
Elf64_Verdef *def = vdso_info->verdef;
|
||||
while(true) {
|
||||
if((def->vd_flags & VER_FLG_BASE) == 0) {
|
||||
Elf64_Verdaux *aux = (Elf64_Verdaux*)((byte *)def + def->vd_aux);
|
||||
if(def->vd_hash == ver->ver_hash &&
|
||||
runtime·strcmp(ver->version, vdso_info->symstrings + aux->vda_name) == 0) {
|
||||
return def->vd_ndx & 0x7fff;
|
||||
}
|
||||
}
|
||||
|
||||
if(def->vd_next == 0) {
|
||||
break;
|
||||
}
|
||||
def = (Elf64_Verdef *)((byte *)def + def->vd_next);
|
||||
}
|
||||
return -1; // can not match any version
|
||||
}
|
||||
|
||||
static void
|
||||
vdso_parse_symbols(struct vdso_info *vdso_info, int32 version)
|
||||
{
|
||||
int32 i;
|
||||
Elf64_Word chain;
|
||||
Elf64_Sym *sym;
|
||||
|
||||
if(vdso_info->valid == false)
|
||||
return;
|
||||
|
||||
for(i=0; i<nelem(sym_keys); i++) {
|
||||
for(chain = vdso_info->bucket[sym_keys[i].sym_hash % vdso_info->nbucket];
|
||||
chain != 0; chain = vdso_info->chain[chain]) {
|
||||
|
||||
sym = &vdso_info->symtab[chain];
|
||||
if(ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
|
||||
continue;
|
||||
if(ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
|
||||
ELF64_ST_BIND(sym->st_info) != STB_WEAK)
|
||||
continue;
|
||||
if(sym->st_shndx == SHN_UNDEF)
|
||||
continue;
|
||||
if(runtime·strcmp(sym_keys[i].name, vdso_info->symstrings + sym->st_name) != 0)
|
||||
continue;
|
||||
|
||||
// Check symbol version.
|
||||
if(vdso_info->versym != nil && version != 0
|
||||
&& vdso_info->versym[chain] & 0x7fff != version)
|
||||
continue;
|
||||
|
||||
*sym_keys[i].var_ptr = (void *)(vdso_info->load_offset + sym->st_value);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
runtime·linux_setup_vdso(int32 argc, uint8** argv)
|
||||
{
|
||||
struct vdso_info vdso_info;
|
||||
|
||||
// skip argvc
|
||||
byte **p = argv;
|
||||
p = &p[argc+1];
|
||||
|
||||
// skip envp to get to ELF auxiliary vector.
|
||||
for(; *p!=0; p++) {}
|
||||
|
||||
// skip NULL separator
|
||||
p++;
|
||||
|
||||
// now, p points to auxv
|
||||
Elf64_auxv_t *elf_auxv = (Elf64_auxv_t*) p;
|
||||
|
||||
for(int32 i=0; elf_auxv[i].a_type!=AT_NULL; i++) {
|
||||
if(elf_auxv[i].a_type == AT_SYSINFO_EHDR) {
|
||||
if(elf_auxv[i].a_un.a_val == 0) {
|
||||
// Something went wrong
|
||||
continue;
|
||||
}
|
||||
vdso_init_from_sysinfo_ehdr(&vdso_info, (Elf64_Ehdr*)elf_auxv[i].a_un.a_val);
|
||||
vdso_parse_symbols(&vdso_info, vdso_find_version(&vdso_info, &linux26));
|
||||
continue;
|
||||
}
|
||||
if(elf_auxv[i].a_type == AT_RANDOM) {
|
||||
runtime·startup_random_data = (byte*)elf_auxv[i].a_un.a_val;
|
||||
runtime·startup_random_data_len = 16;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void (*runtime·sysargs)(int32, uint8**) = runtime·linux_setup_vdso;
|
328
src/runtime/vdso_linux_amd64.go
Normal file
328
src/runtime/vdso_linux_amd64.go
Normal file
@ -0,0 +1,328 @@
|
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package runtime
|
||||
|
||||
import "unsafe"
|
||||
|
||||
// Look up symbols in the Linux vDSO.
|
||||
|
||||
// This code was originally based on the sample Linux vDSO parser at
|
||||
// https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/vDSO/parse_vdso.c
|
||||
|
||||
// This implements the ELF dynamic linking spec at
|
||||
// http://sco.com/developers/gabi/latest/ch5.dynamic.html
|
||||
|
||||
// The version section is documented at
|
||||
// http://refspecs.linuxfoundation.org/LSB_3.2.0/LSB-Core-generic/LSB-Core-generic/symversion.html
|
||||
|
||||
const (
|
||||
_AT_RANDOM = 25
|
||||
_AT_SYSINFO_EHDR = 33
|
||||
_AT_NULL = 0 /* End of vector */
|
||||
|
||||
_PT_LOAD = 1 /* Loadable program segment */
|
||||
_PT_DYNAMIC = 2 /* Dynamic linking information */
|
||||
|
||||
_DT_NULL = 0 /* Marks end of dynamic section */
|
||||
_DT_HASH = 4 /* Dynamic symbol hash table */
|
||||
_DT_STRTAB = 5 /* Address of string table */
|
||||
_DT_SYMTAB = 6 /* Address of symbol table */
|
||||
_DT_VERSYM = 0x6ffffff0
|
||||
_DT_VERDEF = 0x6ffffffc
|
||||
|
||||
_VER_FLG_BASE = 0x1 /* Version definition of file itself */
|
||||
|
||||
_SHN_UNDEF = 0 /* Undefined section */
|
||||
|
||||
_SHT_DYNSYM = 11 /* Dynamic linker symbol table */
|
||||
|
||||
_STT_FUNC = 2 /* Symbol is a code object */
|
||||
|
||||
_STB_GLOBAL = 1 /* Global symbol */
|
||||
_STB_WEAK = 2 /* Weak symbol */
|
||||
|
||||
_EI_NIDENT = 16
|
||||
)
|
||||
|
||||
/* How to extract and insert information held in the st_info field. */
|
||||
func _ELF64_ST_BIND(val byte) byte { return val >> 4 }
|
||||
func _ELF64_ST_TYPE(val byte) byte { return val & 0xf }
|
||||
|
||||
type elf64Sym struct {
|
||||
st_name uint32
|
||||
st_info byte
|
||||
st_other byte
|
||||
st_shndx uint16
|
||||
st_value uint64
|
||||
st_size uint64
|
||||
}
|
||||
|
||||
type elf64Verdef struct {
|
||||
vd_version uint16 /* Version revision */
|
||||
vd_flags uint16 /* Version information */
|
||||
vd_ndx uint16 /* Version Index */
|
||||
vd_cnt uint16 /* Number of associated aux entries */
|
||||
vd_hash uint32 /* Version name hash value */
|
||||
vd_aux uint32 /* Offset in bytes to verdaux array */
|
||||
vd_next uint32 /* Offset in bytes to next verdef entry */
|
||||
}
|
||||
|
||||
type elf64Ehdr struct {
|
||||
e_ident [_EI_NIDENT]byte /* Magic number and other info */
|
||||
e_type uint16 /* Object file type */
|
||||
e_machine uint16 /* Architecture */
|
||||
e_version uint32 /* Object file version */
|
||||
e_entry uint64 /* Entry point virtual address */
|
||||
e_phoff uint64 /* Program header table file offset */
|
||||
e_shoff uint64 /* Section header table file offset */
|
||||
e_flags uint32 /* Processor-specific flags */
|
||||
e_ehsize uint16 /* ELF header size in bytes */
|
||||
e_phentsize uint16 /* Program header table entry size */
|
||||
e_phnum uint16 /* Program header table entry count */
|
||||
e_shentsize uint16 /* Section header table entry size */
|
||||
e_shnum uint16 /* Section header table entry count */
|
||||
e_shstrndx uint16 /* Section header string table index */
|
||||
}
|
||||
|
||||
type elf64Phdr struct {
|
||||
p_type uint32 /* Segment type */
|
||||
p_flags uint32 /* Segment flags */
|
||||
p_offset uint64 /* Segment file offset */
|
||||
p_vaddr uint64 /* Segment virtual address */
|
||||
p_paddr uint64 /* Segment physical address */
|
||||
p_filesz uint64 /* Segment size in file */
|
||||
p_memsz uint64 /* Segment size in memory */
|
||||
p_align uint64 /* Segment alignment */
|
||||
}
|
||||
|
||||
type elf64Shdr struct {
|
||||
sh_name uint32 /* Section name (string tbl index) */
|
||||
sh_type uint32 /* Section type */
|
||||
sh_flags uint64 /* Section flags */
|
||||
sh_addr uint64 /* Section virtual addr at execution */
|
||||
sh_offset uint64 /* Section file offset */
|
||||
sh_size uint64 /* Section size in bytes */
|
||||
sh_link uint32 /* Link to another section */
|
||||
sh_info uint32 /* Additional section information */
|
||||
sh_addralign uint64 /* Section alignment */
|
||||
sh_entsize uint64 /* Entry size if section holds table */
|
||||
}
|
||||
|
||||
type elf64Dyn struct {
|
||||
d_tag int64 /* Dynamic entry type */
|
||||
d_val uint64 /* Integer value */
|
||||
}
|
||||
|
||||
type elf64Verdaux struct {
|
||||
vda_name uint32 /* Version or dependency names */
|
||||
vda_next uint32 /* Offset in bytes to next verdaux entry */
|
||||
}
|
||||
|
||||
type elf64Auxv struct {
|
||||
a_type uint64 /* Entry type */
|
||||
a_val uint64 /* Integer value */
|
||||
}
|
||||
|
||||
type symbol_key struct {
|
||||
name string
|
||||
sym_hash uint32
|
||||
ptr *uintptr
|
||||
}
|
||||
|
||||
type version_key struct {
|
||||
version string
|
||||
ver_hash uint32
|
||||
}
|
||||
|
||||
type vdso_info struct {
|
||||
valid bool
|
||||
|
||||
/* Load information */
|
||||
load_addr uintptr
|
||||
load_offset uintptr /* load_addr - recorded vaddr */
|
||||
|
||||
/* Symbol table */
|
||||
symtab *[1 << 32]elf64Sym
|
||||
symstrings *[1 << 32]byte
|
||||
chain []uint32
|
||||
bucket []uint32
|
||||
|
||||
/* Version table */
|
||||
versym *[1 << 32]uint16
|
||||
verdef *elf64Verdef
|
||||
}
|
||||
|
||||
var linux26 = version_key{"LINUX_2.6", 0x3ae75f6}
|
||||
|
||||
var sym_keys = []symbol_key{
|
||||
{"__vdso_time", 0xa33c485, &__vdso_time_sym},
|
||||
{"__vdso_gettimeofday", 0x315ca59, &__vdso_gettimeofday_sym},
|
||||
{"__vdso_clock_gettime", 0xd35ec75, &__vdso_clock_gettime_sym},
|
||||
}
|
||||
|
||||
// initialize with vsyscall fallbacks
|
||||
var (
|
||||
__vdso_time_sym uintptr = 0xffffffffff600400
|
||||
__vdso_gettimeofday_sym uintptr = 0xffffffffff600000
|
||||
__vdso_clock_gettime_sym uintptr = 0
|
||||
)
|
||||
|
||||
func vdso_init_from_sysinfo_ehdr(info *vdso_info, hdr *elf64Ehdr) {
|
||||
info.valid = false
|
||||
info.load_addr = uintptr(unsafe.Pointer(hdr))
|
||||
|
||||
pt := unsafe.Pointer(info.load_addr + uintptr(hdr.e_phoff))
|
||||
|
||||
// We need two things from the segment table: the load offset
|
||||
// and the dynamic table.
|
||||
var found_vaddr bool
|
||||
var dyn *[1 << 20]elf64Dyn
|
||||
for i := uint16(0); i < hdr.e_phnum; i++ {
|
||||
pt := (*elf64Phdr)(add(pt, uintptr(i)*unsafe.Sizeof(elf64Phdr{})))
|
||||
switch pt.p_type {
|
||||
case _PT_LOAD:
|
||||
if !found_vaddr {
|
||||
found_vaddr = true
|
||||
info.load_offset = info.load_addr + uintptr(pt.p_offset-pt.p_vaddr)
|
||||
}
|
||||
|
||||
case _PT_DYNAMIC:
|
||||
dyn = (*[1 << 20]elf64Dyn)(unsafe.Pointer(info.load_addr + uintptr(pt.p_offset)))
|
||||
}
|
||||
}
|
||||
|
||||
if !found_vaddr || dyn == nil {
|
||||
return // Failed
|
||||
}
|
||||
|
||||
// Fish out the useful bits of the dynamic table.
|
||||
|
||||
var hash *[1 << 30]uint32
|
||||
hash = nil
|
||||
info.symstrings = nil
|
||||
info.symtab = nil
|
||||
info.versym = nil
|
||||
info.verdef = nil
|
||||
for i := 0; dyn[i].d_tag != _DT_NULL; i++ {
|
||||
dt := &dyn[i]
|
||||
p := info.load_offset + uintptr(dt.d_val)
|
||||
switch dt.d_tag {
|
||||
case _DT_STRTAB:
|
||||
info.symstrings = (*[1 << 32]byte)(unsafe.Pointer(p))
|
||||
case _DT_SYMTAB:
|
||||
info.symtab = (*[1 << 32]elf64Sym)(unsafe.Pointer(p))
|
||||
case _DT_HASH:
|
||||
hash = (*[1 << 30]uint32)(unsafe.Pointer(p))
|
||||
case _DT_VERSYM:
|
||||
info.versym = (*[1 << 32]uint16)(unsafe.Pointer(p))
|
||||
case _DT_VERDEF:
|
||||
info.verdef = (*elf64Verdef)(unsafe.Pointer(p))
|
||||
}
|
||||
}
|
||||
|
||||
if info.symstrings == nil || info.symtab == nil || hash == nil {
|
||||
return // Failed
|
||||
}
|
||||
|
||||
if info.verdef == nil {
|
||||
info.versym = nil
|
||||
}
|
||||
|
||||
// Parse the hash table header.
|
||||
nbucket := hash[0]
|
||||
nchain := hash[1]
|
||||
info.bucket = hash[2 : 2+nbucket]
|
||||
info.chain = hash[2+nbucket : 2+nbucket+nchain]
|
||||
|
||||
// That's all we need.
|
||||
info.valid = true
|
||||
}
|
||||
|
||||
func vdso_find_version(info *vdso_info, ver *version_key) int32 {
|
||||
if !info.valid {
|
||||
return 0
|
||||
}
|
||||
|
||||
def := info.verdef
|
||||
for {
|
||||
if def.vd_flags&_VER_FLG_BASE == 0 {
|
||||
aux := (*elf64Verdaux)(add(unsafe.Pointer(def), uintptr(def.vd_aux)))
|
||||
if def.vd_hash == ver.ver_hash && ver.version == gostringnocopy(&info.symstrings[aux.vda_name]) {
|
||||
return int32(def.vd_ndx & 0x7fff)
|
||||
}
|
||||
}
|
||||
|
||||
if def.vd_next == 0 {
|
||||
break
|
||||
}
|
||||
def = (*elf64Verdef)(add(unsafe.Pointer(def), uintptr(def.vd_next)))
|
||||
}
|
||||
|
||||
return -1 // can not match any version
|
||||
}
|
||||
|
||||
func vdso_parse_symbols(info *vdso_info, version int32) {
|
||||
if !info.valid {
|
||||
return
|
||||
}
|
||||
|
||||
for _, k := range sym_keys {
|
||||
for chain := info.bucket[k.sym_hash%uint32(len(info.bucket))]; chain != 0; chain = info.chain[chain] {
|
||||
sym := &info.symtab[chain]
|
||||
typ := _ELF64_ST_TYPE(sym.st_info)
|
||||
bind := _ELF64_ST_BIND(sym.st_info)
|
||||
if typ != _STT_FUNC || bind != _STB_GLOBAL && bind != _STB_WEAK || sym.st_shndx == _SHN_UNDEF {
|
||||
continue
|
||||
}
|
||||
if k.name != gostringnocopy(&info.symstrings[sym.st_name]) {
|
||||
continue
|
||||
}
|
||||
|
||||
// Check symbol version.
|
||||
if info.versym != nil && version != 0 && int32(info.versym[chain]&0x7fff) != version {
|
||||
continue
|
||||
}
|
||||
|
||||
*k.ptr = info.load_offset + uintptr(sym.st_value)
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func sysargs(argc int32, argv **byte) {
|
||||
n := argc + 1
|
||||
|
||||
// skip envp to get to ELF auxiliary vector.
|
||||
for argv_index(argv, n) != nil {
|
||||
n++
|
||||
}
|
||||
|
||||
// skip NULL separator
|
||||
n++
|
||||
|
||||
// now argv+n is auxv
|
||||
auxv := (*[1 << 32]elf64Auxv)(add(unsafe.Pointer(argv), uintptr(n)*ptrSize))
|
||||
|
||||
for i := 0; auxv[i].a_type != _AT_NULL; i++ {
|
||||
av := &auxv[i]
|
||||
switch av.a_type {
|
||||
case _AT_SYSINFO_EHDR:
|
||||
if av.a_val == 0 {
|
||||
// Something went wrong
|
||||
continue
|
||||
}
|
||||
var info vdso_info
|
||||
// TODO(rsc): I don't understand why the compiler thinks info escapes
|
||||
// when passed to the three functions below.
|
||||
info1 := (*vdso_info)(noescape(unsafe.Pointer(&info)))
|
||||
vdso_init_from_sysinfo_ehdr(info1, (*elf64Ehdr)(unsafe.Pointer(uintptr(av.a_val))))
|
||||
vdso_parse_symbols(info1, vdso_find_version(info1, &linux26))
|
||||
|
||||
case _AT_RANDOM:
|
||||
startup_random_data = (*byte)(unsafe.Pointer(uintptr(av.a_val)))
|
||||
startup_random_data_len = 16
|
||||
}
|
||||
}
|
||||
}
|
10
src/runtime/vdso_none.go
Normal file
10
src/runtime/vdso_none.go
Normal file
@ -0,0 +1,10 @@
|
||||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !linux !amd64
|
||||
|
||||
package runtime
|
||||
|
||||
func sysargs(argc int32, argv **byte) {
|
||||
}
|
Loading…
Reference in New Issue
Block a user