1
0
mirror of https://github.com/golang/go synced 2024-11-12 00:30:22 -07:00

[dev.cc] runtime: convert operating system support code from C to Go

The conversion was done with an automated tool and then
modified only as necessary to make it compile and run.

[This CL is part of the removal of C code from package runtime.
See golang.org/s/dev.cc for an overview.]

LGTM=r
R=r
CC=austin, dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/174830044
This commit is contained in:
Russ Cox 2014-11-11 17:08:54 -05:00
parent b2cdf30eb6
commit e785e3acf8
21 changed files with 1248 additions and 1501 deletions

View File

@ -314,9 +314,6 @@ const hashRandomBytes = 32
var aeskeysched [hashRandomBytes]byte
//go:noescape
func get_random_data(rnd *unsafe.Pointer, n *int32)
func init() {
if theGoos == "nacl" {
return

423
src/runtime/os1_darwin.go Normal file
View File

@ -0,0 +1,423 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
//extern SigTabTT runtime·sigtab[];
var sigset_none = uint32(0)
var sigset_all = ^uint32(0)
func unimplemented(name string) {
println(name, "not implemented")
*(*int)(unsafe.Pointer(uintptr(1231))) = 1231
}
//go:nosplit
func semawakeup(mp *m) {
mach_semrelease(uint32(mp.waitsema))
}
//go:nosplit
func semacreate() uintptr {
var x uintptr
onM(func() {
x = uintptr(mach_semcreate())
})
return x
}
// BSD interface for threading.
func osinit() {
// bsdthread_register delayed until end of goenvs so that we
// can look at the environment first.
// Use sysctl to fetch hw.ncpu.
mib := [2]uint32{6, 3}
out := uint32(0)
nout := unsafe.Sizeof(out)
ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0)
if ret >= 0 {
ncpu = int32(out)
}
}
var urandom_data [_HashRandomBytes]byte
var urandom_dev = []byte("/dev/random\x00")
//go:nosplit
func get_random_data(rnd *unsafe.Pointer, rnd_len *int32) {
fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
if read(fd, unsafe.Pointer(&urandom_data), _HashRandomBytes) == _HashRandomBytes {
*rnd = unsafe.Pointer(&urandom_data[0])
*rnd_len = _HashRandomBytes
} else {
*rnd = nil
*rnd_len = 0
}
close(fd)
}
func goenvs() {
goenvs_unix()
// Register our thread-creation callback (see sys_darwin_{amd64,386}.s)
// but only if we're not using cgo. If we are using cgo we need
// to let the C pthread library install its own thread-creation callback.
if !iscgo {
if bsdthread_register() != 0 {
if gogetenv("DYLD_INSERT_LIBRARIES") != "" {
gothrow("runtime: bsdthread_register error (unset DYLD_INSERT_LIBRARIES)")
}
gothrow("runtime: bsdthread_register error")
}
}
}
func newosproc(mp *m, stk unsafe.Pointer) {
mp.tls[0] = uintptr(mp.id) // so 386 asm can find it
if false {
print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " id=", mp.id, "/", int(mp.tls[0]), " ostk=", &mp, "\n")
}
var oset uint32
sigprocmask(_SIG_SETMASK, &sigset_all, &oset)
errno := bsdthread_create(stk, mp, mp.g0, funcPC(mstart))
sigprocmask(_SIG_SETMASK, &oset, nil)
if errno < 0 {
print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -errno, ")\n")
gothrow("runtime.newosproc")
}
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
func mpreinit(mp *m) {
mp.gsignal = malg(32 * 1024) // OS X wants >= 8K
mp.gsignal.m = mp
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
func minit() {
// Initialize signal handling.
_g_ := getg()
signalstack((*byte)(unsafe.Pointer(_g_.m.gsignal.stack.lo)), 32*1024)
sigprocmask(_SIG_SETMASK, &sigset_none, nil)
}
// Called from dropm to undo the effect of an minit.
func unminit() {
signalstack(nil, 0)
}
// Mach IPC, to get at semaphores
// Definitions are in /usr/include/mach on a Mac.
func macherror(r int32, fn string) {
print("mach error ", fn, ": ", r, "\n")
gothrow("mach error")
}
const _DebugMach = false
var zerondr machndr
func mach_msgh_bits(a, b uint32) uint32 {
return a | b<<8
}
func mach_msg(h *machheader, op int32, send_size, rcv_size, rcv_name, timeout, notify uint32) int32 {
// TODO: Loop on interrupt.
return mach_msg_trap(unsafe.Pointer(h), op, send_size, rcv_size, rcv_name, timeout, notify)
}
// Mach RPC (MIG)
const (
_MinMachMsg = 48
_MachReply = 100
)
type codemsg struct {
h machheader
ndr machndr
code int32
}
func machcall(h *machheader, maxsize int32, rxsize int32) int32 {
_g_ := getg()
port := _g_.m.machport
if port == 0 {
port = mach_reply_port()
_g_.m.machport = port
}
h.msgh_bits |= mach_msgh_bits(_MACH_MSG_TYPE_COPY_SEND, _MACH_MSG_TYPE_MAKE_SEND_ONCE)
h.msgh_local_port = port
h.msgh_reserved = 0
id := h.msgh_id
if _DebugMach {
p := (*[10000]unsafe.Pointer)(unsafe.Pointer(h))
print("send:\t")
var i uint32
for i = 0; i < h.msgh_size/uint32(unsafe.Sizeof(p[0])); i++ {
print(" ", p[i])
if i%8 == 7 {
print("\n\t")
}
}
if i%8 != 0 {
print("\n")
}
}
ret := mach_msg(h, _MACH_SEND_MSG|_MACH_RCV_MSG, h.msgh_size, uint32(maxsize), port, 0, 0)
if ret != 0 {
if _DebugMach {
print("mach_msg error ", ret, "\n")
}
return ret
}
if _DebugMach {
p := (*[10000]unsafe.Pointer)(unsafe.Pointer(h))
var i uint32
for i = 0; i < h.msgh_size/uint32(unsafe.Sizeof(p[0])); i++ {
print(" ", p[i])
if i%8 == 7 {
print("\n\t")
}
}
if i%8 != 0 {
print("\n")
}
}
if h.msgh_id != id+_MachReply {
if _DebugMach {
print("mach_msg _MachReply id mismatch ", h.msgh_id, " != ", id+_MachReply, "\n")
}
return -303 // MIG_REPLY_MISMATCH
}
// Look for a response giving the return value.
// Any call can send this back with an error,
// and some calls only have return values so they
// send it back on success too. I don't quite see how
// you know it's one of these and not the full response
// format, so just look if the message is right.
c := (*codemsg)(unsafe.Pointer(h))
if uintptr(h.msgh_size) == unsafe.Sizeof(*c) && h.msgh_bits&_MACH_MSGH_BITS_COMPLEX == 0 {
if _DebugMach {
print("mig result ", c.code, "\n")
}
return c.code
}
if h.msgh_size != uint32(rxsize) {
if _DebugMach {
print("mach_msg _MachReply size mismatch ", h.msgh_size, " != ", rxsize, "\n")
}
return -307 // MIG_ARRAY_TOO_LARGE
}
return 0
}
// Semaphores!
const (
tmach_semcreate = 3418
rmach_semcreate = tmach_semcreate + _MachReply
tmach_semdestroy = 3419
rmach_semdestroy = tmach_semdestroy + _MachReply
_KERN_ABORTED = 14
_KERN_OPERATION_TIMED_OUT = 49
)
type tmach_semcreatemsg struct {
h machheader
ndr machndr
policy int32
value int32
}
type rmach_semcreatemsg struct {
h machheader
body machbody
semaphore machport
}
type tmach_semdestroymsg struct {
h machheader
body machbody
semaphore machport
}
func mach_semcreate() uint32 {
var m [256]uint8
tx := (*tmach_semcreatemsg)(unsafe.Pointer(&m))
rx := (*rmach_semcreatemsg)(unsafe.Pointer(&m))
tx.h.msgh_bits = 0
tx.h.msgh_size = uint32(unsafe.Sizeof(*tx))
tx.h.msgh_remote_port = mach_task_self()
tx.h.msgh_id = tmach_semcreate
tx.ndr = zerondr
tx.policy = 0 // 0 = SYNC_POLICY_FIFO
tx.value = 0
for {
r := machcall(&tx.h, int32(unsafe.Sizeof(m)), int32(unsafe.Sizeof(*rx)))
if r == 0 {
break
}
if r == _KERN_ABORTED { // interrupted
continue
}
macherror(r, "semaphore_create")
}
if rx.body.msgh_descriptor_count != 1 {
unimplemented("mach_semcreate desc count")
}
return rx.semaphore.name
}
func mach_semdestroy(sem uint32) {
var m [256]uint8
tx := (*tmach_semdestroymsg)(unsafe.Pointer(&m))
tx.h.msgh_bits = _MACH_MSGH_BITS_COMPLEX
tx.h.msgh_size = uint32(unsafe.Sizeof(*tx))
tx.h.msgh_remote_port = mach_task_self()
tx.h.msgh_id = tmach_semdestroy
tx.body.msgh_descriptor_count = 1
tx.semaphore.name = sem
tx.semaphore.disposition = _MACH_MSG_TYPE_MOVE_SEND
tx.semaphore._type = 0
for {
r := machcall(&tx.h, int32(unsafe.Sizeof(m)), 0)
if r == 0 {
break
}
if r == _KERN_ABORTED { // interrupted
continue
}
macherror(r, "semaphore_destroy")
}
}
// The other calls have simple system call traps in sys_darwin_{amd64,386}.s
func mach_semaphore_wait(sema uint32) int32
func mach_semaphore_timedwait(sema, sec, nsec uint32) int32
func mach_semaphore_signal(sema uint32) int32
func mach_semaphore_signal_all(sema uint32) int32
func semasleep1(ns int64) int32 {
_g_ := getg()
if ns >= 0 {
var nsecs int32
secs := timediv(ns, 1000000000, &nsecs)
r := mach_semaphore_timedwait(uint32(_g_.m.waitsema), uint32(secs), uint32(nsecs))
if r == _KERN_ABORTED || r == _KERN_OPERATION_TIMED_OUT {
return -1
}
if r != 0 {
macherror(r, "semaphore_wait")
}
return 0
}
for {
r := mach_semaphore_wait(uint32(_g_.m.waitsema))
if r == 0 {
break
}
if r == _KERN_ABORTED { // interrupted
continue
}
macherror(r, "semaphore_wait")
}
return 0
}
//go:nosplit
func semasleep(ns int64) int32 {
var r int32
onM(func() {
r = semasleep1(ns)
})
return r
}
//go:nosplit
func mach_semrelease(sem uint32) {
for {
r := mach_semaphore_signal(sem)
if r == 0 {
break
}
if r == _KERN_ABORTED { // interrupted
continue
}
// mach_semrelease must be completely nosplit,
// because it is called from Go code.
// If we're going to die, start that process on the m stack
// to avoid a Go stack split.
onM_signalok(func() { macherror(r, "semaphore_signal") })
}
}
//go:nosplit
func osyield() {
usleep(1)
}
func memlimit() uintptr {
// NOTE(rsc): Could use getrlimit here,
// like on FreeBSD or Linux, but Darwin doesn't enforce
// ulimit -v, so it's unclear why we'd try to stay within
// the limit.
return 0
}
func setsig(i int32, fn uintptr, restart bool) {
var sa sigactiont
memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK
if restart {
sa.sa_flags |= _SA_RESTART
}
sa.sa_mask = ^uint32(0)
sa.sa_tramp = unsafe.Pointer(funcPC(sigtramp)) // runtime·sigtramp's job is to call into real handler
*(*uintptr)(unsafe.Pointer(&sa.__sigaction_u)) = fn
sigaction(uint32(i), &sa, nil)
}
func getsig(i int32) uintptr {
var sa sigactiont
memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
sigaction(uint32(i), nil, &sa)
return *(*uintptr)(unsafe.Pointer(&sa.__sigaction_u))
}
func signalstack(p *byte, n int32) {
var st stackt
st.ss_sp = p
st.ss_size = uintptr(n)
st.ss_flags = 0
if p == nil {
st.ss_flags = _SS_DISABLE
}
sigaltstack(&st, nil)
}
func unblocksignals() {
sigprocmask(_SIG_SETMASK, &sigset_none, nil)
}

277
src/runtime/os1_linux.go Normal file
View File

@ -0,0 +1,277 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
var sigset_none sigset
var sigset_all sigset = sigset{^uint32(0), ^uint32(0)}
// Linux futex.
//
// futexsleep(uint32 *addr, uint32 val)
// futexwakeup(uint32 *addr)
//
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
// Futexwakeup wakes up threads sleeping on addr.
// Futexsleep is allowed to wake up spuriously.
const (
_FUTEX_WAIT = 0
_FUTEX_WAKE = 1
)
// Atomically,
// if(*addr == val) sleep
// Might be woken up spuriously; that's allowed.
// Don't sleep longer than ns; ns < 0 means forever.
//go:nosplit
func futexsleep(addr *uint32, val uint32, ns int64) {
var ts timespec
// Some Linux kernels have a bug where futex of
// FUTEX_WAIT returns an internal error code
// as an errno. Libpthread ignores the return value
// here, and so can we: as it says a few lines up,
// spurious wakeups are allowed.
if ns < 0 {
futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, nil, nil, 0)
return
}
// NOTE: tv_nsec is int64 on amd64, so this assumes a little-endian system.
ts.tv_nsec = 0
ts.set_sec(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec))))
futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, unsafe.Pointer(&ts), nil, 0)
}
// If any procs are sleeping on addr, wake up at most cnt.
//go:nosplit
func futexwakeup(addr *uint32, cnt uint32) {
ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE, cnt, nil, nil, 0)
if ret >= 0 {
return
}
// I don't know that futex wakeup can return
// EAGAIN or EINTR, but if it does, it would be
// safe to loop and call futex again.
onM_signalok(func() {
print("futexwakeup addr=", addr, " returned ", ret, "\n")
})
*(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
}
func getproccount() int32 {
var buf [16]uintptr
r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0])
n := int32(0)
for _, v := range buf[:r/ptrSize] {
for i := 0; i < 64; i++ {
n += int32(v & 1)
v >>= 1
}
}
if n == 0 {
n = 1
}
return n
}
// Clone, the Linux rfork.
const (
_CLONE_VM = 0x100
_CLONE_FS = 0x200
_CLONE_FILES = 0x400
_CLONE_SIGHAND = 0x800
_CLONE_PTRACE = 0x2000
_CLONE_VFORK = 0x4000
_CLONE_PARENT = 0x8000
_CLONE_THREAD = 0x10000
_CLONE_NEWNS = 0x20000
_CLONE_SYSVSEM = 0x40000
_CLONE_SETTLS = 0x80000
_CLONE_PARENT_SETTID = 0x100000
_CLONE_CHILD_CLEARTID = 0x200000
_CLONE_UNTRACED = 0x800000
_CLONE_CHILD_SETTID = 0x1000000
_CLONE_STOPPED = 0x2000000
_CLONE_NEWUTS = 0x4000000
_CLONE_NEWIPC = 0x8000000
)
func newosproc(mp *m, stk unsafe.Pointer) {
/*
* note: strace gets confused if we use CLONE_PTRACE here.
*/
var flags int32 = _CLONE_VM | /* share memory */
_CLONE_FS | /* share cwd, etc */
_CLONE_FILES | /* share fd table */
_CLONE_SIGHAND | /* share sig handler table */
_CLONE_THREAD /* revisit - okay for now */
mp.tls[0] = uintptr(mp.id) // so 386 asm can find it
if false {
print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", funcPC(clone), " id=", mp.id, "/", mp.tls[0], " ostk=", &mp, "\n")
}
// Disable signals during clone, so that the new thread starts
// with signals disabled. It will enable them in minit.
var oset sigset
rtsigprocmask(_SIG_SETMASK, &sigset_all, &oset, int32(unsafe.Sizeof(oset)))
ret := clone(flags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(funcPC(mstart)))
rtsigprocmask(_SIG_SETMASK, &oset, nil, int32(unsafe.Sizeof(oset)))
if ret < 0 {
print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n")
gothrow("newosproc")
}
}
func osinit() {
ncpu = getproccount()
}
// Random bytes initialized at startup. These come
// from the ELF AT_RANDOM auxiliary vector (vdso_linux_amd64.c).
// byte* runtime·startup_random_data;
// uint32 runtime·startup_random_data_len;
var urandom_data [_HashRandomBytes]byte
var urandom_dev = []byte("/dev/random\x00")
//go:nosplit
func get_random_data(rnd *unsafe.Pointer, rnd_len *int32) {
if startup_random_data != nil {
*rnd = unsafe.Pointer(startup_random_data)
*rnd_len = int32(startup_random_data_len)
return
}
fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
if read(fd, unsafe.Pointer(&urandom_data), _HashRandomBytes) == _HashRandomBytes {
*rnd = unsafe.Pointer(&urandom_data[0])
*rnd_len = _HashRandomBytes
} else {
*rnd = nil
*rnd_len = 0
}
close(fd)
}
func goenvs() {
goenvs_unix()
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
func mpreinit(mp *m) {
mp.gsignal = malg(32 * 1024) // Linux wants >= 2K
mp.gsignal.m = mp
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
func minit() {
// Initialize signal handling.
_g_ := getg()
signalstack((*byte)(unsafe.Pointer(_g_.m.gsignal.stack.lo)), 32*1024)
rtsigprocmask(_SIG_SETMASK, &sigset_none, nil, int32(unsafe.Sizeof(sigset_none)))
}
// Called from dropm to undo the effect of an minit.
func unminit() {
signalstack(nil, 0)
}
func memlimit() uintptr {
/*
TODO: Convert to Go when something actually uses the result.
Rlimit rl;
extern byte runtime·text[], runtime·end[];
uintptr used;
if(runtime·getrlimit(RLIMIT_AS, &rl) != 0)
return 0;
if(rl.rlim_cur >= 0x7fffffff)
return 0;
// Estimate our VM footprint excluding the heap.
// Not an exact science: use size of binary plus
// some room for thread stacks.
used = runtime·end - runtime·text + (64<<20);
if(used >= rl.rlim_cur)
return 0;
// If there's not at least 16 MB left, we're probably
// not going to be able to do much. Treat as no limit.
rl.rlim_cur -= used;
if(rl.rlim_cur < (16<<20))
return 0;
return rl.rlim_cur - used;
*/
return 0
}
//#ifdef GOARCH_386
//#define sa_handler k_sa_handler
//#endif
func sigreturn()
func sigtramp()
func setsig(i int32, fn uintptr, restart bool) {
var sa sigactiont
memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER
if restart {
sa.sa_flags |= _SA_RESTART
}
sa.sa_mask = ^uint64(0)
// Although Linux manpage says "sa_restorer element is obsolete and
// should not be used". x86_64 kernel requires it. Only use it on
// x86.
if GOARCH == "386" || GOARCH == "amd64" {
sa.sa_restorer = funcPC(sigreturn)
}
if fn == funcPC(sighandler) {
fn = funcPC(sigtramp)
}
sa.sa_handler = fn
if rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask)) != 0 {
gothrow("rt_sigaction failure")
}
}
func getsig(i int32) uintptr {
var sa sigactiont
memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 {
gothrow("rt_sigaction read failure")
}
if sa.sa_handler == funcPC(sigtramp) {
return funcPC(sighandler)
}
return sa.sa_handler
}
func signalstack(p *byte, n int32) {
var st sigaltstackt
st.ss_sp = p
st.ss_size = uintptr(n)
st.ss_flags = 0
if p == nil {
st.ss_flags = _SS_DISABLE
}
sigaltstack(&st, nil)
}
func unblocksignals() {
rtsigprocmask(_SIG_SETMASK, &sigset_none, nil, int32(unsafe.Sizeof(sigset_none)))
}

14
src/runtime/os2_darwin.go Normal file
View File

@ -0,0 +1,14 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
const (
_NSIG = 32
_SI_USER = 0 /* empirically true, but not what headers say */
_SIG_BLOCK = 1
_SIG_UNBLOCK = 2
_SIG_SETMASK = 3
_SS_DISABLE = 4
)

23
src/runtime/os2_linux.go Normal file
View File

@ -0,0 +1,23 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
const (
_SS_DISABLE = 2
_NSIG = 65
_SI_USER = 0
_SIG_SETMASK = 2
_RLIMIT_AS = 9
)
// It's hard to tease out exactly how big a Sigset is, but
// rt_sigprocmask crashes if we get it wrong, so if binaries
// are running, this is right.
type sigset [2]uint32
type rlimit struct {
rlim_cur uintptr
rlim_max uintptr
}

View File

@ -1,567 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "signal_unix.h"
#include "stack.h"
#include "textflag.h"
extern SigTab runtime·sigtab[];
static Sigset sigset_none;
static Sigset sigset_all = ~(Sigset)0;
static void
unimplemented(int8 *name)
{
runtime·prints(name);
runtime·prints(" not implemented\n");
*(int32*)1231 = 1231;
}
#pragma textflag NOSPLIT
void
runtime·semawakeup(M *mp)
{
runtime·mach_semrelease(mp->waitsema);
}
static void
semacreate(void)
{
g->m->scalararg[0] = runtime·mach_semcreate();
}
#pragma textflag NOSPLIT
uintptr
runtime·semacreate(void)
{
uintptr x;
void (*fn)(void);
fn = semacreate;
runtime·onM(&fn);
x = g->m->scalararg[0];
g->m->scalararg[0] = 0;
return x;
}
// BSD interface for threading.
void
runtime·osinit(void)
{
// bsdthread_register delayed until end of goenvs so that we
// can look at the environment first.
// Use sysctl to fetch hw.ncpu.
uint32 mib[2];
uint32 out;
int32 ret;
uintptr nout;
mib[0] = 6;
mib[1] = 3;
nout = sizeof out;
out = 0;
ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0);
if(ret >= 0)
runtime·ncpu = out;
}
#pragma textflag NOSPLIT
void
runtime·get_random_data(byte **rnd, int32 *rnd_len)
{
#pragma dataflag NOPTR
static byte urandom_data[HashRandomBytes];
int32 fd;
fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0);
if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) {
*rnd = urandom_data;
*rnd_len = HashRandomBytes;
} else {
*rnd = nil;
*rnd_len = 0;
}
runtime·close(fd);
}
void
runtime·goenvs(void)
{
runtime·goenvs_unix();
// Register our thread-creation callback (see sys_darwin_{amd64,386}.s)
// but only if we're not using cgo. If we are using cgo we need
// to let the C pthread library install its own thread-creation callback.
if(!runtime·iscgo) {
if(runtime·bsdthread_register() != 0) {
if(runtime·getenv("DYLD_INSERT_LIBRARIES"))
runtime·throw("runtime: bsdthread_register error (unset DYLD_INSERT_LIBRARIES)");
runtime·throw("runtime: bsdthread_register error");
}
}
}
void
runtime·newosproc(M *mp, void *stk)
{
int32 errno;
Sigset oset;
mp->tls[0] = mp->id; // so 386 asm can find it
if(0){
runtime·printf("newosproc stk=%p m=%p g=%p id=%d/%d ostk=%p\n",
stk, mp, mp->g0, mp->id, (int32)mp->tls[0], &mp);
}
runtime·sigprocmask(SIG_SETMASK, &sigset_all, &oset);
errno = runtime·bsdthread_create(stk, mp, mp->g0, runtime·mstart);
runtime·sigprocmask(SIG_SETMASK, &oset, nil);
if(errno < 0) {
runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -errno);
runtime·throw("runtime.newosproc");
}
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
void
runtime·mpreinit(M *mp)
{
mp->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K
mp->gsignal->m = mp;
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
void
runtime·minit(void)
{
// Initialize signal handling.
runtime·signalstack((byte*)g->m->gsignal->stack.lo, 32*1024);
runtime·sigprocmask(SIG_SETMASK, &sigset_none, nil);
}
// Called from dropm to undo the effect of an minit.
void
runtime·unminit(void)
{
runtime·signalstack(nil, 0);
}
// Mach IPC, to get at semaphores
// Definitions are in /usr/include/mach on a Mac.
static void
macherror(int32 r, int8 *fn)
{
runtime·prints("mach error ");
runtime·prints(fn);
runtime·prints(": ");
runtime·printint(r);
runtime·prints("\n");
runtime·throw("mach error");
}
enum
{
DebugMach = 0
};
static MachNDR zerondr;
#define MACH_MSGH_BITS(a, b) ((a) | ((b)<<8))
static int32
mach_msg(MachHeader *h,
int32 op,
uint32 send_size,
uint32 rcv_size,
uint32 rcv_name,
uint32 timeout,
uint32 notify)
{
// TODO: Loop on interrupt.
return runtime·mach_msg_trap(h, op, send_size, rcv_size, rcv_name, timeout, notify);
}
// Mach RPC (MIG)
enum
{
MinMachMsg = 48,
Reply = 100,
};
#pragma pack on
typedef struct CodeMsg CodeMsg;
struct CodeMsg
{
MachHeader h;
MachNDR NDR;
int32 code;
};
#pragma pack off
static int32
machcall(MachHeader *h, int32 maxsize, int32 rxsize)
{
uint32 *p;
int32 i, ret, id;
uint32 port;
CodeMsg *c;
if((port = g->m->machport) == 0){
port = runtime·mach_reply_port();
g->m->machport = port;
}
h->msgh_bits |= MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND_ONCE);
h->msgh_local_port = port;
h->msgh_reserved = 0;
id = h->msgh_id;
if(DebugMach){
p = (uint32*)h;
runtime·prints("send:\t");
for(i=0; i<h->msgh_size/sizeof(p[0]); i++){
runtime·prints(" ");
runtime·printpointer((void*)p[i]);
if(i%8 == 7)
runtime·prints("\n\t");
}
if(i%8)
runtime·prints("\n");
}
ret = mach_msg(h, MACH_SEND_MSG|MACH_RCV_MSG,
h->msgh_size, maxsize, port, 0, 0);
if(ret != 0){
if(DebugMach){
runtime·prints("mach_msg error ");
runtime·printint(ret);
runtime·prints("\n");
}
return ret;
}
if(DebugMach){
p = (uint32*)h;
runtime·prints("recv:\t");
for(i=0; i<h->msgh_size/sizeof(p[0]); i++){
runtime·prints(" ");
runtime·printpointer((void*)p[i]);
if(i%8 == 7)
runtime·prints("\n\t");
}
if(i%8)
runtime·prints("\n");
}
if(h->msgh_id != id+Reply){
if(DebugMach){
runtime·prints("mach_msg reply id mismatch ");
runtime·printint(h->msgh_id);
runtime·prints(" != ");
runtime·printint(id+Reply);
runtime·prints("\n");
}
return -303; // MIG_REPLY_MISMATCH
}
// Look for a response giving the return value.
// Any call can send this back with an error,
// and some calls only have return values so they
// send it back on success too. I don't quite see how
// you know it's one of these and not the full response
// format, so just look if the message is right.
c = (CodeMsg*)h;
if(h->msgh_size == sizeof(CodeMsg)
&& !(h->msgh_bits & MACH_MSGH_BITS_COMPLEX)){
if(DebugMach){
runtime·prints("mig result ");
runtime·printint(c->code);
runtime·prints("\n");
}
return c->code;
}
if(h->msgh_size != rxsize){
if(DebugMach){
runtime·prints("mach_msg reply size mismatch ");
runtime·printint(h->msgh_size);
runtime·prints(" != ");
runtime·printint(rxsize);
runtime·prints("\n");
}
return -307; // MIG_ARRAY_TOO_LARGE
}
return 0;
}
// Semaphores!
enum
{
Tmach_semcreate = 3418,
Rmach_semcreate = Tmach_semcreate + Reply,
Tmach_semdestroy = 3419,
Rmach_semdestroy = Tmach_semdestroy + Reply,
// Mach calls that get interrupted by Unix signals
// return this error code. We retry them.
KERN_ABORTED = 14,
KERN_OPERATION_TIMED_OUT = 49,
};
typedef struct Tmach_semcreateMsg Tmach_semcreateMsg;
typedef struct Rmach_semcreateMsg Rmach_semcreateMsg;
typedef struct Tmach_semdestroyMsg Tmach_semdestroyMsg;
// Rmach_semdestroyMsg = CodeMsg
#pragma pack on
struct Tmach_semcreateMsg
{
MachHeader h;
MachNDR ndr;
int32 policy;
int32 value;
};
struct Rmach_semcreateMsg
{
MachHeader h;
MachBody body;
MachPort semaphore;
};
struct Tmach_semdestroyMsg
{
MachHeader h;
MachBody body;
MachPort semaphore;
};
#pragma pack off
uint32
runtime·mach_semcreate(void)
{
union {
Tmach_semcreateMsg tx;
Rmach_semcreateMsg rx;
uint8 pad[MinMachMsg];
} m;
int32 r;
m.tx.h.msgh_bits = 0;
m.tx.h.msgh_size = sizeof(m.tx);
m.tx.h.msgh_remote_port = runtime·mach_task_self();
m.tx.h.msgh_id = Tmach_semcreate;
m.tx.ndr = zerondr;
m.tx.policy = 0; // 0 = SYNC_POLICY_FIFO
m.tx.value = 0;
while((r = machcall(&m.tx.h, sizeof m, sizeof(m.rx))) != 0){
if(r == KERN_ABORTED) // interrupted
continue;
macherror(r, "semaphore_create");
}
if(m.rx.body.msgh_descriptor_count != 1)
unimplemented("mach_semcreate desc count");
return m.rx.semaphore.name;
}
void
runtime·mach_semdestroy(uint32 sem)
{
union {
Tmach_semdestroyMsg tx;
uint8 pad[MinMachMsg];
} m;
int32 r;
m.tx.h.msgh_bits = MACH_MSGH_BITS_COMPLEX;
m.tx.h.msgh_size = sizeof(m.tx);
m.tx.h.msgh_remote_port = runtime·mach_task_self();
m.tx.h.msgh_id = Tmach_semdestroy;
m.tx.body.msgh_descriptor_count = 1;
m.tx.semaphore.name = sem;
m.tx.semaphore.disposition = MACH_MSG_TYPE_MOVE_SEND;
m.tx.semaphore.type = 0;
while((r = machcall(&m.tx.h, sizeof m, 0)) != 0){
if(r == KERN_ABORTED) // interrupted
continue;
macherror(r, "semaphore_destroy");
}
}
// The other calls have simple system call traps in sys_darwin_{amd64,386}.s
int32 runtime·mach_semaphore_wait(uint32 sema);
int32 runtime·mach_semaphore_timedwait(uint32 sema, uint32 sec, uint32 nsec);
int32 runtime·mach_semaphore_signal(uint32 sema);
int32 runtime·mach_semaphore_signal_all(uint32 sema);
static void
semasleep(void)
{
int32 r, secs, nsecs;
int64 ns;
ns = (int64)(uint32)g->m->scalararg[0] | (int64)(uint32)g->m->scalararg[1]<<32;
g->m->scalararg[0] = 0;
g->m->scalararg[1] = 0;
if(ns >= 0) {
secs = runtime·timediv(ns, 1000000000, &nsecs);
r = runtime·mach_semaphore_timedwait(g->m->waitsema, secs, nsecs);
if(r == KERN_ABORTED || r == KERN_OPERATION_TIMED_OUT) {
g->m->scalararg[0] = -1;
return;
}
if(r != 0)
macherror(r, "semaphore_wait");
g->m->scalararg[0] = 0;
return;
}
while((r = runtime·mach_semaphore_wait(g->m->waitsema)) != 0) {
if(r == KERN_ABORTED) // interrupted
continue;
macherror(r, "semaphore_wait");
}
g->m->scalararg[0] = 0;
return;
}
#pragma textflag NOSPLIT
int32
runtime·semasleep(int64 ns)
{
int32 r;
void (*fn)(void);
g->m->scalararg[0] = (uint32)ns;
g->m->scalararg[1] = (uint32)(ns>>32);
fn = semasleep;
runtime·onM(&fn);
r = g->m->scalararg[0];
g->m->scalararg[0] = 0;
return r;
}
static int32 mach_semrelease_errno;
static void
mach_semrelease_fail(void)
{
macherror(mach_semrelease_errno, "semaphore_signal");
}
#pragma textflag NOSPLIT
void
runtime·mach_semrelease(uint32 sem)
{
int32 r;
void (*fn)(void);
while((r = runtime·mach_semaphore_signal(sem)) != 0) {
if(r == KERN_ABORTED) // interrupted
continue;
// mach_semrelease must be completely nosplit,
// because it is called from Go code.
// If we're going to die, start that process on the m stack
// to avoid a Go stack split.
// Only do that if we're actually running on the g stack.
// We might be on the gsignal stack, and if so, onM will abort.
// We use the global variable instead of scalararg because
// we might be on the gsignal stack, having interrupted a
// normal call to onM. It doesn't quite matter, since the
// program is about to die, but better to be clean.
mach_semrelease_errno = r;
fn = mach_semrelease_fail;
if(g == g->m->curg)
runtime·onM(&fn);
else
fn();
}
}
#pragma textflag NOSPLIT
void
runtime·osyield(void)
{
runtime·usleep(1);
}
uintptr
runtime·memlimit(void)
{
// NOTE(rsc): Could use getrlimit here,
// like on FreeBSD or Linux, but Darwin doesn't enforce
// ulimit -v, so it's unclear why we'd try to stay within
// the limit.
return 0;
}
void
runtime·setsig(int32 i, GoSighandler *fn, bool restart)
{
SigactionT sa;
runtime·memclr((byte*)&sa, sizeof sa);
sa.sa_flags = SA_SIGINFO|SA_ONSTACK;
if(restart)
sa.sa_flags |= SA_RESTART;
sa.sa_mask = ~(uintptr)0;
sa.sa_tramp = (void*)runtime·sigtramp; // runtime·sigtramp's job is to call into real handler
*(uintptr*)sa.__sigaction_u = (uintptr)fn;
runtime·sigaction(i, &sa, nil);
}
GoSighandler*
runtime·getsig(int32 i)
{
SigactionT sa;
runtime·memclr((byte*)&sa, sizeof sa);
runtime·sigaction(i, nil, &sa);
return *(void**)sa.__sigaction_u;
}
void
runtime·signalstack(byte *p, int32 n)
{
StackT st;
st.ss_sp = (void*)p;
st.ss_size = n;
st.ss_flags = 0;
if(p == nil)
st.ss_flags = SS_DISABLE;
runtime·sigaltstack(&st, nil);
}
void
runtime·unblocksignals(void)
{
runtime·sigprocmask(SIG_SETMASK, &sigset_none, nil);
}
#pragma textflag NOSPLIT
int8*
runtime·signame(int32 sig)
{
return runtime·sigtab[sig].name;
}

View File

@ -6,19 +6,35 @@ package runtime
import "unsafe"
func bsdthread_create(stk, mm, gg, fn unsafe.Pointer) int32
func bsdthread_create(stk unsafe.Pointer, mm *m, gg *g, fn uintptr) int32
func bsdthread_register() int32
//go:noescape
func mach_msg_trap(h unsafe.Pointer, op int32, send_size, rcv_size, rcv_name, timeout, notify uint32) int32
func mach_reply_port() uint32
func mach_task_self() uint32
func mach_thread_self() uint32
//go:noescape
func sysctl(mib *uint32, miblen uint32, out *byte, size *uintptr, dst *byte, ndst uintptr) int32
func sigprocmask(sig int32, new, old unsafe.Pointer)
func sigaction(mode uint32, new, old unsafe.Pointer)
func sigaltstack(new, old unsafe.Pointer)
//go:noescape
func sigprocmask(sig uint32, new, old *uint32)
//go:noescape
func sigaction(mode uint32, new, old *sigactiont)
//go:noescape
func sigaltstack(new, old *stackt)
func sigtramp()
func setitimer(mode int32, new, old unsafe.Pointer)
func mach_semaphore_wait(sema uint32) int32
func mach_semaphore_timedwait(sema, sec, nsec uint32) int32
func mach_semaphore_signal(sema uint32) int32
func mach_semaphore_signal_all(sema uint32) int32
//go:noescape
func setitimer(mode int32, new, old *itimerval)
func raise(int32)
// careful: cputicks is not guaranteed to be monotonic! In particular, we have
// noticed drift between cpus on certain os/arch combinations. See issue 8976.
func cputicks() int64

View File

@ -1,43 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
typedef byte* kevent_udata;
int32 runtime·bsdthread_create(void*, M*, G*, void(*)(void));
int32 runtime·bsdthread_register(void);
int32 runtime·mach_msg_trap(MachHeader*, int32, uint32, uint32, uint32, uint32, uint32);
uint32 runtime·mach_reply_port(void);
int32 runtime·mach_semacquire(uint32, int64);
uint32 runtime·mach_semcreate(void);
void runtime·mach_semdestroy(uint32);
void runtime·mach_semrelease(uint32);
void runtime·mach_semreset(uint32);
uint32 runtime·mach_task_self(void);
uint32 runtime·mach_task_self(void);
uint32 runtime·mach_thread_self(void);
uint32 runtime·mach_thread_self(void);
int32 runtime·sysctl(uint32*, uint32, byte*, uintptr*, byte*, uintptr);
typedef uint32 Sigset;
void runtime·sigprocmask(int32, Sigset*, Sigset*);
void runtime·unblocksignals(void);
struct SigactionT;
void runtime·sigaction(uintptr, struct SigactionT*, struct SigactionT*);
struct StackT;
void runtime·sigaltstack(struct StackT*, struct StackT*);
void runtime·sigtramp(void);
void runtime·sigpanic(void);
void runtime·setitimer(int32, Itimerval*, Itimerval*);
enum {
NSIG = 32,
SI_USER = 0, /* empirically true, but not what headers say */
SIG_BLOCK = 1,
SIG_UNBLOCK = 2,
SIG_SETMASK = 3,
SS_DISABLE = 4,
};

View File

@ -9,7 +9,7 @@
#include "stack.h"
#include "textflag.h"
extern SigTab runtime·sigtab[];
extern SigTabT runtime·sigtab[];
extern int32 runtime·sys_umtx_sleep(uint32*, int32, int32);
extern int32 runtime·sys_umtx_wakeup(uint32*, int32);

View File

@ -9,7 +9,7 @@
#include "stack.h"
#include "textflag.h"
extern SigTab runtime·sigtab[];
extern SigTabT runtime·sigtab[];
extern int32 runtime·sys_umtx_op(uint32*, int32, uint32, void*, void*);
// From FreeBSD's <sys/sysctl.h>

View File

@ -1,342 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "signal_unix.h"
#include "stack.h"
#include "textflag.h"
extern SigTab runtime·sigtab[];
static Sigset sigset_none;
static Sigset sigset_all = { ~(uint32)0, ~(uint32)0 };
// Linux futex.
//
// futexsleep(uint32 *addr, uint32 val)
// futexwakeup(uint32 *addr)
//
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
// Futexwakeup wakes up threads sleeping on addr.
// Futexsleep is allowed to wake up spuriously.
enum
{
FUTEX_WAIT = 0,
FUTEX_WAKE = 1,
};
// Atomically,
// if(*addr == val) sleep
// Might be woken up spuriously; that's allowed.
// Don't sleep longer than ns; ns < 0 means forever.
#pragma textflag NOSPLIT
void
runtime·futexsleep(uint32 *addr, uint32 val, int64 ns)
{
Timespec ts;
// Some Linux kernels have a bug where futex of
// FUTEX_WAIT returns an internal error code
// as an errno. Libpthread ignores the return value
// here, and so can we: as it says a few lines up,
// spurious wakeups are allowed.
if(ns < 0) {
runtime·futex(addr, FUTEX_WAIT, val, nil, nil, 0);
return;
}
// NOTE: tv_nsec is int64 on amd64, so this assumes a little-endian system.
ts.tv_nsec = 0;
ts.tv_sec = runtime·timediv(ns, 1000000000LL, (int32*)&ts.tv_nsec);
runtime·futex(addr, FUTEX_WAIT, val, &ts, nil, 0);
}
static void badfutexwakeup(void);
// If any procs are sleeping on addr, wake up at most cnt.
#pragma textflag NOSPLIT
void
runtime·futexwakeup(uint32 *addr, uint32 cnt)
{
int64 ret;
void (*fn)(void);
ret = runtime·futex(addr, FUTEX_WAKE, cnt, nil, nil, 0);
if(ret >= 0)
return;
// I don't know that futex wakeup can return
// EAGAIN or EINTR, but if it does, it would be
// safe to loop and call futex again.
g->m->ptrarg[0] = addr;
g->m->scalararg[0] = (int32)ret; // truncated but fine
fn = badfutexwakeup;
if(g == g->m->gsignal)
fn();
else
runtime·onM(&fn);
*(int32*)0x1006 = 0x1006;
}
static void
badfutexwakeup(void)
{
void *addr;
int64 ret;
addr = g->m->ptrarg[0];
ret = (int32)g->m->scalararg[0];
runtime·printf("futexwakeup addr=%p returned %D\n", addr, ret);
}
extern runtime·sched_getaffinity(uintptr pid, uintptr len, uintptr *buf);
static int32
getproccount(void)
{
uintptr buf[16], t;
int32 r, cnt, i;
cnt = 0;
r = runtime·sched_getaffinity(0, sizeof(buf), buf);
if(r > 0)
for(i = 0; i < r/sizeof(buf[0]); i++) {
t = buf[i];
t = t - ((t >> 1) & 0x5555555555555555ULL);
t = (t & 0x3333333333333333ULL) + ((t >> 2) & 0x3333333333333333ULL);
cnt += (int32)((((t + (t >> 4)) & 0xF0F0F0F0F0F0F0FULL) * 0x101010101010101ULL) >> 56);
}
return cnt ? cnt : 1;
}
// Clone, the Linux rfork.
enum
{
CLONE_VM = 0x100,
CLONE_FS = 0x200,
CLONE_FILES = 0x400,
CLONE_SIGHAND = 0x800,
CLONE_PTRACE = 0x2000,
CLONE_VFORK = 0x4000,
CLONE_PARENT = 0x8000,
CLONE_THREAD = 0x10000,
CLONE_NEWNS = 0x20000,
CLONE_SYSVSEM = 0x40000,
CLONE_SETTLS = 0x80000,
CLONE_PARENT_SETTID = 0x100000,
CLONE_CHILD_CLEARTID = 0x200000,
CLONE_UNTRACED = 0x800000,
CLONE_CHILD_SETTID = 0x1000000,
CLONE_STOPPED = 0x2000000,
CLONE_NEWUTS = 0x4000000,
CLONE_NEWIPC = 0x8000000,
};
void
runtime·newosproc(M *mp, void *stk)
{
int32 ret;
int32 flags;
Sigset oset;
/*
* note: strace gets confused if we use CLONE_PTRACE here.
*/
flags = CLONE_VM /* share memory */
| CLONE_FS /* share cwd, etc */
| CLONE_FILES /* share fd table */
| CLONE_SIGHAND /* share sig handler table */
| CLONE_THREAD /* revisit - okay for now */
;
mp->tls[0] = mp->id; // so 386 asm can find it
if(0){
runtime·printf("newosproc stk=%p m=%p g=%p clone=%p id=%d/%d ostk=%p\n",
stk, mp, mp->g0, runtime·clone, mp->id, (int32)mp->tls[0], &mp);
}
// Disable signals during clone, so that the new thread starts
// with signals disabled. It will enable them in minit.
runtime·rtsigprocmask(SIG_SETMASK, &sigset_all, &oset, sizeof oset);
ret = runtime·clone(flags, stk, mp, mp->g0, runtime·mstart);
runtime·rtsigprocmask(SIG_SETMASK, &oset, nil, sizeof oset);
if(ret < 0) {
runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -ret);
runtime·throw("runtime.newosproc");
}
}
void
runtime·osinit(void)
{
runtime·ncpu = getproccount();
}
// Random bytes initialized at startup. These come
// from the ELF AT_RANDOM auxiliary vector (vdso_linux_amd64.c).
byte* runtime·startup_random_data;
uint32 runtime·startup_random_data_len;
#pragma textflag NOSPLIT
void
runtime·get_random_data(byte **rnd, int32 *rnd_len)
{
if(runtime·startup_random_data != nil) {
*rnd = runtime·startup_random_data;
*rnd_len = runtime·startup_random_data_len;
} else {
#pragma dataflag NOPTR
static byte urandom_data[HashRandomBytes];
int32 fd;
fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0);
if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) {
*rnd = urandom_data;
*rnd_len = HashRandomBytes;
} else {
*rnd = nil;
*rnd_len = 0;
}
runtime·close(fd);
}
}
void
runtime·goenvs(void)
{
runtime·goenvs_unix();
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
void
runtime·mpreinit(M *mp)
{
mp->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K
mp->gsignal->m = mp;
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
void
runtime·minit(void)
{
// Initialize signal handling.
runtime·signalstack((byte*)g->m->gsignal->stack.lo, 32*1024);
runtime·rtsigprocmask(SIG_SETMASK, &sigset_none, nil, sizeof(Sigset));
}
// Called from dropm to undo the effect of an minit.
void
runtime·unminit(void)
{
runtime·signalstack(nil, 0);
}
uintptr
runtime·memlimit(void)
{
Rlimit rl;
extern byte runtime·text[], runtime·end[];
uintptr used;
if(runtime·getrlimit(RLIMIT_AS, &rl) != 0)
return 0;
if(rl.rlim_cur >= 0x7fffffff)
return 0;
// Estimate our VM footprint excluding the heap.
// Not an exact science: use size of binary plus
// some room for thread stacks.
used = runtime·end - runtime·text + (64<<20);
if(used >= rl.rlim_cur)
return 0;
// If there's not at least 16 MB left, we're probably
// not going to be able to do much. Treat as no limit.
rl.rlim_cur -= used;
if(rl.rlim_cur < (16<<20))
return 0;
return rl.rlim_cur - used;
}
#ifdef GOARCH_386
#define sa_handler k_sa_handler
#endif
/*
* This assembler routine takes the args from registers, puts them on the stack,
* and calls sighandler().
*/
extern void runtime·sigtramp(void);
extern void runtime·sigreturn(void); // calls rt_sigreturn, only used with SA_RESTORER
void
runtime·setsig(int32 i, GoSighandler *fn, bool restart)
{
SigactionT sa;
runtime·memclr((byte*)&sa, sizeof sa);
sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER;
if(restart)
sa.sa_flags |= SA_RESTART;
sa.sa_mask = ~0ULL;
// Although Linux manpage says "sa_restorer element is obsolete and
// should not be used". x86_64 kernel requires it. Only use it on
// x86.
#ifdef GOARCH_386
sa.sa_restorer = (void*)runtime·sigreturn;
#endif
#ifdef GOARCH_amd64
sa.sa_restorer = (void*)runtime·sigreturn;
#endif
if(fn == runtime·sighandler)
fn = (void*)runtime·sigtramp;
sa.sa_handler = fn;
if(runtime·rt_sigaction(i, &sa, nil, sizeof(sa.sa_mask)) != 0)
runtime·throw("rt_sigaction failure");
}
GoSighandler*
runtime·getsig(int32 i)
{
SigactionT sa;
runtime·memclr((byte*)&sa, sizeof sa);
if(runtime·rt_sigaction(i, nil, &sa, sizeof(sa.sa_mask)) != 0)
runtime·throw("rt_sigaction read failure");
if((void*)sa.sa_handler == runtime·sigtramp)
return runtime·sighandler;
return (void*)sa.sa_handler;
}
void
runtime·signalstack(byte *p, int32 n)
{
SigaltstackT st;
st.ss_sp = p;
st.ss_size = n;
st.ss_flags = 0;
if(p == nil)
st.ss_flags = SS_DISABLE;
runtime·sigaltstack(&st, nil);
}
void
runtime·unblocksignals(void)
{
runtime·rtsigprocmask(SIG_SETMASK, &sigset_none, nil, sizeof sigset_none);
}
#pragma textflag NOSPLIT
int8*
runtime·signame(int32 sig)
{
return runtime·sigtab[sig].name;
}

View File

@ -6,12 +6,28 @@ package runtime
import "unsafe"
//go:noescape
func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32
//go:noescape
func clone(flags int32, stk, mm, gg, fn unsafe.Pointer) int32
func rt_sigaction(sig uintptr, new, old unsafe.Pointer, size uintptr) int32
func sigaltstack(new, old unsafe.Pointer)
func setitimer(mode int32, new, old unsafe.Pointer)
func rtsigprocmask(sig int32, new, old unsafe.Pointer, size int32)
//go:noescape
func rt_sigaction(sig uintptr, new, old *sigactiont, size uintptr) int32
//go:noescape
func sigaltstack(new, old *sigaltstackt)
//go:noescape
func setitimer(mode int32, new, old *itimerval)
//go:noescape
func rtsigprocmask(sig uint32, new, old *sigset, size int32)
//go:noescape
func getrlimit(kind int32, limit unsafe.Pointer) int32
func raise(sig int32)
func raise(sig uint32)
//go:noescape
func sched_getaffinity(pid, len uintptr, buf *uintptr) int32
func osyield()

View File

@ -1,41 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Linux-specific system calls
int32 runtime·futex(uint32*, int32, uint32, Timespec*, uint32*, uint32);
int32 runtime·clone(int32, void*, M*, G*, void(*)(void));
struct SigactionT;
int32 runtime·rt_sigaction(uintptr, struct SigactionT*, void*, uintptr);
void runtime·sigaltstack(SigaltstackT*, SigaltstackT*);
void runtime·sigpanic(void);
void runtime·setitimer(int32, Itimerval*, Itimerval*);
enum {
SS_DISABLE = 2,
NSIG = 65,
SI_USER = 0,
SIG_SETMASK = 2,
RLIMIT_AS = 9,
};
// It's hard to tease out exactly how big a Sigset is, but
// rt_sigprocmask crashes if we get it wrong, so if binaries
// are running, this is right.
typedef struct Sigset Sigset;
struct Sigset
{
uint32 mask[2];
};
void runtime·rtsigprocmask(int32, Sigset*, Sigset*, int32);
void runtime·unblocksignals(void);
typedef struct Rlimit Rlimit;
struct Rlimit {
uintptr rlim_cur;
uintptr rlim_max;
};
int32 runtime·getrlimit(int32, Rlimit*);

View File

@ -1,38 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "textflag.h"
#define AT_NULL 0
#define AT_RANDOM 25
#define AT_SYSINFO 32
extern uint32 runtime·_vdso;
#pragma textflag NOSPLIT
void
runtime·linux_setup_vdso(int32 argc, byte **argv)
{
byte **envp;
uint32 *auxv;
// skip envp to get to ELF auxiliary vector.
for(envp = &argv[argc+1]; *envp != nil; envp++)
;
envp++;
for(auxv=(uint32*)envp; auxv[0] != AT_NULL; auxv += 2) {
if(auxv[0] == AT_SYSINFO) {
runtime·_vdso = auxv[1];
continue;
}
if(auxv[0] == AT_RANDOM) {
runtime·startup_random_data = (byte*)auxv[1];
runtime·startup_random_data_len = 16;
continue;
}
}
}

View File

@ -0,0 +1,41 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
const (
_AT_NULL = 0
_AT_RANDOM = 25
_AT_SYSINFO = 32
)
var _vdso uint32
//go:nosplit
func linux_setup_vdso(argc int32, argv **byte) {
// skip over argv, envv to get to auxv
n := argc + 1
for argv_index(argv, n) != nil {
n++
}
n++
auxv := (*[1 << 28]uint32)(add(unsafe.Pointer(argv), uintptr(n)*ptrSize))
for i := 0; auxv[i] != _AT_NULL; i += 2 {
switch auxv[i] {
case _AT_SYSINFO:
_vdso = auxv[i+1]
case _AT_RANDOM:
startup_random_data = (*byte)(unsafe.Pointer(uintptr(auxv[i+1])))
startup_random_data_len = 16
}
}
}
// careful: cputicks is not guaranteed to be monotonic! In particular, we have
// noticed drift between cpus on certain os/arch combinations. See issue 8976.
func cputicks() int64

View File

@ -0,0 +1,9 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
// careful: cputicks is not guaranteed to be monotonic! In particular, we have
// noticed drift between cpus on certain os/arch combinations. See issue 8976.
func cputicks() int64

View File

@ -1,80 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "textflag.h"
#define AT_NULL 0
#define AT_PLATFORM 15 // introduced in at least 2.6.11
#define AT_HWCAP 16 // introduced in at least 2.6.11
#define AT_RANDOM 25 // introduced in 2.6.29
#define HWCAP_VFP (1 << 6) // introduced in at least 2.6.11
#define HWCAP_VFPv3 (1 << 13) // introduced in 2.6.30
static uint32 runtime·randomNumber;
uint8 runtime·armArch = 6; // we default to ARMv6
uint32 runtime·hwcap; // set by setup_auxv
extern uint8 runtime·goarm; // set by 5l
void
runtime·checkgoarm(void)
{
if(runtime·goarm > 5 && !(runtime·hwcap & HWCAP_VFP)) {
runtime·printf("runtime: this CPU has no floating point hardware, so it cannot run\n");
runtime·printf("this GOARM=%d binary. Recompile using GOARM=5.\n", runtime·goarm);
runtime·exit(1);
}
if(runtime·goarm > 6 && !(runtime·hwcap & HWCAP_VFPv3)) {
runtime·printf("runtime: this CPU has no VFPv3 floating point hardware, so it cannot run\n");
runtime·printf("this GOARM=%d binary. Recompile using GOARM=6.\n", runtime·goarm);
runtime·exit(1);
}
}
#pragma textflag NOSPLIT
void
runtime·setup_auxv(int32 argc, byte **argv)
{
byte **envp;
byte *rnd;
uint32 *auxv;
uint32 t;
// skip envp to get to ELF auxiliary vector.
for(envp = &argv[argc+1]; *envp != nil; envp++)
;
envp++;
for(auxv=(uint32*)envp; auxv[0] != AT_NULL; auxv += 2) {
switch(auxv[0]) {
case AT_RANDOM: // kernel provided 16-byte worth of random data
if(auxv[1]) {
rnd = (byte*)auxv[1];
runtime·randomNumber = rnd[4] | rnd[5]<<8 | rnd[6]<<16 | rnd[7]<<24;
}
break;
case AT_PLATFORM: // v5l, v6l, v7l
if(auxv[1]) {
t = *(uint8*)(auxv[1]+1);
if(t >= '5' && t <= '7')
runtime·armArch = t - '0';
}
break;
case AT_HWCAP: // CPU capability bit flags
runtime·hwcap = auxv[1];
break;
}
}
}
#pragma textflag NOSPLIT
int64
runtime·cputicks(void)
{
// Currently cputicks() is used in blocking profiler and to seed runtime·fastrand1().
// runtime·nanotime() is a poor approximation of CPU ticks that is enough for the profiler.
// runtime·randomNumber provides better seeding of fastrand1.
return runtime·nanotime() + runtime·randomNumber;
}

View File

@ -0,0 +1,75 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
const (
_AT_NULL = 0
_AT_PLATFORM = 15 // introduced in at least 2.6.11
_AT_HWCAP = 16 // introduced in at least 2.6.11
_AT_RANDOM = 25 // introduced in 2.6.29
_HWCAP_VFP = 1 << 6 // introduced in at least 2.6.11
_HWCAP_VFPv3 = 1 << 13 // introduced in 2.6.30
)
var randomNumber uint32
var armArch uint8 = 6 // we default to ARMv6
var hwcap uint32 // set by setup_auxv
var goarm uint8 // set by 5l
func checkgoarm() {
if goarm > 5 && hwcap&_HWCAP_VFP == 0 {
print("runtime: this CPU has no floating point hardware, so it cannot run\n")
print("this GOARM=", goarm, " binary. Recompile using GOARM=5.\n")
exit(1)
}
if goarm > 6 && hwcap&_HWCAP_VFPv3 == 0 {
print("runtime: this CPU has no VFPv3 floating point hardware, so it cannot run\n")
print("this GOARM=", goarm, " binary. Recompile using GOARM=5.\n")
exit(1)
}
}
//go:nosplit
func setup_auxv(argc int32, argv **byte) {
// skip over argv, envv to get to auxv
n := argc + 1
for argv_index(argv, n) != nil {
n++
}
n++
auxv := (*[1 << 28]uint32)(add(unsafe.Pointer(argv), uintptr(n)*ptrSize))
for i := 0; auxv[i] != _AT_NULL; i += 2 {
switch auxv[i] {
case _AT_RANDOM: // kernel provided 16-byte worth of random data
if auxv[i+1] != 0 {
randomNumber = *(*uint32)(unsafe.Pointer(uintptr(auxv[i+1])))
}
case _AT_PLATFORM: // v5l, v6l, v7l
t := *(*uint8)(unsafe.Pointer(uintptr(auxv[i+1] + 1)))
if '5' <= t && t <= '7' {
armArch = t - '0'
}
case _AT_HWCAP: // CPU capability bit flags
hwcap = auxv[i+1]
}
}
}
func cputicks() int64 {
// Currently cputicks() is used in blocking profiler and to seed fastrand1().
// nanotime() is a poor approximation of CPU ticks that is enough for the profiler.
// randomNumber provides better seeding of fastrand1.
return nanotime() + int64(randomNumber)
}

View File

@ -1,371 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "textflag.h"
// Look up symbols in the Linux vDSO.
// This code was originally based on the sample Linux vDSO parser at
// https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/vDSO/parse_vdso.c
// This implements the ELF dynamic linking spec at
// http://sco.com/developers/gabi/latest/ch5.dynamic.html
// The version section is documented at
// http://refspecs.linuxfoundation.org/LSB_3.2.0/LSB-Core-generic/LSB-Core-generic/symversion.html
#define AT_RANDOM 25
#define AT_SYSINFO_EHDR 33
#define AT_NULL 0 /* End of vector */
#define PT_LOAD 1 /* Loadable program segment */
#define PT_DYNAMIC 2 /* Dynamic linking information */
#define DT_NULL 0 /* Marks end of dynamic section */
#define DT_HASH 4 /* Dynamic symbol hash table */
#define DT_STRTAB 5 /* Address of string table */
#define DT_SYMTAB 6 /* Address of symbol table */
#define DT_VERSYM 0x6ffffff0
#define DT_VERDEF 0x6ffffffc
#define VER_FLG_BASE 0x1 /* Version definition of file itself */
#define SHN_UNDEF 0 /* Undefined section */
#define SHT_DYNSYM 11 /* Dynamic linker symbol table */
#define STT_FUNC 2 /* Symbol is a code object */
#define STB_GLOBAL 1 /* Global symbol */
#define STB_WEAK 2 /* Weak symbol */
/* How to extract and insert information held in the st_info field. */
#define ELF64_ST_BIND(val) (((byte) (val)) >> 4)
#define ELF64_ST_TYPE(val) ((val) & 0xf)
#define EI_NIDENT (16)
typedef uint16 Elf64_Half;
typedef uint32 Elf64_Word;
typedef int32 Elf64_Sword;
typedef uint64 Elf64_Xword;
typedef int64 Elf64_Sxword;
typedef uint64 Elf64_Addr;
typedef uint64 Elf64_Off;
typedef uint16 Elf64_Section;
typedef Elf64_Half Elf64_Versym;
typedef struct Elf64_Sym
{
Elf64_Word st_name;
byte st_info;
byte st_other;
Elf64_Section st_shndx;
Elf64_Addr st_value;
Elf64_Xword st_size;
} Elf64_Sym;
typedef struct Elf64_Verdef
{
Elf64_Half vd_version; /* Version revision */
Elf64_Half vd_flags; /* Version information */
Elf64_Half vd_ndx; /* Version Index */
Elf64_Half vd_cnt; /* Number of associated aux entries */
Elf64_Word vd_hash; /* Version name hash value */
Elf64_Word vd_aux; /* Offset in bytes to verdaux array */
Elf64_Word vd_next; /* Offset in bytes to next verdef entry */
} Elf64_Verdef;
typedef struct Elf64_Ehdr
{
byte e_ident[EI_NIDENT]; /* Magic number and other info */
Elf64_Half e_type; /* Object file type */
Elf64_Half e_machine; /* Architecture */
Elf64_Word e_version; /* Object file version */
Elf64_Addr e_entry; /* Entry point virtual address */
Elf64_Off e_phoff; /* Program header table file offset */
Elf64_Off e_shoff; /* Section header table file offset */
Elf64_Word e_flags; /* Processor-specific flags */
Elf64_Half e_ehsize; /* ELF header size in bytes */
Elf64_Half e_phentsize; /* Program header table entry size */
Elf64_Half e_phnum; /* Program header table entry count */
Elf64_Half e_shentsize; /* Section header table entry size */
Elf64_Half e_shnum; /* Section header table entry count */
Elf64_Half e_shstrndx; /* Section header string table index */
} Elf64_Ehdr;
typedef struct Elf64_Phdr
{
Elf64_Word p_type; /* Segment type */
Elf64_Word p_flags; /* Segment flags */
Elf64_Off p_offset; /* Segment file offset */
Elf64_Addr p_vaddr; /* Segment virtual address */
Elf64_Addr p_paddr; /* Segment physical address */
Elf64_Xword p_filesz; /* Segment size in file */
Elf64_Xword p_memsz; /* Segment size in memory */
Elf64_Xword p_align; /* Segment alignment */
} Elf64_Phdr;
typedef struct Elf64_Shdr
{
Elf64_Word sh_name; /* Section name (string tbl index) */
Elf64_Word sh_type; /* Section type */
Elf64_Xword sh_flags; /* Section flags */
Elf64_Addr sh_addr; /* Section virtual addr at execution */
Elf64_Off sh_offset; /* Section file offset */
Elf64_Xword sh_size; /* Section size in bytes */
Elf64_Word sh_link; /* Link to another section */
Elf64_Word sh_info; /* Additional section information */
Elf64_Xword sh_addralign; /* Section alignment */
Elf64_Xword sh_entsize; /* Entry size if section holds table */
} Elf64_Shdr;
typedef struct Elf64_Dyn
{
Elf64_Sxword d_tag; /* Dynamic entry type */
union
{
Elf64_Xword d_val; /* Integer value */
Elf64_Addr d_ptr; /* Address value */
} d_un;
} Elf64_Dyn;
typedef struct Elf64_Verdaux
{
Elf64_Word vda_name; /* Version or dependency names */
Elf64_Word vda_next; /* Offset in bytes to next verdaux entry */
} Elf64_Verdaux;
typedef struct Elf64_auxv_t
{
uint64 a_type; /* Entry type */
union
{
uint64 a_val; /* Integer value */
} a_un;
} Elf64_auxv_t;
typedef struct symbol_key {
byte* name;
int32 sym_hash;
void** var_ptr;
} symbol_key;
typedef struct version_key {
byte* version;
int32 ver_hash;
} version_key;
struct vdso_info {
bool valid;
/* Load information */
uintptr load_addr;
uintptr load_offset; /* load_addr - recorded vaddr */
/* Symbol table */
Elf64_Sym *symtab;
const byte *symstrings;
Elf64_Word *bucket, *chain;
Elf64_Word nbucket, nchain;
/* Version table */
Elf64_Versym *versym;
Elf64_Verdef *verdef;
};
#pragma dataflag NOPTR
static version_key linux26 = { (byte*)"LINUX_2.6", 0x3ae75f6 };
// initialize with vsyscall fallbacks
#pragma dataflag NOPTR
void* runtime·__vdso_time_sym = (void*)0xffffffffff600400ULL;
#pragma dataflag NOPTR
void* runtime·__vdso_gettimeofday_sym = (void*)0xffffffffff600000ULL;
#pragma dataflag NOPTR
void* runtime·__vdso_clock_gettime_sym = (void*)0;
#pragma dataflag NOPTR
static symbol_key sym_keys[] = {
{ (byte*)"__vdso_time", 0xa33c485, &runtime·__vdso_time_sym },
{ (byte*)"__vdso_gettimeofday", 0x315ca59, &runtime·__vdso_gettimeofday_sym },
{ (byte*)"__vdso_clock_gettime", 0xd35ec75, &runtime·__vdso_clock_gettime_sym },
};
static void
vdso_init_from_sysinfo_ehdr(struct vdso_info *vdso_info, Elf64_Ehdr* hdr)
{
uint64 i;
bool found_vaddr = false;
Elf64_Phdr *pt;
Elf64_Dyn *dyn;
Elf64_Word *hash;
vdso_info->valid = false;
vdso_info->load_addr = (uintptr) hdr;
pt = (Elf64_Phdr*)(vdso_info->load_addr + hdr->e_phoff);
dyn = nil;
// We need two things from the segment table: the load offset
// and the dynamic table.
for(i=0; i<hdr->e_phnum; i++) {
if(pt[i].p_type == PT_LOAD && found_vaddr == false) {
found_vaddr = true;
vdso_info->load_offset = (uintptr)hdr
+ (uintptr)pt[i].p_offset
- (uintptr)pt[i].p_vaddr;
} else if(pt[i].p_type == PT_DYNAMIC) {
dyn = (Elf64_Dyn*)((uintptr)hdr + pt[i].p_offset);
}
}
if(found_vaddr == false || dyn == nil)
return; // Failed
// Fish out the useful bits of the dynamic table.
hash = nil;
vdso_info->symstrings = nil;
vdso_info->symtab = nil;
vdso_info->versym = nil;
vdso_info->verdef = nil;
for(i=0; dyn[i].d_tag!=DT_NULL; i++) {
switch(dyn[i].d_tag) {
case DT_STRTAB:
vdso_info->symstrings = (const byte *)
((uintptr)dyn[i].d_un.d_ptr
+ vdso_info->load_offset);
break;
case DT_SYMTAB:
vdso_info->symtab = (Elf64_Sym *)
((uintptr)dyn[i].d_un.d_ptr
+ vdso_info->load_offset);
break;
case DT_HASH:
hash = (Elf64_Word *)
((uintptr)dyn[i].d_un.d_ptr
+ vdso_info->load_offset);
break;
case DT_VERSYM:
vdso_info->versym = (Elf64_Versym *)
((uintptr)dyn[i].d_un.d_ptr
+ vdso_info->load_offset);
break;
case DT_VERDEF:
vdso_info->verdef = (Elf64_Verdef *)
((uintptr)dyn[i].d_un.d_ptr
+ vdso_info->load_offset);
break;
}
}
if(vdso_info->symstrings == nil || vdso_info->symtab == nil || hash == nil)
return; // Failed
if(vdso_info->verdef == nil)
vdso_info->versym = 0;
// Parse the hash table header.
vdso_info->nbucket = hash[0];
vdso_info->nchain = hash[1];
vdso_info->bucket = &hash[2];
vdso_info->chain = &hash[vdso_info->nbucket + 2];
// That's all we need.
vdso_info->valid = true;
}
static int32
vdso_find_version(struct vdso_info *vdso_info, version_key* ver)
{
if(vdso_info->valid == false) {
return 0;
}
Elf64_Verdef *def = vdso_info->verdef;
while(true) {
if((def->vd_flags & VER_FLG_BASE) == 0) {
Elf64_Verdaux *aux = (Elf64_Verdaux*)((byte *)def + def->vd_aux);
if(def->vd_hash == ver->ver_hash &&
runtime·strcmp(ver->version, vdso_info->symstrings + aux->vda_name) == 0) {
return def->vd_ndx & 0x7fff;
}
}
if(def->vd_next == 0) {
break;
}
def = (Elf64_Verdef *)((byte *)def + def->vd_next);
}
return -1; // can not match any version
}
static void
vdso_parse_symbols(struct vdso_info *vdso_info, int32 version)
{
int32 i;
Elf64_Word chain;
Elf64_Sym *sym;
if(vdso_info->valid == false)
return;
for(i=0; i<nelem(sym_keys); i++) {
for(chain = vdso_info->bucket[sym_keys[i].sym_hash % vdso_info->nbucket];
chain != 0; chain = vdso_info->chain[chain]) {
sym = &vdso_info->symtab[chain];
if(ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
continue;
if(ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
ELF64_ST_BIND(sym->st_info) != STB_WEAK)
continue;
if(sym->st_shndx == SHN_UNDEF)
continue;
if(runtime·strcmp(sym_keys[i].name, vdso_info->symstrings + sym->st_name) != 0)
continue;
// Check symbol version.
if(vdso_info->versym != nil && version != 0
&& vdso_info->versym[chain] & 0x7fff != version)
continue;
*sym_keys[i].var_ptr = (void *)(vdso_info->load_offset + sym->st_value);
break;
}
}
}
static void
runtime·linux_setup_vdso(int32 argc, uint8** argv)
{
struct vdso_info vdso_info;
// skip argvc
byte **p = argv;
p = &p[argc+1];
// skip envp to get to ELF auxiliary vector.
for(; *p!=0; p++) {}
// skip NULL separator
p++;
// now, p points to auxv
Elf64_auxv_t *elf_auxv = (Elf64_auxv_t*) p;
for(int32 i=0; elf_auxv[i].a_type!=AT_NULL; i++) {
if(elf_auxv[i].a_type == AT_SYSINFO_EHDR) {
if(elf_auxv[i].a_un.a_val == 0) {
// Something went wrong
continue;
}
vdso_init_from_sysinfo_ehdr(&vdso_info, (Elf64_Ehdr*)elf_auxv[i].a_un.a_val);
vdso_parse_symbols(&vdso_info, vdso_find_version(&vdso_info, &linux26));
continue;
}
if(elf_auxv[i].a_type == AT_RANDOM) {
runtime·startup_random_data = (byte*)elf_auxv[i].a_un.a_val;
runtime·startup_random_data_len = 16;
continue;
}
}
}
void (*runtime·sysargs)(int32, uint8**) = runtime·linux_setup_vdso;

View File

@ -0,0 +1,328 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
// Look up symbols in the Linux vDSO.
// This code was originally based on the sample Linux vDSO parser at
// https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/vDSO/parse_vdso.c
// This implements the ELF dynamic linking spec at
// http://sco.com/developers/gabi/latest/ch5.dynamic.html
// The version section is documented at
// http://refspecs.linuxfoundation.org/LSB_3.2.0/LSB-Core-generic/LSB-Core-generic/symversion.html
const (
_AT_RANDOM = 25
_AT_SYSINFO_EHDR = 33
_AT_NULL = 0 /* End of vector */
_PT_LOAD = 1 /* Loadable program segment */
_PT_DYNAMIC = 2 /* Dynamic linking information */
_DT_NULL = 0 /* Marks end of dynamic section */
_DT_HASH = 4 /* Dynamic symbol hash table */
_DT_STRTAB = 5 /* Address of string table */
_DT_SYMTAB = 6 /* Address of symbol table */
_DT_VERSYM = 0x6ffffff0
_DT_VERDEF = 0x6ffffffc
_VER_FLG_BASE = 0x1 /* Version definition of file itself */
_SHN_UNDEF = 0 /* Undefined section */
_SHT_DYNSYM = 11 /* Dynamic linker symbol table */
_STT_FUNC = 2 /* Symbol is a code object */
_STB_GLOBAL = 1 /* Global symbol */
_STB_WEAK = 2 /* Weak symbol */
_EI_NIDENT = 16
)
/* How to extract and insert information held in the st_info field. */
func _ELF64_ST_BIND(val byte) byte { return val >> 4 }
func _ELF64_ST_TYPE(val byte) byte { return val & 0xf }
type elf64Sym struct {
st_name uint32
st_info byte
st_other byte
st_shndx uint16
st_value uint64
st_size uint64
}
type elf64Verdef struct {
vd_version uint16 /* Version revision */
vd_flags uint16 /* Version information */
vd_ndx uint16 /* Version Index */
vd_cnt uint16 /* Number of associated aux entries */
vd_hash uint32 /* Version name hash value */
vd_aux uint32 /* Offset in bytes to verdaux array */
vd_next uint32 /* Offset in bytes to next verdef entry */
}
type elf64Ehdr struct {
e_ident [_EI_NIDENT]byte /* Magic number and other info */
e_type uint16 /* Object file type */
e_machine uint16 /* Architecture */
e_version uint32 /* Object file version */
e_entry uint64 /* Entry point virtual address */
e_phoff uint64 /* Program header table file offset */
e_shoff uint64 /* Section header table file offset */
e_flags uint32 /* Processor-specific flags */
e_ehsize uint16 /* ELF header size in bytes */
e_phentsize uint16 /* Program header table entry size */
e_phnum uint16 /* Program header table entry count */
e_shentsize uint16 /* Section header table entry size */
e_shnum uint16 /* Section header table entry count */
e_shstrndx uint16 /* Section header string table index */
}
type elf64Phdr struct {
p_type uint32 /* Segment type */
p_flags uint32 /* Segment flags */
p_offset uint64 /* Segment file offset */
p_vaddr uint64 /* Segment virtual address */
p_paddr uint64 /* Segment physical address */
p_filesz uint64 /* Segment size in file */
p_memsz uint64 /* Segment size in memory */
p_align uint64 /* Segment alignment */
}
type elf64Shdr struct {
sh_name uint32 /* Section name (string tbl index) */
sh_type uint32 /* Section type */
sh_flags uint64 /* Section flags */
sh_addr uint64 /* Section virtual addr at execution */
sh_offset uint64 /* Section file offset */
sh_size uint64 /* Section size in bytes */
sh_link uint32 /* Link to another section */
sh_info uint32 /* Additional section information */
sh_addralign uint64 /* Section alignment */
sh_entsize uint64 /* Entry size if section holds table */
}
type elf64Dyn struct {
d_tag int64 /* Dynamic entry type */
d_val uint64 /* Integer value */
}
type elf64Verdaux struct {
vda_name uint32 /* Version or dependency names */
vda_next uint32 /* Offset in bytes to next verdaux entry */
}
type elf64Auxv struct {
a_type uint64 /* Entry type */
a_val uint64 /* Integer value */
}
type symbol_key struct {
name string
sym_hash uint32
ptr *uintptr
}
type version_key struct {
version string
ver_hash uint32
}
type vdso_info struct {
valid bool
/* Load information */
load_addr uintptr
load_offset uintptr /* load_addr - recorded vaddr */
/* Symbol table */
symtab *[1 << 32]elf64Sym
symstrings *[1 << 32]byte
chain []uint32
bucket []uint32
/* Version table */
versym *[1 << 32]uint16
verdef *elf64Verdef
}
var linux26 = version_key{"LINUX_2.6", 0x3ae75f6}
var sym_keys = []symbol_key{
{"__vdso_time", 0xa33c485, &__vdso_time_sym},
{"__vdso_gettimeofday", 0x315ca59, &__vdso_gettimeofday_sym},
{"__vdso_clock_gettime", 0xd35ec75, &__vdso_clock_gettime_sym},
}
// initialize with vsyscall fallbacks
var (
__vdso_time_sym uintptr = 0xffffffffff600400
__vdso_gettimeofday_sym uintptr = 0xffffffffff600000
__vdso_clock_gettime_sym uintptr = 0
)
func vdso_init_from_sysinfo_ehdr(info *vdso_info, hdr *elf64Ehdr) {
info.valid = false
info.load_addr = uintptr(unsafe.Pointer(hdr))
pt := unsafe.Pointer(info.load_addr + uintptr(hdr.e_phoff))
// We need two things from the segment table: the load offset
// and the dynamic table.
var found_vaddr bool
var dyn *[1 << 20]elf64Dyn
for i := uint16(0); i < hdr.e_phnum; i++ {
pt := (*elf64Phdr)(add(pt, uintptr(i)*unsafe.Sizeof(elf64Phdr{})))
switch pt.p_type {
case _PT_LOAD:
if !found_vaddr {
found_vaddr = true
info.load_offset = info.load_addr + uintptr(pt.p_offset-pt.p_vaddr)
}
case _PT_DYNAMIC:
dyn = (*[1 << 20]elf64Dyn)(unsafe.Pointer(info.load_addr + uintptr(pt.p_offset)))
}
}
if !found_vaddr || dyn == nil {
return // Failed
}
// Fish out the useful bits of the dynamic table.
var hash *[1 << 30]uint32
hash = nil
info.symstrings = nil
info.symtab = nil
info.versym = nil
info.verdef = nil
for i := 0; dyn[i].d_tag != _DT_NULL; i++ {
dt := &dyn[i]
p := info.load_offset + uintptr(dt.d_val)
switch dt.d_tag {
case _DT_STRTAB:
info.symstrings = (*[1 << 32]byte)(unsafe.Pointer(p))
case _DT_SYMTAB:
info.symtab = (*[1 << 32]elf64Sym)(unsafe.Pointer(p))
case _DT_HASH:
hash = (*[1 << 30]uint32)(unsafe.Pointer(p))
case _DT_VERSYM:
info.versym = (*[1 << 32]uint16)(unsafe.Pointer(p))
case _DT_VERDEF:
info.verdef = (*elf64Verdef)(unsafe.Pointer(p))
}
}
if info.symstrings == nil || info.symtab == nil || hash == nil {
return // Failed
}
if info.verdef == nil {
info.versym = nil
}
// Parse the hash table header.
nbucket := hash[0]
nchain := hash[1]
info.bucket = hash[2 : 2+nbucket]
info.chain = hash[2+nbucket : 2+nbucket+nchain]
// That's all we need.
info.valid = true
}
func vdso_find_version(info *vdso_info, ver *version_key) int32 {
if !info.valid {
return 0
}
def := info.verdef
for {
if def.vd_flags&_VER_FLG_BASE == 0 {
aux := (*elf64Verdaux)(add(unsafe.Pointer(def), uintptr(def.vd_aux)))
if def.vd_hash == ver.ver_hash && ver.version == gostringnocopy(&info.symstrings[aux.vda_name]) {
return int32(def.vd_ndx & 0x7fff)
}
}
if def.vd_next == 0 {
break
}
def = (*elf64Verdef)(add(unsafe.Pointer(def), uintptr(def.vd_next)))
}
return -1 // can not match any version
}
func vdso_parse_symbols(info *vdso_info, version int32) {
if !info.valid {
return
}
for _, k := range sym_keys {
for chain := info.bucket[k.sym_hash%uint32(len(info.bucket))]; chain != 0; chain = info.chain[chain] {
sym := &info.symtab[chain]
typ := _ELF64_ST_TYPE(sym.st_info)
bind := _ELF64_ST_BIND(sym.st_info)
if typ != _STT_FUNC || bind != _STB_GLOBAL && bind != _STB_WEAK || sym.st_shndx == _SHN_UNDEF {
continue
}
if k.name != gostringnocopy(&info.symstrings[sym.st_name]) {
continue
}
// Check symbol version.
if info.versym != nil && version != 0 && int32(info.versym[chain]&0x7fff) != version {
continue
}
*k.ptr = info.load_offset + uintptr(sym.st_value)
break
}
}
}
func sysargs(argc int32, argv **byte) {
n := argc + 1
// skip envp to get to ELF auxiliary vector.
for argv_index(argv, n) != nil {
n++
}
// skip NULL separator
n++
// now argv+n is auxv
auxv := (*[1 << 32]elf64Auxv)(add(unsafe.Pointer(argv), uintptr(n)*ptrSize))
for i := 0; auxv[i].a_type != _AT_NULL; i++ {
av := &auxv[i]
switch av.a_type {
case _AT_SYSINFO_EHDR:
if av.a_val == 0 {
// Something went wrong
continue
}
var info vdso_info
// TODO(rsc): I don't understand why the compiler thinks info escapes
// when passed to the three functions below.
info1 := (*vdso_info)(noescape(unsafe.Pointer(&info)))
vdso_init_from_sysinfo_ehdr(info1, (*elf64Ehdr)(unsafe.Pointer(uintptr(av.a_val))))
vdso_parse_symbols(info1, vdso_find_version(info1, &linux26))
case _AT_RANDOM:
startup_random_data = (*byte)(unsafe.Pointer(uintptr(av.a_val)))
startup_random_data_len = 16
}
}
}

10
src/runtime/vdso_none.go Normal file
View File

@ -0,0 +1,10 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !linux !amd64
package runtime
func sysargs(argc int32, argv **byte) {
}