The hardware divider is an optional component of ARMv7. This patch
detects whether it is available in runtime and use it or not.
1. The hardware divider is detected at startup and a flag is set/clear
according to a perticular bit of runtime.hwcap.
2. Each call of runtime.udiv will check this flag and decide if
use the hardware division instruction.
A rough test shows the performance improves 40-50% for ARMv7. And
the compatibility of ARMv5/v6 is not broken.
fixes#19118
Change-Id: Ic586bc9659ebc169553ca2004d2bdb721df823ac
Reviewed-on: https://go-review.googlesource.com/37496
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
CL 33652 removed the fake auxv for Android, and replaced it with
a /proc/self/auxv fallback. When /proc/self/auxv is unreadable,
however, hardware capabilities detection won't work and the runtime
will mistakenly think that floating point hardware is unavailable.
Fix this by always assuming floating point hardware on Android.
Manually tested on a Nexus 5 running Android 6.0.1. I suspect the
android/arm builder has a readable /proc/self/auxv and therefore
does not trigger the failure mode.
Change-Id: I95c3873803f9e17333c6cb8b9ff2016723104085
Reviewed-on: https://go-review.googlesource.com/34641
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Minux Ma <minux@golang.org>
Run-TryBot: Elias Naur <elias.naur@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
This is a more robust method for obtaining the availability of vx.
Since this variable may be checked frequently I've also now
padded it so that it will be in its own cache line.
I've kept the other check (in hash/crc32) the same for now until
I can figure out the best way to update it.
Updates #15403.
Change-Id: I74eed651afc6f6a9c5fa3b88fa6a2b0c9ecf5875
Reviewed-on: https://go-review.googlesource.com/31149
Reviewed-by: Austin Clements <austin@google.com>
The Linux kernel provides 16 bytes of random data via the auxv vector
at startup. Currently we consume this separately on 386, amd64, arm,
and arm64. Now that we have a common auxv parser, handle _AT_RANDOM in
the common path.
Change-Id: Ib69549a1d37e2d07a351cf0f44007bcd24f0d20d
Reviewed-on: https://go-review.googlesource.com/22062
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Currently several different Linux architectures have separate copies
of the auxv parser. Bring these all together into a single copy of the
parser that calls out to a per-arch handler for each tag/value pair.
This is in preparation for handling common auxv tags in one place.
For #9993.
Change-Id: Iceebc3afad6b4133b70fca7003561ae370445c10
Reviewed-on: https://go-review.googlesource.com/22061
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Michael Hudson-Doyle <michael.hudson@canonical.com>
runtime/internal/sys will hold system-, architecture- and config-
specific constants.
Updates #11647
Change-Id: I6db29c312556087a42e8d2bdd9af40d157c56b54
Reviewed-on: https://go-review.googlesource.com/16817
Reviewed-by: Russ Cox <rsc@golang.org>
Also, crash early on non-Linux SMP ARM systems when GOARM < 7;
without the proper synchronization, SMP cannot work.
Linux is okay because we call kernel-provided routines for
synchronization and barriers, and the kernel takes care of
providing the right routines for the current system.
On non-Linux systems we are left to fend for ourselves.
It is possible to use different synchronization on GOARM=6,
but it's too late to do that in the Go 1.5 cycle.
We don't believe there are any non-Linux SMP GOARM=6 systems anyway.
Fixes#12067.
Change-Id: I771a556e47893ed540ec2cd33d23c06720157ea3
Reviewed-on: https://go-review.googlesource.com/13363
Reviewed-by: Austin Clements <austin@google.com>
Fixes#10450
runtime.cputicks is called from runtime.exitsyscall and must not
split the stack. cputicks is implemented in several ways and the
NOSPLIT annotation was missing from a few of these.
Change-Id: I5cbbb4e5888c5d298fe2fef240782d0e49f59af8
Reviewed-on: https://go-review.googlesource.com/8939
Reviewed-by: Aram Hăvărneanu <aram@mgk.ro>
Make auxv parsing in linux/arm less of a special case.
* rename setup_auxv to sysargs
* exclude linux/arm from vdso_none.go
* move runtime.checkarm after runtime.sysargs so arm specific
values are properly initialised
Change-Id: I1ca7f5844ad5a162337ff061a83933fc9a2b5ff6
Reviewed-on: https://go-review.googlesource.com/2681
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Fixes#9541.
Change-Id: I5d659ad50d7c3d1c92ed9feb86cda4c1a6e62054
Reviewed-on: https://go-review.googlesource.com/2584
Reviewed-by: Dave Cheney <dave@cheney.net>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
It's rather unsporting of the kernel to give us a pointer to unaligned memory.
This fixes one crash, the next crash occurs in the soft float emulation.
LGTM=minux, rsc, austin
R=minux, rsc, austin
CC=golang-codereviews
https://golang.org/cl/177730043
The conversion was done with an automated tool and then
modified only as necessary to make it compile and run.
[This CL is part of the removal of C code from package runtime.
See golang.org/s/dev.cc for an overview.]
LGTM=r
R=r
CC=austin, dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/174830044