Currently, runqsteal steals Gs from another P into an intermediate
buffer and then copies those Gs into the current P's run queue. This
intermediate buffer itself was moved from the stack to the P in commit
c4fe503 to eliminate the cost of zeroing it on every steal.
This commit follows up c4fe503 by stealing directly into the current
P's run queue, which eliminates the copy and the need for the
intermediate buffer. The update to the tail pointer is only committed
once the entire steal operation has succeeded, so the semantics of
stealing do not change.
Change-Id: Icdd7a0eb82668980bf42c0154b51eef6419fdd51
Reviewed-on: https://go-review.googlesource.com/9998
Reviewed-by: Russ Cox <rsc@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
Small types record the location of pointers in their memory layout
by using a simple bitmap. In Go 1.4 the bitmap held 4-bit entries,
and in Go 1.5 the bitmap holds 1-bit entries, but in both cases using
a bitmap for a large type containing arrays does not make sense:
if someone refers to the type [1<<28]*byte in a program in such
a way that the type information makes it into the binary, it would be
a waste of space to write a 128 MB (for 4-bit entries) or even 32 MB
(for 1-bit entries) bitmap full of 1s into the binary or even to keep
one in memory during the execution of the program.
For large types containing arrays, it is much more compact to describe
the locations of pointers using a notation that can express repetition
than to lay out a bitmap of pointers. Go 1.4 included such a notation,
called ``GC programs'' but it was complex, required recursion during
decoding, and was generally slow. Dmitriy measured the execution of
these programs writing directly to the heap bitmap as being 7x slower
than copying from a preunrolled 4-bit mask (and frankly that code was
not terribly fast either). For some tests, unrollgcprog1 was seen costing
as much as 3x more than the rest of malloc combined.
This CL introduces a different form for the GC programs. They use a
simple Lempel-Ziv-style encoding of the 1-bit pointer information,
in which the only operations are (1) emit the following n bits
and (2) repeat the last n bits c more times. This encoding can be
generated directly from the Go type information (using repetition
only for arrays or large runs of non-pointer data) and it can be decoded
very efficiently. In particular the decoding requires little state and
no recursion, so that the entire decoding can run without any memory
accesses other than the reads of the encoding and the writes of the
decoded form to the heap bitmap. For recursive types like arrays of
arrays of arrays, the inner instructions are only executed once, not
n times, so that large repetitions run at full speed. (In contrast, large
repetitions in the old programs repeated the individual bit-level layout
of the inner data over and over.) The result is as much as 25x faster
decoding compared to the old form.
Because the old decoder was so slow, Go 1.4 had three (or so) cases
for how to set the heap bitmap bits for an allocation of a given type:
(1) If the type had an even number of words up to 32 words, then
the 4-bit pointer mask for the type fit in no more than 16 bytes;
store the 4-bit pointer mask directly in the binary and copy from it.
(1b) If the type had an odd number of words up to 15 words, then
the 4-bit pointer mask for the type, doubled to end on a byte boundary,
fit in no more than 16 bytes; store that doubled mask directly in the
binary and copy from it.
(2) If the type had an even number of words up to 128 words,
or an odd number of words up to 63 words (again due to doubling),
then the 4-bit pointer mask would fit in a 64-byte unrolled mask.
Store a GC program in the binary, but leave space in the BSS for
the unrolled mask. Execute the GC program to construct the mask the
first time it is needed, and thereafter copy from the mask.
(3) Otherwise, store a GC program and execute it to write directly to
the heap bitmap each time an object of that type is allocated.
(This is the case that was 7x slower than the other two.)
Because the new pointer masks store 1-bit entries instead of 4-bit
entries and because using the decoder no longer carries a significant
overhead, after this CL (that is, for Go 1.5) there are only two cases:
(1) If the type is 128 words or less (no condition about odd or even),
store the 1-bit pointer mask directly in the binary and use it to
initialize the heap bitmap during malloc. (Implemented in CL 9702.)
(2) There is no case 2 anymore.
(3) Otherwise, store a GC program and execute it to write directly to
the heap bitmap each time an object of that type is allocated.
Executing the GC program directly into the heap bitmap (case (3) above)
was disabled for the Go 1.5 dev cycle, both to avoid needing to use
GC programs for typedmemmove and to avoid updating that code as
the heap bitmap format changed. Typedmemmove no longer uses this
type information; as of CL 9886 it uses the heap bitmap directly.
Now that the heap bitmap format is stable, we reintroduce GC programs
and their space savings.
Benchmarks for heapBitsSetType, before this CL vs this CL:
name old mean new mean delta
SetTypePtr 7.59ns × (0.99,1.02) 5.16ns × (1.00,1.00) -32.05% (p=0.000)
SetTypePtr8 21.0ns × (0.98,1.05) 21.4ns × (1.00,1.00) ~ (p=0.179)
SetTypePtr16 24.1ns × (0.99,1.01) 24.6ns × (1.00,1.00) +2.41% (p=0.001)
SetTypePtr32 31.2ns × (0.99,1.01) 32.4ns × (0.99,1.02) +3.72% (p=0.001)
SetTypePtr64 45.2ns × (1.00,1.00) 47.2ns × (1.00,1.00) +4.42% (p=0.000)
SetTypePtr126 75.8ns × (0.99,1.01) 79.1ns × (1.00,1.00) +4.25% (p=0.000)
SetTypePtr128 74.3ns × (0.99,1.01) 77.6ns × (1.00,1.01) +4.55% (p=0.000)
SetTypePtrSlice 726ns × (1.00,1.01) 712ns × (1.00,1.00) -1.95% (p=0.001)
SetTypeNode1 20.0ns × (0.99,1.01) 20.7ns × (1.00,1.00) +3.71% (p=0.000)
SetTypeNode1Slice 112ns × (1.00,1.00) 113ns × (0.99,1.00) ~ (p=0.070)
SetTypeNode8 23.9ns × (1.00,1.00) 24.7ns × (1.00,1.01) +3.18% (p=0.000)
SetTypeNode8Slice 294ns × (0.99,1.02) 287ns × (0.99,1.01) -2.38% (p=0.015)
SetTypeNode64 52.8ns × (0.99,1.03) 51.8ns × (0.99,1.01) ~ (p=0.069)
SetTypeNode64Slice 1.13µs × (0.99,1.05) 1.14µs × (0.99,1.00) ~ (p=0.767)
SetTypeNode64Dead 36.0ns × (1.00,1.01) 32.5ns × (0.99,1.00) -9.67% (p=0.000)
SetTypeNode64DeadSlice 1.43µs × (0.99,1.01) 1.40µs × (1.00,1.00) -2.39% (p=0.001)
SetTypeNode124 75.7ns × (1.00,1.01) 79.0ns × (1.00,1.00) +4.44% (p=0.000)
SetTypeNode124Slice 1.94µs × (1.00,1.01) 2.04µs × (0.99,1.01) +4.98% (p=0.000)
SetTypeNode126 75.4ns × (1.00,1.01) 77.7ns × (0.99,1.01) +3.11% (p=0.000)
SetTypeNode126Slice 1.95µs × (0.99,1.01) 2.03µs × (1.00,1.00) +3.74% (p=0.000)
SetTypeNode128 85.4ns × (0.99,1.01) 122.0ns × (1.00,1.00) +42.89% (p=0.000)
SetTypeNode128Slice 2.20µs × (1.00,1.01) 2.36µs × (0.98,1.02) +7.48% (p=0.001)
SetTypeNode130 83.3ns × (1.00,1.00) 123.0ns × (1.00,1.00) +47.61% (p=0.000)
SetTypeNode130Slice 2.30µs × (0.99,1.01) 2.40µs × (0.98,1.01) +4.37% (p=0.000)
SetTypeNode1024 498ns × (1.00,1.00) 537ns × (1.00,1.00) +7.96% (p=0.000)
SetTypeNode1024Slice 15.5µs × (0.99,1.01) 17.8µs × (1.00,1.00) +15.27% (p=0.000)
The above compares always using a cached pointer mask (and the
corresponding waste of memory) against using the programs directly.
Some slowdown is expected, in exchange for having a better general algorithm.
The GC programs kick in for SetTypeNode128, SetTypeNode130, SetTypeNode1024,
along with the slice variants of those.
It is possible that the cutoff of 128 words (bits) should be raised
in a followup CL, but even with this low cutoff the GC programs are
faster than Go 1.4's "fast path" non-GC program case.
Benchmarks for heapBitsSetType, Go 1.4 vs this CL:
name old mean new mean delta
SetTypePtr 6.89ns × (1.00,1.00) 5.17ns × (1.00,1.00) -25.02% (p=0.000)
SetTypePtr8 25.8ns × (0.97,1.05) 21.5ns × (1.00,1.00) -16.70% (p=0.000)
SetTypePtr16 39.8ns × (0.97,1.02) 24.7ns × (0.99,1.01) -37.81% (p=0.000)
SetTypePtr32 68.8ns × (0.98,1.01) 32.2ns × (1.00,1.01) -53.18% (p=0.000)
SetTypePtr64 130ns × (1.00,1.00) 47ns × (1.00,1.00) -63.67% (p=0.000)
SetTypePtr126 241ns × (0.99,1.01) 79ns × (1.00,1.01) -67.25% (p=0.000)
SetTypePtr128 2.07µs × (1.00,1.00) 0.08µs × (1.00,1.00) -96.27% (p=0.000)
SetTypePtrSlice 1.05µs × (0.99,1.01) 0.72µs × (0.99,1.02) -31.70% (p=0.000)
SetTypeNode1 16.0ns × (0.99,1.01) 20.8ns × (0.99,1.03) +29.91% (p=0.000)
SetTypeNode1Slice 184ns × (0.99,1.01) 112ns × (0.99,1.01) -39.26% (p=0.000)
SetTypeNode8 29.5ns × (0.97,1.02) 24.6ns × (1.00,1.00) -16.50% (p=0.000)
SetTypeNode8Slice 624ns × (0.98,1.02) 285ns × (1.00,1.00) -54.31% (p=0.000)
SetTypeNode64 135ns × (0.96,1.08) 52ns × (0.99,1.02) -61.32% (p=0.000)
SetTypeNode64Slice 3.83µs × (1.00,1.00) 1.14µs × (0.99,1.01) -70.16% (p=0.000)
SetTypeNode64Dead 134ns × (0.99,1.01) 32ns × (1.00,1.01) -75.74% (p=0.000)
SetTypeNode64DeadSlice 3.83µs × (0.99,1.00) 1.40µs × (1.00,1.01) -63.42% (p=0.000)
SetTypeNode124 240ns × (0.99,1.01) 79ns × (1.00,1.01) -67.05% (p=0.000)
SetTypeNode124Slice 7.27µs × (1.00,1.00) 2.04µs × (1.00,1.00) -71.95% (p=0.000)
SetTypeNode126 2.06µs × (0.99,1.01) 0.08µs × (0.99,1.01) -96.23% (p=0.000)
SetTypeNode126Slice 64.4µs × (1.00,1.00) 2.0µs × (1.00,1.00) -96.85% (p=0.000)
SetTypeNode128 2.09µs × (1.00,1.01) 0.12µs × (1.00,1.00) -94.15% (p=0.000)
SetTypeNode128Slice 65.4µs × (1.00,1.00) 2.4µs × (0.99,1.03) -96.39% (p=0.000)
SetTypeNode130 2.11µs × (1.00,1.00) 0.12µs × (1.00,1.00) -94.18% (p=0.000)
SetTypeNode130Slice 66.3µs × (1.00,1.00) 2.4µs × (0.97,1.08) -96.34% (p=0.000)
SetTypeNode1024 16.0µs × (1.00,1.01) 0.5µs × (1.00,1.00) -96.65% (p=0.000)
SetTypeNode1024Slice 512µs × (1.00,1.00) 18µs × (0.98,1.04) -96.45% (p=0.000)
SetTypeNode124 uses a 124 data + 2 ptr = 126-word allocation.
Both Go 1.4 and this CL are using pointer bitmaps for this case,
so that's an overall 3x speedup for using pointer bitmaps.
SetTypeNode128 uses a 128 data + 2 ptr = 130-word allocation.
Both Go 1.4 and this CL are running the GC program for this case,
so that's an overall 17x speedup when using GC programs (and
I've seen >20x on other systems).
Comparing Go 1.4's SetTypeNode124 (pointer bitmap) against
this CL's SetTypeNode128 (GC program), the slow path in the
code in this CL is 2x faster than the fast path in Go 1.4.
The Go 1 benchmarks are basically unaffected compared to just before this CL.
Go 1 benchmarks, before this CL vs this CL:
name old mean new mean delta
BinaryTree17 5.87s × (0.97,1.04) 5.91s × (0.96,1.04) ~ (p=0.306)
Fannkuch11 4.38s × (1.00,1.00) 4.37s × (1.00,1.01) -0.22% (p=0.006)
FmtFprintfEmpty 90.7ns × (0.97,1.10) 89.3ns × (0.96,1.09) ~ (p=0.280)
FmtFprintfString 282ns × (0.98,1.04) 287ns × (0.98,1.07) +1.72% (p=0.039)
FmtFprintfInt 269ns × (0.99,1.03) 282ns × (0.97,1.04) +4.87% (p=0.000)
FmtFprintfIntInt 478ns × (0.99,1.02) 481ns × (0.99,1.02) +0.61% (p=0.048)
FmtFprintfPrefixedInt 399ns × (0.98,1.03) 400ns × (0.98,1.05) ~ (p=0.533)
FmtFprintfFloat 563ns × (0.99,1.01) 570ns × (1.00,1.01) +1.37% (p=0.000)
FmtManyArgs 1.89µs × (0.99,1.01) 1.92µs × (0.99,1.02) +1.88% (p=0.000)
GobDecode 15.2ms × (0.99,1.01) 15.2ms × (0.98,1.05) ~ (p=0.609)
GobEncode 11.6ms × (0.98,1.03) 11.9ms × (0.98,1.04) +2.17% (p=0.000)
Gzip 648ms × (0.99,1.01) 648ms × (1.00,1.01) ~ (p=0.835)
Gunzip 142ms × (1.00,1.00) 143ms × (1.00,1.01) ~ (p=0.169)
HTTPClientServer 90.5µs × (0.98,1.03) 91.5µs × (0.98,1.04) +1.04% (p=0.045)
JSONEncode 31.5ms × (0.98,1.03) 31.4ms × (0.98,1.03) ~ (p=0.549)
JSONDecode 111ms × (0.99,1.01) 107ms × (0.99,1.01) -3.21% (p=0.000)
Mandelbrot200 6.01ms × (1.00,1.00) 6.01ms × (1.00,1.00) ~ (p=0.878)
GoParse 6.54ms × (0.99,1.02) 6.61ms × (0.99,1.03) +1.08% (p=0.004)
RegexpMatchEasy0_32 160ns × (1.00,1.01) 161ns × (1.00,1.00) +0.40% (p=0.000)
RegexpMatchEasy0_1K 560ns × (0.99,1.01) 559ns × (0.99,1.01) ~ (p=0.088)
RegexpMatchEasy1_32 138ns × (0.99,1.01) 138ns × (1.00,1.00) ~ (p=0.380)
RegexpMatchEasy1_1K 877ns × (1.00,1.00) 878ns × (1.00,1.00) ~ (p=0.157)
RegexpMatchMedium_32 251ns × (0.99,1.00) 251ns × (1.00,1.01) +0.28% (p=0.021)
RegexpMatchMedium_1K 72.6µs × (1.00,1.00) 72.6µs × (1.00,1.00) ~ (p=0.539)
RegexpMatchHard_32 3.84µs × (1.00,1.00) 3.84µs × (1.00,1.00) ~ (p=0.378)
RegexpMatchHard_1K 117µs × (1.00,1.00) 117µs × (1.00,1.00) ~ (p=0.067)
Revcomp 904ms × (0.99,1.02) 904ms × (0.99,1.01) ~ (p=0.943)
Template 125ms × (0.99,1.02) 127ms × (0.99,1.01) +1.79% (p=0.000)
TimeParse 627ns × (0.99,1.01) 622ns × (0.99,1.01) -0.88% (p=0.000)
TimeFormat 655ns × (0.99,1.02) 655ns × (0.99,1.02) ~ (p=0.976)
For the record, Go 1 benchmarks, Go 1.4 vs this CL:
name old mean new mean delta
BinaryTree17 4.61s × (0.97,1.05) 5.91s × (0.98,1.03) +28.35% (p=0.000)
Fannkuch11 4.40s × (0.99,1.03) 4.41s × (0.99,1.01) ~ (p=0.212)
FmtFprintfEmpty 102ns × (0.99,1.01) 84ns × (0.99,1.02) -18.38% (p=0.000)
FmtFprintfString 302ns × (0.98,1.01) 303ns × (0.99,1.02) ~ (p=0.203)
FmtFprintfInt 313ns × (0.97,1.05) 270ns × (0.99,1.01) -13.69% (p=0.000)
FmtFprintfIntInt 524ns × (0.98,1.02) 477ns × (0.99,1.00) -8.87% (p=0.000)
FmtFprintfPrefixedInt 424ns × (0.98,1.02) 386ns × (0.99,1.01) -8.96% (p=0.000)
FmtFprintfFloat 652ns × (0.98,1.02) 594ns × (0.97,1.05) -8.97% (p=0.000)
FmtManyArgs 2.13µs × (0.99,1.02) 1.94µs × (0.99,1.01) -8.92% (p=0.000)
GobDecode 17.1ms × (0.99,1.02) 14.9ms × (0.98,1.03) -13.07% (p=0.000)
GobEncode 13.5ms × (0.98,1.03) 11.5ms × (0.98,1.03) -15.25% (p=0.000)
Gzip 656ms × (0.99,1.02) 647ms × (0.99,1.01) -1.29% (p=0.000)
Gunzip 143ms × (0.99,1.02) 144ms × (0.99,1.01) ~ (p=0.204)
HTTPClientServer 88.2µs × (0.98,1.02) 90.8µs × (0.98,1.01) +2.93% (p=0.000)
JSONEncode 32.2ms × (0.98,1.02) 30.9ms × (0.97,1.04) -4.06% (p=0.001)
JSONDecode 121ms × (0.98,1.02) 110ms × (0.98,1.05) -8.95% (p=0.000)
Mandelbrot200 6.06ms × (0.99,1.01) 6.11ms × (0.98,1.04) ~ (p=0.184)
GoParse 6.76ms × (0.97,1.04) 6.58ms × (0.98,1.05) -2.63% (p=0.003)
RegexpMatchEasy0_32 195ns × (1.00,1.01) 155ns × (0.99,1.01) -20.43% (p=0.000)
RegexpMatchEasy0_1K 479ns × (0.98,1.03) 535ns × (0.99,1.02) +11.59% (p=0.000)
RegexpMatchEasy1_32 169ns × (0.99,1.02) 131ns × (0.99,1.03) -22.44% (p=0.000)
RegexpMatchEasy1_1K 1.53µs × (0.99,1.01) 0.87µs × (0.99,1.02) -43.07% (p=0.000)
RegexpMatchMedium_32 334ns × (0.99,1.01) 242ns × (0.99,1.01) -27.53% (p=0.000)
RegexpMatchMedium_1K 125µs × (1.00,1.01) 72µs × (0.99,1.03) -42.53% (p=0.000)
RegexpMatchHard_32 6.03µs × (0.99,1.01) 3.79µs × (0.99,1.01) -37.12% (p=0.000)
RegexpMatchHard_1K 189µs × (0.99,1.02) 115µs × (0.99,1.01) -39.20% (p=0.000)
Revcomp 935ms × (0.96,1.03) 926ms × (0.98,1.02) ~ (p=0.083)
Template 146ms × (0.97,1.05) 119ms × (0.99,1.01) -18.37% (p=0.000)
TimeParse 660ns × (0.99,1.01) 624ns × (0.99,1.02) -5.43% (p=0.000)
TimeFormat 670ns × (0.98,1.02) 710ns × (1.00,1.01) +5.97% (p=0.000)
This CL is a bit larger than I would like, but the compiler, linker, runtime,
and package reflect all need to be in sync about the format of these programs,
so there is no easy way to split this into independent changes (at least
while keeping the build working at each change).
Fixes#9625.
Fixes#10524.
Change-Id: I9e3e20d6097099d0f8532d1cb5b1af528804989a
Reviewed-on: https://go-review.googlesource.com/9888
Reviewed-by: Austin Clements <austin@google.com>
Run-TryBot: Russ Cox <rsc@golang.org>
The Template objects are supposed to be goroutine-safe once they
have been parsed. This includes the text and html ones.
For html/template, the escape mechanism is triggered at execution
time. It may alter the internal structures of the template, so
a mutex protects them against concurrent accesses.
The text/template package is free of any synchronization primitive.
A race condition may occur when nested templates are escaped:
the escape algorithm alters the function maps of the associated
text templates, while a concurrent template execution may access
the function maps in read mode.
The less invasive fix I have found is to introduce a RWMutex in
text/template to protect the function maps. This is unfortunate
but it should be effective.
Fixes#9945
Change-Id: I1edb73c0ed0f1fcddd2f1516230b548b92ab1269
Reviewed-on: https://go-review.googlesource.com/10101
Reviewed-by: Rob Pike <r@golang.org>
This allows the removal of a fudge in data.go.
We have to defer the calls to adddynlib on non-Darwin until after we have
decided whether we are externally or internally linking. The Macho/ELF
separation could do with some cleaning up, but: code freeze.
Fixing this once rather than per-arch is what inspired the previous CLs.
Change-Id: I0166f7078a045dc09827745479211247466c0c54
Reviewed-on: https://go-review.googlesource.com/10002
Run-TryBot: Michael Hudson-Doyle <michael.hudson@canonical.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
The only essential difference is elf32 vs elf64, I assume the other differences
are bugs in one version or another...
Change-Id: Ie6ff33d5574a6592b543df9983eff8fdf88c97a1
Reviewed-on: https://go-review.googlesource.com/10001
Run-TryBot: Michael Hudson-Doyle <michael.hudson@canonical.com>
Reviewed-by: Russ Cox <rsc@golang.org>
They were all essentially the same.
Change-Id: I6e0b548cda6e4bbe2ec3b3025b746d1f6d332d48
Reviewed-on: https://go-review.googlesource.com/10000
Run-TryBot: Michael Hudson-Doyle <michael.hudson@canonical.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
This is an automated follow-up to CL 10120.
It was generated with a combination of eg and gofmt -r.
No functional changes. Passes toolstash -cmp.
Change-Id: I0dc6d146372012b4cce9cc4064066daa6694eee6
Reviewed-on: https://go-review.googlesource.com/10144
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
The previous implementation spawned an extra goroutine to handle
rechecking resolv.conf for changes.
This change eliminates the extra goroutine, and has rechecking
done as part of a lookup. A side effect of this change is that the
first lookup after a resolv.conf change will now succeed, whereas
previously it would have failed. It also fixes rechecking logic to
ignore resolv.conf parsing errors as it should.
Fixes#8652Fixes#10576Fixes#10649Fixes#10650Fixes#10845
Change-Id: I502b587c445fa8eca5207ca4f2c8ec8c339fec7f
Reviewed-on: https://go-review.googlesource.com/9991
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
Reviewed-by: Mikio Hara <mikioh.mikioh@gmail.com>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
This extends cmd/yacc with support for
%error { tokens } : message
syntax to specify custom error messages to use instead of the default
generic ones. This allows merging go.errors into go.y and removing
the yaccerrors.go tool.
Updates #9968.
Change-Id: I781219c568b86472755f877f48401eaeab00ead5
Reviewed-on: https://go-review.googlesource.com/8563
Reviewed-by: Russ Cox <rsc@golang.org>
This reverts commit 5726af54eb.
It broke all the builds.
Change-Id: I4b1dde86f9433717d303c1dabd6aa1a2bf97fab2
Reviewed-on: https://go-review.googlesource.com/10143
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
All slice types which have elements of kind reflect.Uint8 are marshalled
into base64 for compactness. When decoding such data into a custom type
based on []byte the decoder checked the slice kind instead of the slice
element kind, so no appropriate decoder was found.
Fixed by letting the decoder check slice element kind like the encoder.
This guarantees that already encoded data can still be successfully
decoded.
Fixes#8962.
Change-Id: Ia320d4dc2c6e9e5fe6d8dc15788c81da23d20c4f
Reviewed-on: https://go-review.googlesource.com/9371
Reviewed-by: Peter Waldschmidt <peter@waldschmidt.com>
Reviewed-by: Russ Cox <rsc@golang.org>
Name will be converted from an anonymous to a
named field in a subsequent, automated CL.
No functional changes. Passes toolstash -cmp.
This reduces the size of gc.Node from 424 to 400 bytes.
This in turn reduces the permanent (pprof -inuse_space)
memory usage while compiling the test/rotate?.go tests:
test old(MB) new(MB) change
rotate0 379.49 367.30 -3.21%
rotate1 373.42 361.59 -3.16%
rotate2 381.17 368.77 -3.25%
rotate3 374.30 362.48 -3.15%
Updates #9933.
Change-Id: I21479527c136add4f1efb9342774e3be3e276e83
Reviewed-on: https://go-review.googlesource.com/10120
Reviewed-by: Russ Cox <rsc@golang.org>
This CL was generated by updating Val in go.go
and then running:
sed -i "" 's/\.U\.[SBXFC]val = /.U = /' *.go
sed -i "" 's/\.U\.Sval/.U.\(string\)/g' *.go *.y
sed -i "" 's/\.U\.Bval/.U.\(bool\)/g' *.go *.y
sed -i "" 's/\.U\.Xval/.U.\(\*Mpint\)/g' *.go *.y
sed -i "" 's/\.U\.Fval/.U.\(\*Mpflt\)/g' *.go *.y
sed -i "" 's/\.U\.Cval/.U.\(\*Mpcplx\)/g' *.go *.y
No functional changes. Passes toolstash -cmp.
This reduces the size of gc.Node from 424 to 392 bytes.
This in turn reduces the permanent (pprof -inuse_space)
memory usage while compiling the test/rotate?.go tests:
test old(MB) new(MB) change
rotate0 379.49 364.78 -3.87%
rotate1 373.42 359.07 -3.84%
rotate2 381.17 366.24 -3.91%
rotate3 374.30 359.95 -3.83%
CL 8445 was similar to this; gri asked that Val's implementation
be hidden first. CLs 8912, 9263, and 9267 have at least
isolated the changes to the cmd/internal/gc package.
Updates #9933.
Change-Id: I83ddfe003d48e0a73c92e819edd3b5e620023084
Reviewed-on: https://go-review.googlesource.com/10059
Reviewed-by: Russ Cox <rsc@golang.org>
This trivial change is a prerequisite to
converting Val.U to an interface{}.
No functional changes. Passes toolstash -cmp.
Change-Id: I17ff036f68d29a9ed0097a8b23ae1c91e6ce8c21
Reviewed-on: https://go-review.googlesource.com/10058
Reviewed-by: Russ Cox <rsc@golang.org>
Remove all uses of Node.Val outside of the gc package.
A subsequent, automated commit in the Go 1.6 cycle
will unexport Node.Val.
No functional changes. Passes toolstash -cmp.
Change-Id: Ia92ae6a7766c83ab3e45c69edab24a9581c824f9
Reviewed-on: https://go-review.googlesource.com/9267
Reviewed-by: Russ Cox <rsc@golang.org>
Remove all uses of Mp* outside of the gc package.
A subsequent, automated commit in the Go 1.6
cycle will unexport all Mp* functions and types.
No functional changes. Passes toolstash -cmp.
Change-Id: Ie1604cb5b84ffb30b47f4777d4235570f2c62709
Reviewed-on: https://go-review.googlesource.com/9263
Reviewed-by: Russ Cox <rsc@golang.org>
Preallocating them in reflect means that
(1) if you say _ = PtrTo(ArrayOf(1000000000, reflect.TypeOf(byte(0)))), you just allocated 1GB of data
(2) if you say it again, that's *another* GB of data.
The only use of t.zero in the runtime is for map elements.
Delay the allocation until the creation of a map with that element type,
and share the zeros.
The one downside of the shared zero is that it's not garbage collected,
but it's also never written, so the OS should be able to handle it fairly
efficiently.
Change-Id: I56b098a091abf3ac0945de28ebef9a6c08e76614
Reviewed-on: https://go-review.googlesource.com/10111
Reviewed-by: Keith Randall <khr@golang.org>
According to MSDN RegQueryValueEx page:
If the data has the REG_SZ, REG_MULTI_SZ or REG_EXPAND_SZ type, the
string may not have been stored with the proper terminating null
characters. Therefore, even if the function returns ERROR_SUCCESS, the
application should ensure that the string is properly terminated before
using it; otherwise, it may overwrite a buffer. (Note that REG_MULTI_SZ
strings should have two terminating null characters.)
Test written by Alex Brainman <alex.brainman@gmail.com>
Change-Id: I8c0852e0527e27ceed949134ed5e6de944189986
Reviewed-on: https://go-review.googlesource.com/9806
Reviewed-by: Alex Brainman <alex.brainman@gmail.com>
Run-TryBot: Alex Brainman <alex.brainman@gmail.com>
See CL 9962 for the rationale.
Change-Id: I73c714fce258430eea1e61d3835f5c8e9014ca1f
Signed-off-by: Shenghou Ma <minux@golang.org>
Reviewed-on: https://go-review.googlesource.com/9925
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Auto-generated using the following bash script:
for i in z*_*_*.go; do
goosgoarch=`basename ${i/${i/_*/}_/} .go`
goos=${goosgoarch/_*/}
goarch=${goosgoarch/*_/}
echo $i $goos $goarch
[ "$goos" = "windows" ] && continue
sed -i -e "/^package /i\/\/ +build $goarch,$goos\n" "$i"
done
Change-Id: I756fee551d1698080e4591fed8f058ae0450aaa5
Signed-off-by: Shenghou Ma <minux@golang.org>
Reviewed-on: https://go-review.googlesource.com/10113
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Missed a case; just need to call validateType.
Fixes#10800.
Change-Id: I81997ca7a9feb1be31c8b47e631b32712d7ffb86
Reviewed-on: https://go-review.googlesource.com/10031
Reviewed-by: Andrew Gerrand <adg@golang.org>
This reduces the depth of the inlining at a particular call site.
The inliner introduces many temporary variables, and the compiler can do
a better job with fewer. Being verbose in the bodies of these helper functions
seems like a reasonable tradeoff: the uses are still just as readable, and
they run faster in some important cases.
Change-Id: I5323976ed3704d0acd18fb31176cfbf5ba23a89c
Reviewed-on: https://go-review.googlesource.com/9883
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Austin Clements <austin@google.com>