I haven't looked at the source, but the gc compiler appears to
omit "not used" errors when there is an error in the
initializer. This is harder to do in gccgo, and frankly I
think the "not used" error is still useful even if the
initializer has a problem. This CL tweaks some tests to avoid
the error, which is not the point of these tests in any case.
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/5561059
Preserve test.
changeset: 11593:f1deaf35e1d1
user: Luuk van Dijk <lvd@golang.org>
date: Tue Jan 17 10:00:57 2012 +0100
summary: gc: fix infinite recursion for embedded interfaces
This is causing 'interface type loop' errors during compilation
of a complex program. I don't understand what's happening
well enough to boil it down to a simple test case, but undoing
this change fixes the problem.
The change being undone is fixing a corner case (uses of
pointer to interface in an interface definition) that basically
only comes up in erroneous Go programs. Let's not try to
fix this again until after Go 1.
Unfixes issue 1909.
TBR=lvd
CC=golang-dev
https://golang.org/cl/5555063
This will make these tests more meaningful for gccgo, which
runs tests in parallel and has no equivalent to golden.out.
Remove ken/simpprint.go since it duplicates helloworld.go.
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/5536058
I'm planning to change these tests, but the gofmt changes are
fairly extensive, so I'm separating the gofmt changes from the
substantive changes.
R=golang-dev, rsc, r
CC=golang-dev
https://golang.org/cl/5557052
The escape analysis code does not make a distinction between
scalar and pointers fields in structs. Non-pointer fields
that escape should not make the whole struct escape.
R=lvd, rsc
CC=golang-dev, remy
https://golang.org/cl/5489128
This fixes issue 2444.
A big cleanup of all 31/32bit size boundaries i'll leave for another cl though. (see also issue 1700).
R=rsc
CC=golang-dev
https://golang.org/cl/5484058
Refactors the benchmarks and test code.
Now benchmarks can call Errorf, Fail, etc.,
and the runner will act accordingly.
Because functionality has been folded into an
embedded type, a number of methods' docs
no longer appear in godoc output. A fix is
underway; if it doesn't happen fast enough,
I'll add wrapper methods to restore the
documentation.
R=bradfitz, adg, rsc
CC=golang-dev
https://golang.org/cl/5492060
I have included a few important microbenchmarks,
but the overall intent is to have mostly end-to-end
benchmarks timing real world operations.
The jsondata.go file is a summary of agl's
activity in various open source repositories.
It gets used as test data for many of the benchmarks.
Everything links into one binary (even the test data)
so that it is easy to run the benchmarks on many
computers: there is just one file to copy around.
R=golang-dev, r, bradfitz, adg, r
CC=golang-dev
https://golang.org/cl/5484071
This avoids degraded performance caused by extra labels
emitted by inlining (breaking strconv ftoa alloc count unittest) and is better in any case.
R=rsc
CC=golang-dev
https://golang.org/cl/5483071
To allow these types as map keys, we must fill in
equal and hash functions in their algorithm tables.
Structs or arrays that are "just memory", like [2]int,
can and do continue to use the AMEM algorithm.
Structs or arrays that contain special values like
strings or interface values use generated functions
for both equal and hash.
The runtime helper func runtime.equal(t, x, y) bool handles
the general equality case for x == y and calls out to
the equal implementation in the algorithm table.
For short values (<= 4 struct fields or array elements),
the sequence of elementwise comparisons is inlined
instead of calling runtime.equal.
R=ken, mpimenov
CC=golang-dev
https://golang.org/cl/5451105