The old code ignored the field alignment, and only looked at the field
offset: if the field offset required padding, cgo added padding. But
while that approach works for Go (at least with the gc toolchain) it
doesn't work for C code using packed structs. With a packed struct the
added padding may leave the struct at a misaligned position, and the
inserted alignment, which cgo is not considering, may introduce
additional, unexpected, padding. Padding that ignores alignment is not
a good idea when the struct is not packed, and Go structs are never
packed. So don't ignore alignment.
Fixes#28896
Change-Id: Ie50ea15fa6dc35557497097be9fecfecb11efd8a
Reviewed-on: https://go-review.googlesource.com/c/150602
Run-TryBot: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Bryan C. Mills <bcmills@google.com>
cgocall could previously invoke the race detector on an M whose P had
been retaken. The race detector would attempt to use the P-local state
from this stale P, racing with the thread that was actually wired to
that P. The result was memory corruption of ThreadSanitizer's internal
data structures that presented as hard-to-understand assertion failures
and segfaults.
Reorder cgocall so that it always acquires a P before invoking the race
detector, and add a test that stresses the interaction between cgo and
the race detector to protect against future bugs of this kind.
Fixes#27660.
Change-Id: Ide93f96a23490314d6647547140e0a412a97f0d4
Reviewed-on: https://go-review.googlesource.com/c/148717
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
In Android's NDK16, jobject is now declared as:
#ifdef __cplusplus
class _jobject {};
typedef _jobject* jobject;
#else /* not __cplusplus */
typedef void* jobject;
#endif
This makes the jobject to uintptr check fail because it expects the
following definition:
struct _jobject;
typedef struct _jobject *jobject;
Update the type check to handle that new type definition in both C and
C++ modes.
Fixes#26213
Change-Id: Ic36d4a5176526998d2d5e4e404f8943961141f7a
GitHub-Last-Rev: 42037c3c58
GitHub-Pull-Request: golang/go#26221
Reviewed-on: https://go-review.googlesource.com/122217
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Before GCC 8 C code like
const unsigned long long int neg = (const unsigned long long) -1;
void f(void) { static const double x = (neg); }
would get an error "initializer element is not constant". In GCC 8 and
later it does not.
Because a value like neg, above, can not be used as a general integer
constant, this causes cgo to conclude that it is a floating point
constant. The way that cgo handles floating point values then causes
it to get the wrong value for it: 18446744073709551615 rather than -1.
These are of course the same value when converted to int64, but Go
does not permit that kind of conversion for an out-of-range constant.
This CL side-steps the problem by treating floating point constants
with integer type as they would up being treated before GCC 8: as
variables rather than constants.
Fixes#26066
Change-Id: I6f2f9ac2fa8a4b8218481b474f0b539758eb3b79
Reviewed-on: https://go-review.googlesource.com/121035
Run-TryBot: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Use more cryptic names for local variables inside C function wrappers.
Fixes#23356
Change-Id: Ia6a0218f27a13be14f589b1a0facc9683d22ff56
Reviewed-on: https://go-review.googlesource.com/86495
Run-TryBot: Tobias Klauser <tobias.klauser@gmail.com>
Reviewed-by: Tobias Klauser <tobias.klauser@gmail.com>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Fixes#25143
Change-Id: Ide654fe70651fda827cdeeaaa73d2a1f8aefd7e7
Reviewed-on: https://go-review.googlesource.com/110159
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
bytes.IndexByte is heavily optimized. Use it in findnull.
This is second attempt, similar to CL97523.
In this version we never call IndexByte on region of memory,
that crosses page boundary. A bit slower than CL97523,
but still fast:
name old time/op new time/op delta
GoString-6 164ns ± 2% 118ns ± 0% -28.00% (p=0.000 n=10+6)
findnull is also used in gostringnocopy,
which is used in many hot spots in the runtime.
Fixes#23830
Change-Id: Id843dd4f65a34309d92bdd8df229e484d26b0cb2
Reviewed-on: https://go-review.googlesource.com/98015
Run-TryBot: Ilya Tocar <ilya.tocar@intel.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
This reverts commit 7365fac2db.
Reason for revert: breaks the build on some architectures, reading unmapped pages?
Change-Id: I3a8c02dc0b649269faacea79ecd8213defa97c54
Reviewed-on: https://go-review.googlesource.com/97995
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
bytes.IndexByte is heavily optimized.
Use it in findnull.
name old time/op new time/op delta
GoString-8 65.5ns ± 1% 40.2ns ± 1% -38.62% (p=0.000 n=19+19)
findnull is also used in gostringnocopy,
which is used in many hot spots in the runtime.
Fixes#23830
Change-Id: I2e6cb279c7d8078f8844065de684cc3567fe89d7
Reviewed-on: https://go-review.googlesource.com/97523
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
The jobject type is declared as a pointer, but some JVMs
(Dalvik, ART) store non-pointer values in them. In Go, we must
use uintptr instead of a real pointer for these types.
This is similar to the CoreFoundation types on Darwin which
were "fixed" in CL 66332.
Update #22906
Update #21897
RELNOTE=yes
Change-Id: I0d4c664501d89a696c2fb037c995503caabf8911
Reviewed-on: https://go-review.googlesource.com/81876
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Some C types are declared as pointers, but C code
stores non-pointers in them. When the Go garbage
collector sees such a pointer, it gets unhappy.
Instead, for these types represent them on the Go
side with uintptr.
We need this change to handle Apple's CoreFoundation
CF*Ref types. Users of these types might need to
update their code like we do in root_cgo_darwin.go.
The only change that is required under normal
circumstances is converting some nils to 0.
A go fix module is provided to help.
Fixes#21897
RELNOTE=yes
Change-Id: I9716cfb255dc918792625f42952aa171cd31ec1b
Reviewed-on: https://go-review.googlesource.com/66332
Run-TryBot: Keith Randall <khr@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Permit the C preamble to use the _GoString_ type. Permit Go code to
pass string values directly to those C types. Add accessors for C
code to retrieve sizes and pointers.
Fixes#6907
Change-Id: I190c88319ec88a3ef0ddb99f342a843ba69fcaa3
Reviewed-on: https://go-review.googlesource.com/70890
Run-TryBot: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
Fixes#21809
Change-Id: Ic43077c6bea3c7cdc9611e74abf07b6deab70433
Reviewed-on: https://go-review.googlesource.com/62670
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
The approach of https://golang.org/cl/43476 turned out incorrect.
The problem is that the sniff introduced by the CL only work for simple
expression. And when it fails it fallback to uint64, not int64, which
breaks backward compatibility.
In this CL, we use DWARF for guessing kind instead. That should be more
reliable than previous approach. And importanly, it fallbacks to int64 even
if it fails to guess kind.
Fixes#21708
Change-Id: I39a18cb2efbe4faa9becdcf53d5ac68dba180d46
Reviewed-on: https://go-review.googlesource.com/60510
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
When calling a Go function that returns multiple values from C, cgo
generates a structure to hold the values. According to the documentation
this structure is called `struct <function-name>_return`. When compiling
for gccgo the generated structure name is `struct <function-name>_result`.
This change updates the output for gccgo to match the documentation and
output for gc.
Fixes#20910
Change-Id: Iaea8030a695a7aaf9d9f317447fc05615d8e4adc
Reviewed-on: https://go-review.googlesource.com/49350
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
clang can emit some dwarf.VoidType which are wrapped by multiple
dwarf.TypedefType. We need to unwrap those before further processing.
Fixes#20129
Change-Id: I671ce6aef2dc7b55f1a02aec5f9789ac1b369643
Reviewed-on: https://go-review.googlesource.com/44772
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Current code cannot handle string #define macros if those macros are
defined via other macros. This CL solve the issue.
Updates #18720
Change-Id: Ibed0773d10db3d545bb246b97e81c0d19e3af3d5
Reviewed-on: https://go-review.googlesource.com/41312
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Currently, cgo converts integer macros into int64 if it's possible.
As a result, some macros which satisfy
math.MaxInt64 < x <= math.MaxUint64
will lose their original values.
This CL introduces the new probe to check signs,
so we can handle signed ints and unsigned ints separately.
Fixes#20369
Change-Id: I002ba452a82514b3a87440960473676f842cc9ee
Reviewed-on: https://go-review.googlesource.com/43476
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
The cgo tool used to simply ignore C type qualifiers. To avoid problems
when a C function expected a qualifier that was not present, cgo emitted
a cast to void* around all pointer arguments. Unfortunately, that broke
code that contains both a function declaration and a macro, when the
macro required the argument to have the right type. To fix this problem,
don't ignore qualifiers. They are easy enough to handle for the limited
set of cases that matter for cgo, in which we don't care about array or
function types.
Fixes#17537.
Change-Id: Ie2988d21db6ee016a3e99b07f53cfb0f1243a020
Reviewed-on: https://go-review.googlesource.com/33097
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
With the old code rewriting refs would rewrite the inner arguments
rather than the outer ones, leaving a reference to C.val in the outer
arguments.
Change-Id: I9b91cb4179eccd08500d14c6591bb15acf8673eb
Reviewed-on: https://go-review.googlesource.com/31672
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
cmd/go links mingwex and mingw32 libraries to every package it builds.
This breaks when 2 different packages call same gcc standard library
function pow. gcc linker appends pow implementation to the compiled
package, and names that function "pow". But when these 2 compiled
packages are linked together into the final executable, linker
complains, because it finds two "pow" functions with the same name.
This CL stops linking of mingwex and mingw32 during package build -
that leaves pow function reference unresolved. pow reference gets
resolved as final executable is built, by having both internal and
external linker use mingwex and mingw32 libraries.
Fixes#8756
Change-Id: I50ddc79529ea5463c67118d668488345ecf069bc
Reviewed-on: https://go-review.googlesource.com/26670
Run-TryBot: Alex Brainman <alex.brainman@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Add a C.CBytes function to copy a Go byte slice into C memory. This
returns an unsafe.Pointer, since that is what needs to be passed to
C.free, and the data is often opaque bytes anyway.
Fixes#14838
Change-Id: Ic7bc29637eb6f1f5ee409b3898c702a59833a85a
Reviewed-on: https://go-review.googlesource.com/20762
Reviewed-by: Ian Lance Taylor <iant@golang.org>
This makes it more convenient for C code to use GoString with string
constants. Since Go string values are immutable, the const qualifier is
appropriate in C.
Change-Id: I5fb3cdce2ce5079f1f0467a1544bb3a1eb27b811
Reviewed-on: https://go-review.googlesource.com/17067
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
Change the linker to use a copy of the C compiler support library,
libgcc.a, when doing internal linking. This will be used to satisfy any
undefined symbols referenced by host objects.
Change the dist tool to copy the support library into a new directory
tree under GOROOT/pkg/libgcc. This ensures that libgcc is available
even when building Go programs on a system that has no C compiler. The
C compiler is required when building the Go installation in the first
place, but is not required thereafter.
Change the go tool to not link libgcc into cgo objects.
Correct the linker handling of a weak symbol in an ELF input object to
not always create a new symbol, but to use an existing symbol if there
is one; this is necessary on freebsd-amd64, where libgcc contains a weak
definition of compilerrt_abort_impl.
Fixes#9510.
Change-Id: I1ab28182263238d9bcaf6a42804e5da2a87d8778
Reviewed-on: https://go-review.googlesource.com/16741
Reviewed-by: Russ Cox <rsc@golang.org>
This is, in effect, what the gc toolchain does. It fixes cases where Go
code refers to a C global variable; without this, if the global variable
was the only thing visible in the C code, the generated cgo file might
not get pulled in from the archive, leaving the Go variable
uninitialized.
This was reported against gccgo as https://gcc.gnu.org/PR68255 .
Change-Id: I3e769dd174f64050ebbff268fbbf5e6fab1e2a1b
Reviewed-on: https://go-review.googlesource.com/16775
Run-TryBot: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
It's because runtime links to ntdll, and ntdll exports a couple
incompatible libc functions. We must link to msvcrt first and
then try ntdll.
Fixes#12030.
Change-Id: I0105417bada108da55f5ae4482c2423ac7a92957
Reviewed-on: https://go-review.googlesource.com/14472
Reviewed-by: Alex Brainman <alex.brainman@gmail.com>
Run-TryBot: Minux Ma <minux@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
In order to fix issue #9401 the compiler was changed to add a padding
byte to any non-empty Go struct that ends in a zero-sized field. That
causes the Go version of such a C struct to have a different size than
the C struct, which can considerable confusion. Change cgo so that it
discards any such zero-sized fields, so that the Go and C structs are
the same size.
This is a change from previous releases, in that it used to be
possible to refer to a zero-sized trailing field (by taking its
address), and with this change it no longer is. That is unfortunate,
but something has to change. It seems better to visibly break
programs that do this rather than to silently break programs that rely
on the struct sizes being the same.
Update #9401.
Fixes#11925.
Change-Id: I3fba3f02f11265b3c41d68616f79dedb05b81225
Reviewed-on: https://go-review.googlesource.com/12864
Reviewed-by: Russ Cox <rsc@golang.org>
This memory is untyped and can't be used anymore.
The next version of SWIG won't need it.
Change-Id: I592b287c5f5186975ee09a9b28d8efe3b57134e7
Reviewed-on: https://go-review.googlesource.com/8956
Reviewed-by: Ian Lance Taylor <iant@golang.org>
While we're here, rename TestIssue7234 to Test7234 for consistency
with other tests.
Fixes#9557.
Change-Id: I22b0a212b31e7b4f199f6a70deb73374beb80f84
Reviewed-on: https://go-review.googlesource.com/2654
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Our current pe object reader assumes that every symbol starting with
'.' is section. It appeared to be true, until now gcc 4.9.1 generates
some symbols with '.' at the front. Change that logic to check other
symbol fields in addition to checking for '.'. I am not an expert
here, but it seems reasonable to me.
Added test, but it is only good, if tested with gcc 4.9.1. Otherwise
the test PASSes regardless.
Fixes#8811.
Fixes#8856.
LGTM=jfrederich, iant, stephen.gutekanst
R=golang-codereviews, jfrederich, stephen.gutekanst, iant
CC=alex.brainman, golang-codereviews
https://golang.org/cl/152410043
During a cgo call, the stack can be copied. This copy invalidates
the pointer that cgo has into the return value area. To fix this
problem, pass the address of the location containing the stack
top value (which is in the G struct). For cgo functions which
return values, read the stktop before and after the cgo call to
compute the adjustment necessary to write the return value.
Fixes#8771
LGTM=iant, rsc
R=iant, rsc, khr
CC=golang-codereviews
https://golang.org/cl/144130043
Normally, the caller to runtime.entersyscall() must not return before
calling runtime.exitsyscall(), lest g->syscallsp become a dangling
pointer. runtime.cgocallbackg() violates this constraint. To work around
this, save g->syscallsp and g->syscallpc around cgo->Go callbacks, then
restore them after calling runtime.entersyscall(), which restores the
syscall stack frame pointer saved by cgocall. This allows the GC to
correctly trace a goroutine that is currently returning from a
Go->cgo->Go chain.
This also adds a check to proc.c that panics if g->syscallsp is clearly
invalid. It is not 100% foolproof, as it will not catch a case where the
stack was popped then pushed back beyond g->syscallsp, but it does catch
the present cgo issue and makes existing tests fail without the bugfix.
Fixes#7978.
LGTM=dvyukov, rsc
R=golang-codereviews, dvyukov, minux, bradfitz, iant, gobot, rsc
CC=golang-codereviews, rsc
https://golang.org/cl/131910043
Now it's two allocations. I don't see much downside to that,
since the two pieces were in different cache lines anyway.
Rename 'conservative' to 'cgo_conservative_type' and make
clear that _cgo_allocate is the only allowed user.
This depends on CL 141490043, which removes the other
use of conservative (in defer).
LGTM=dvyukov, iant
R=khr, dvyukov, iant
CC=golang-codereviews, rlh
https://golang.org/cl/139610043
If you write:
var x = 3
then the compiler arranges for x to be initialized in the linker
with an actual 3 from the data segment, rather than putting
x in the bss and emitting init-time "x = 3" assignment code.
If you write:
var y = x
var x = 3
then the compiler is clever and treats this the same as if
the code said 'y = 3': they both end up in the data segment
with no init-time assignments.
If you write
var y = x
var x int
then the compiler was treating this the same as if the
code said 'x = 0', making both x and y zero and avoiding
any init-time assignment.
This copying optimization to avoid init-time assignment of y
is incorrect if 'var x int' doesn't mean 'x = 0' but instead means
'x is initialized in C or assembly code'. The program ends up
with 'y = 0' instead of 'y = the value specified for x in that other code'.
Disable the propagation if there is no initializer for x.
This comes up in some uses of cgo, because cgo generates
Go globals that are initialized in accompanying C files.
Fixes#7665.
LGTM=iant
R=golang-codereviews, iant
CC=golang-codereviews
https://golang.org/cl/93200044
The old approach to determining whether "name" was a type, constant,
or expression was to compile the C program
name;
and scan the errors and warnings generated by the compiler.
This requires looking for specific substrings in the errors and warnings,
which ties the implementation to specific compiler versions.
As compilers change their errors or drop warnings, cgo breaks.
This happens slowly but it does happen.
Clang in particular (now required on OS X) has a significant churn rate.
The new approach compiles a slightly more complex program
that is either valid C or not valid C depending on what kind of
thing "name" is. It uses only the presence or absence of an error
message on a particular line, not the error text itself. The program is:
// error if and only if name is undeclared
void f1(void) { typeof(name) *x; }
// error if and only if name is not a type
void f2(void) { name *x; }
// error if and only if name is not an integer constant
void f3(void) { enum { x = (name)*1 }; }
I had not been planning to do this until Go 1.3, because it is a
non-trivial change, but it fixes a real Xcode 5 problem in Go 1.2,
and the new code is easier to understand than the old code.
It should be significantly more robust.
Fixes#6596.
Fixes#6612.
R=golang-dev, r, james, iant
CC=golang-dev
https://golang.org/cl/15070043