The SecureRandom named service was removed in
https://codereview.chromium.org/550523002. And the new syscall
was introduced in https://codereview.chromium.org/537543003.
Accepting this will remove the support for older version of
sel_ldr. I've confirmed that both pepper_40 and current
pepper_canary have this syscall.
After this change, we need sel_ldr from pepper_39 or above to
work.
Fixes#9261
Change-Id: I096973593aa302ade61f259a3a71ebc7c1a57913
Signed-off-by: Shenghou Ma <minux@golang.org>
Reviewed-on: https://go-review.googlesource.com/1755
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
Also fixes a long-existing problem in the fork/exec path.
Change-Id: Idec40b1cee0cfb1625fe107db3eafdc0d71798f2
Reviewed-on: https://go-review.googlesource.com/8030
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Rob Pike <r@golang.org>
Previously the extra m needed for cgo callbacks was created on the
first callback. This works for cgo, however the cgocallback mechanism
is also borrowed by badsignal which can run before any cgo calls are
made.
Now we initialize the extra M at runtime startup before any signal
handlers are registered, so badsignal cannot be called until the
extra M is ready.
Updates #10207.
Change-Id: Iddda2c80db6dc52d8b60e2b269670fbaa704c7b3
Reviewed-on: https://go-review.googlesource.com/7978
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: David Crawshaw <crawshaw@golang.org>
There are calls to stdcall when the GC thinks the world is stopped
and stdcall write a *g for the CPU profiler. This produces a write
barrier but the GC is not prepared to deal with write barriers when
it thinks the world is stopped. Since the g is on allg it does not
need a write barrier to keep it alive so eliminate the write barrier.
Change-Id: I937633409a66553d7d292d87d7d58caba1fad0b6
Reviewed-on: https://go-review.googlesource.com/7979
Reviewed-by: Austin Clements <austin@google.com>
Run-TryBot: Rick Hudson <rlh@golang.org>
The test is a simple reproduction of issue 9356.
Update #8948.
Update #9356.
Change-Id: Ia77bc36d12ed0c3c4a8b1214cade8be181c9ad55
Reviewed-on: https://go-review.googlesource.com/7618
Reviewed-by: Minux Ma <minux@golang.org>
windows/386 also wants underscore prefix for external names.
This CL is in preparation of external linking support.
Change-Id: I2d2ea233f976aab3f356f9b508cdd246d5013e2d
Signed-off-by: Shenghou Ma <minux@golang.org>
Reviewed-on: https://go-review.googlesource.com/7282
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Alex Brainman <alex.brainman@gmail.com>
When external linking, we must link to implib provided by mingw, so we must use
properly decorated names for stdcalls.
Because the feature is only used in the runtime, I've designed a new decoration
scheme so that we can use the same decorated name for both 386 and amd64.
A stdcall function named FooEx from bar16.dll which takes 3 parameters will be
imported like this:
//go:cgo_import_dynamic runtime._FooEx FooEx%3 "bar16.dll"
Depending on the size of uintptr, the linker will later transform it to _FooEx@12
or _FooEx@24.
This is in prepration for the next CL that adds external linking support for
windows/386.
Change-Id: I2d2ea233f976aab3f356f9b508cdd246d5013e2c
Signed-off-by: Shenghou Ma <minux@golang.org>
Reviewed-on: https://go-review.googlesource.com/7163
Reviewed-by: Alex Brainman <alex.brainman@gmail.com>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
On Unix, when placing a child in a new process group, allow that group
to become the foreground process group. Also, allow a child process to
join a specific process group.
When setting the foreground process group, Ctty is used as the file
descriptor of the controlling terminal. Ctty has been added to the BSD
and Solaris SysProcAttr structures and the handling of Setctty changed
to match Linux.
Change-Id: I18d169a6c5ab8a6a90708c4ff52eb4aded50bc8c
Reviewed-on: https://go-review.googlesource.com/5130
Run-TryBot: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Implement runtime.atomicand8 for amd64p32 which was overlooked
in CL 7861.
Change-Id: Ic7eccddc6fd6c4682cac1761294893928f5428a2
Reviewed-on: https://go-review.googlesource.com/7920
Reviewed-by: Minux Ma <minux@golang.org>
These can be implemented with just a compare and a move instruction.
Do so, avoiding the overhead of a call into the runtime.
These assertions are a significant cost in Go code that uses interface{}
as a safe alternative to C's void* (or unsafe.Pointer), such as the
current version of the Go compiler.
*T here includes pointer to T but also any Go type represented as
a single pointer (chan, func, map). It does not include [1]*T or struct{*int}.
That requires more work in other parts of the compiler; there is a TODO.
Change-Id: I7ff681c20d2c3eb6ad11dd7b3a37b1f3dda23965
Reviewed-on: https://go-review.googlesource.com/7862
Reviewed-by: Rob Pike <r@golang.org>
Currently, we only exit the getfull barrier if there is work on the
full list, even though the exit path will take work from either the
full or partial list. Change this to exit the barrier if there is work
on either the full or partial lists.
I believe it's currently safe to check only the full list, since
during mark termination there is no reason to put a workbuf on a
partial list. However, checking both is more robust.
Change-Id: Icf095b0945c7cad326a87ff2f1dc49b7699df373
Reviewed-on: https://go-review.googlesource.com/7840
Reviewed-by: Rick Hudson <rlh@golang.org>
The barrier in gcDrain does not account for concurrent gcDrainNs
happening in gchelpwork, so it can actually return while there is
still work being done. It turns out this is okay, but for subtle
reasons involving gcDrainN always being run on the system
stack. Document these reasons.
Change-Id: Ib07b3753cc4e2b54533ab3081a359cbd1c3c08fb
Reviewed-on: https://go-review.googlesource.com/7736
Reviewed-by: Rick Hudson <rlh@golang.org>
Make mask uint32, and move down one line to match atomic_arm64.go.
Change-Id: I4867de494bc4076b7c2b3bf4fd74aa984e3ea0c8
Reviewed-on: https://go-review.googlesource.com/7854
Reviewed-by: Russ Cox <rsc@golang.org>
We're skating on thin ice, and things are finally starting to melt around here.
(I want to avoid the debugging session that will happen when someone
uses atomicand8 expecting it to be atomic with respect to other operations.)
Change-Id: I254f1582be4eb1f2d7fbba05335a91c6bf0c7f02
Reviewed-on: https://go-review.googlesource.com/7861
Reviewed-by: Minux Ma <minux@golang.org>
To reduce lock contention in this mode, makes persistent allocation state per-P,
which means at most 64 kB overhead x $GOMAXPROCS, which should be
completely tolerable.
Change-Id: I34ca95e77d7e67130e30822e5a4aff6772b1a1c5
Reviewed-on: https://go-review.googlesource.com/7740
Reviewed-by: Rick Hudson <rlh@golang.org>
Some type assertions of the form _, ok := i.(T) allow efficient inlining.
Such type assertions commonly show up in type switches.
For example, with this optimization, using 6g, the length of
encoding/binary's intDataSize function shrinks from 2224 to 1728 bytes (-22%).
benchmark old ns/op new ns/op delta
BenchmarkAssertI2E2Blank 4.67 0.82 -82.44%
BenchmarkAssertE2T2Blank 4.38 0.83 -81.05%
BenchmarkAssertE2E2Blank 3.88 0.83 -78.61%
BenchmarkAssertE2E2 14.2 14.4 +1.41%
BenchmarkAssertE2T2 10.3 10.4 +0.97%
BenchmarkAssertI2E2 13.4 13.3 -0.75%
Change-Id: Ie9798c3e85432bb8e0f2c723afc376e233639df7
Reviewed-on: https://go-review.googlesource.com/7697
Reviewed-by: Keith Randall <khr@golang.org>
The distinction between gcWorkProducer and gcWork (producer and
consumer) is not serving us as originally intended, so merge these
into just gcWork.
The original intent was to replace the currentwbuf cache with a
gcWorkProducer. However, with gchelpwork (aka mutator assists),
mutators can both produce and consume work, so it will make more sense
to cache a whole gcWork.
Change-Id: I6e633e96db7cb23a64fbadbfc4607e3ad32bcfb3
Reviewed-on: https://go-review.googlesource.com/7733
Reviewed-by: Rick Hudson <rlh@golang.org>
Currently markroot fetches the wbuf to fill from the per-M wbuf
cache. The wbuf cache is primarily meant for the write barrier because
it produces very little work on each call. There's little point to
using the cache in mark root, since each call to markroot is likely to
produce a large amount of work (so the slight win on getting it from
the cache instead of from the central wbuf lists doesn't matter), and
markroot does not dispose the wbuf back to the cache (so most markroot
calls won't get anything from the wbuf cache anyway).
Instead, just get the wbuf from the central wbuf lists like other work
producers. This will simplify later changes.
Change-Id: I07a18a4335a41e266a6d70aa3a0911a40babce23
Reviewed-on: https://go-review.googlesource.com/7732
Reviewed-by: Rick Hudson <rlh@golang.org>
Currently, the GC's concurrent mark phase runs on the system
stack. There's no need to do this, and running it this way ties up the
entire M and P running the GC by preventing the scheduler from
preempting the GC even during concurrent mark.
Fix this by running concurrent mark on the regular G stack. It's still
non-preemptible because we also set preemptoff around the whole GC
process, but this moves us closer to making it preemptible.
Change-Id: Ia9f1245e299b8c5c513a4b1e3ef13eaa35ac5e73
Reviewed-on: https://go-review.googlesource.com/7730
Reviewed-by: Rick Hudson <rlh@golang.org>
"Sync" is not very informative. What's being synchronized and with
whom? Update this comment to explain what we're really doing: enabling
write barriers.
Change-Id: I4f0cbb8771988c7ba4606d566b77c26c64165f0f
Reviewed-on: https://go-review.googlesource.com/7700
Reviewed-by: Rick Hudson <rlh@golang.org>
Currently we harvestwbufs the moment we enter the mark phase, even
before starting the world again. Since cached wbufs are only filled
when we're in mark or mark termination, they should all be empty at
this point, making the harvest pointless. Remove the harvest.
We should, but do not currently harvest at the end of the mark phase
when we're running out of work to do.
Change-Id: I5f4ba874f14dd915b8dfbc4ee5bb526eecc2c0b4
Reviewed-on: https://go-review.googlesource.com/7669
Reviewed-by: Rick Hudson <rlh@golang.org>
One of my earlier versions of finer-grained select locking
failed on this test. If you just naively lock and check channels
one-by-one, it is possible that you skip over ready channels.
Consider that initially c1 is ready and c2 is not. Select checks c2.
Then another goroutine makes c1 not ready and c2 ready (in that order).
Then select checks c1, concludes that no channels are ready and
executes the default case. But there was no point in time when
no channel is ready and so default case must not be executed.
Change-Id: I3594bf1f36cfb120be65e2474794f0562aebcbbd
Reviewed-on: https://go-review.googlesource.com/7550
Reviewed-by: Russ Cox <rsc@golang.org>
The value in question is really a bit pattern
(a pointer with extra bits thrown in),
so treat it as a uintptr instead, avoiding the
generation of a write barrier when there
might not be a p.
Also add the obligatory //go:nowritebarrier.
Change-Id: I4ea097945dd7093a140f4740bcadca3ce7191971
Reviewed-on: https://go-review.googlesource.com/7667
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
The GC assumes that there will be no asynchronous write barriers when
the world is stopped. This keeps the synchronization between write
barriers and the GC simple. However, currently, there are a few places
in runtime code where this assumption does not hold.
The GC stops the world by collecting all Ps, which stops all user Go
code, but small parts of the runtime can run without a P. For example,
the code that releases a P must still deschedule its G onto a runnable
queue before stopping. Similarly, when a G returns from a long-running
syscall, it must run code to reacquire a P.
Currently, this code can contain write barriers. This can lead to the
GC collecting reachable objects if something like the following
sequence of events happens:
1. GC stops the world by collecting all Ps.
2. G #1 returns from a syscall (for example), tries to install a
pointer to object X, and calls greyobject on X.
3. greyobject on G #1 marks X, but does not yet add it to a write
buffer. At this point, X is effectively black, not grey, even though
it may point to white objects.
4. GC reaches X through some other path and calls greyobject on X, but
greyobject does nothing because X is already marked.
5. GC completes.
6. greyobject on G #1 adds X to a work buffer, but it's too late.
7. Objects that were reachable only through X are incorrectly collected.
To fix this, we check the invariant that no asynchronous write
barriers happen when the world is stopped by checking that write
barriers always have a P, and modify all currently known sources of
these writes to disable the write barrier. In all modified cases this
is safe because the object in question will always be reachable via
some other path.
Some of the trace code was turned off, in particular the
code that traces returning from a syscall. The GC assumes
that as far as the heap is concerned the thread is stopped
when it is in a syscall. Upon returning the trace code
must not do any heap writes for the same reasons discussed
above.
Fixes#10098Fixes#9953Fixes#9951Fixes#9884
May relate to #9610#9771
Change-Id: Ic2e70b7caffa053e56156838eb8d89503e3c0c8a
Reviewed-on: https://go-review.googlesource.com/7504
Reviewed-by: Austin Clements <austin@google.com>
Some versions of libc, in this case Android's bionic, point environ
directly at the envp memory.
https://android.googlesource.com/platform/bionic/+/master/libc/bionic/libc_init_common.cpp#104
The Go runtime does something surprisingly similar, building the
runtime's envs []string using gostringnocopy. Both libc and the Go
runtime reusing memory interacts badly. When syscall.Setenv uses cgo
to call setenv(3), C modifies the underlying memory of a Go string.
This manifests on android/arm. With GOROOT=/data/local/tmp, a
runtime test calls syscall.Setenv("/os"), resulting in
runtime.GOROOT()=="/os\x00a/local/tmp/goroot".
Avoid this by copying environment string memory into Go.
Covered by runtime.TestFixedGOROOT on android/arm.
Change-Id: Id0cf9553969f587addd462f2239dafca1cf371fa
Reviewed-on: https://go-review.googlesource.com/7663
Reviewed-by: Keith Randall <khr@golang.org>
Channels and sync.Mutex'es allow another goroutine to acquire resource
ahead of an unblocked goroutine. This is good for performance, but
leads to futile wakeups (the unblocked goroutine needs to block again).
Futile wakeups caused user confusion during the very first evaluation
of tracing functionality on a real server (a goroutine as if acquires a mutex
in a loop, while there is no loop in user code).
This change detects futile wakeups on channels and emits a special event
to denote the fact. Later parser finds entire wakeup sequences
(unblock->start->block) and removes them.
sync.Mutex will be supported in a separate change.
Change-Id: Iaaaee9d5c0921afc62b449a97447445030ac19d3
Reviewed-on: https://go-review.googlesource.com/7380
Reviewed-by: Keith Randall <khr@golang.org>
The Go builders (and standard development cycle) for programs on iOS
require running the programs under lldb. Unfortunately lldb intercepts
SIGSEGV and will not give it back.
https://llvm.org/bugs/show_bug.cgi?id=22868
We get around this by never letting lldb see the SIGSEGV. On darwin,
Unix signals are emulated on top of mach exceptions. The debugger
registers a task-level mach exception handler. We register a
thread-level exception handler which acts as a faux signal handler.
The thread-level handler gets precedence over the task-level handler,
so we can turn the exception EXC_BAD_ACCESS into a panic before lldb
can see it.
Fixes#10043
Change-Id: I64d7c310dfa7ecf60eb1e59f094966520d473335
Reviewed-on: https://go-review.googlesource.com/7072
Reviewed-by: Minux Ma <minux@golang.org>
Run-TryBot: David Crawshaw <crawshaw@golang.org>
When checkmark fails, greyobject dumps both the object that pointed to
the unmarked object and the unmarked object. This code cluttered up
greyobject, was copy-pasted for the two objects, and the copy for
dumping the unmarked object was not entirely correct.
Extract object dumping out to a new function. This declutters
greyobject and fixes the bugs in dumping the unmarked object. The new
function is slightly cleaned up from the original code to have more
natural control flow and shows a marker on the field in the base
object that points to the unmarked object to make it easy to find.
Change-Id: Ib51318a943f50b0b99995f0941d03ee8876b9fcf
Reviewed-on: https://go-review.googlesource.com/7506
Reviewed-by: Rick Hudson <rlh@golang.org>
scanobject no longer returns the new wbuf.
Change-Id: I0da335ae5cd7ef7ea0e0fa965cf0e9f3a650d0e6
Reviewed-on: https://go-review.googlesource.com/7505
Reviewed-by: Rick Hudson <rlh@golang.org>
DragonFlyBSD dropped support for i386 in 4.0 and there is no longer a
dragonfly/386 - as such, remove the Go port.
Fixes#8951Fixes#7580Fixes#7421
Change-Id: I69022ab2262132e8f97153f14dc8c37c98527008
Reviewed-on: https://go-review.googlesource.com/7543
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Dave Cheney <dave@cheney.net>
Reviewed-by: Minux Ma <minux@golang.org>
Run-TryBot: Joel Sing <jsing@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
The kern.rthreads sysctl has not existed for a long time - there is no way to
disable rthreads and __tfork no longer returns ENOTSUP.
Change-Id: Ia50ff01ac86ea83358e72b8f45f7818aaec1e4b1
Reviewed-on: https://go-review.googlesource.com/7490
Reviewed-by: Minux Ma <minux@golang.org>
Fixes#10135.
Change-Id: Ic4c5ab15bcb7b9c3fcc685a788d3b59c60c26e1e
Signed-off-by: Shenghou Ma <minux@golang.org>
Reviewed-on: https://go-review.googlesource.com/7400
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Everything has moved to Go, but comments still refer to .c/.h files.
Fix all of those up, at least for these three directories.
Fixes#10138
Change-Id: Ie5efe89b247841e0b3f82aac5256b2c606ef67dc
Reviewed-on: https://go-review.googlesource.com/7431
Reviewed-by: Russ Cox <rsc@golang.org>
This allows to test goroutine analysis code in runtime/pprof tests.
Also fix a nil-deref crash in goroutine analysis code that happens on runtime/pprof tests.
Change-Id: Id7884aa29f7fe4a8d7042482a86fe434e030461e
Reviewed-on: https://go-review.googlesource.com/7301
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Andrew Gerrand <adg@golang.org>
Augment ProcStart events with OS thread id.
This helps in scheduler locality analysis.
Change-Id: I93fea75d3072cf68de66110d0b59d07101badcb5
Reviewed-on: https://go-review.googlesource.com/7302
Reviewed-by: Keith Randall <khr@golang.org>
Some of the trace stacks are OS-dependent due to OS-specific code
in net package. Check these stacks only on subset of OSes.
Change-Id: If95e4485839f4120fd6395725374c3a2f8706dfc
Reviewed-on: https://go-review.googlesource.com/7300
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Even though the world is stopped the GC may do pointer
writes that need to be protected by write barriers.
This means that the write barrier must be on
continuously from the time the mark phase starts and
the mark termination phase ends. Checks were added to
ensure that no allocation happens during a GC.
Hoist the logic that clears pools the start of the GC
so that the memory can be reclaimed during this GC cycle.
Change-Id: I9d1551ac5db9bac7bac0cb5370d5b2b19a9e6a52
Reviewed-on: https://go-review.googlesource.com/6990
Reviewed-by: Austin Clements <austin@google.com>
Stip uninteresting bottom and top frames from trace stacks.
This makes both binary and json trace files smaller,
and also makes stacks shorter and more readable in the viewer.
Change-Id: Ib9c80ccc280504f0e235f867f53f1d2652c41583
Reviewed-on: https://go-review.googlesource.com/5523
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
Removes a potential data race between os.Setenv and runtime.GOROOT,
along with a bug where os.Setenv would only sometimes change the
value of runtime.GOROOT.
Change-Id: I7d2a905115c667ea6e73f349f3784a1d3e8f810d
Reviewed-on: https://go-review.googlesource.com/6611
Reviewed-by: Keith Randall <khr@golang.org>
Also fixed a stack corruption bug for nacl/amd64p32.
Change-Id: I64b821b16999c296a159137d971af3870053c621
Signed-off-by: Shenghou Ma <minux@golang.org>
Reviewed-on: https://go-review.googlesource.com/7073
Reviewed-by: Dave Cheney <dave@cheney.net>
Starting it lazily causes a memory allocation (for the goroutine) during GC.
First use of channels for runtime implementation.
Change-Id: I9cd24dcadbbf0ee5070ee6d0ed7ea415504f316c
Reviewed-on: https://go-review.googlesource.com/6960
Run-TryBot: Russ Cox <rsc@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
I asked for this in CL 3742 and it was ignored.
Change-Id: I30ad05f87c7d9eccb11df7e19288e3ed2c7e2e3f
Reviewed-on: https://go-review.googlesource.com/6930
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
For OSes that use elf on intel, 2*Ptrsize bytes are reserved for TLS.
But only one pointer (g) has been stored in the TLS for a while now.
So we can set it to just Ptrsize, which happily matches what happens
when externally linking.
Fixes#9913
Change-Id: Ic816369d3a55a8cdcc23be349b1a1791d53f5f81
Reviewed-on: https://go-review.googlesource.com/6584
Run-TryBot: Minux Ma <minux@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
This is an experiment to see if removing the boundary bit logic will
lead to fewer cache misses and improved performance. Instead of using
boundary bits we use the span information to get element size and use
some bit whacking to get the boundary without having to touch the
random heap bits which cause cache misses.
Furthermore once the boundary bit is removed we can either use that
bit for a simpler checkmark routine or we can reduce the number of
bits in the GC bitmap to 2 bits per pointer sized work. For example
the 2 bits at the boundary can be used for marking and pointer/scalar
differentiation. Since we don't need the mark bit except at the
boundary nibble of the object other nibbles can use this bit
as a noscan bit to indicate that there are no more pointers in
the object.
Currently the changed included in this CL slows down the garbage
benchmark. With the boundary bits garbage gives 5.78 and without
(this CL) it gives 5.88 which is a 2% slowdown.
Change-Id: Id68f831ad668176f7dc9f7b57b339e4ebb6dc4c2
Reviewed-on: https://go-review.googlesource.com/6665
Reviewed-by: Austin Clements <austin@google.com>
Gc already calculates n as an int, so converting to int64 to call
growslice doesn't serve any purpose except to emit slightly larger
code on 32-bit platforms. Passing n as an int shrinks godoc's text
segment by 8kB (9472633 => 9464133) when building for ARM.
Change-Id: Ief9492c21d01afcb624d3f2a484df741450b788d
Reviewed-on: https://go-review.googlesource.com/6231
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
The unbounded list-based defer pool can grow infinitely.
This can happen if a goroutine routinely allocates a defer;
then blocks on one P; and then unblocked, scheduled and
frees the defer on another P.
The scenario was reported on golang-nuts list.
We've been here several times. Any unbounded local caches
are bad and grow to infinite size. This change introduces
central defer pool; local pools become fixed-size
with the only purpose of amortizing accesses to the
central pool.
Freedefer now executes on system stack to not consume
nosplit stack space.
Change-Id: I1a27695838409259d1586a0adfa9f92bccf7ceba
Reviewed-on: https://go-review.googlesource.com/3967
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
The unbounded list-based sudog cache can grow infinitely.
This can happen if a goroutine is routinely blocked on one P
and then unblocked and scheduled on another P.
The scenario was reported on golang-nuts list.
We've been here several times. Any unbounded local caches
are bad and grow to infinite size. This change introduces
central sudog cache; local caches become fixed-size
with the only purpose of amortizing accesses to the
central cache.
The change required to move sudog cache from mcache to P,
because mcache is not scanned by GC.
Change-Id: I3bb7b14710354c026dcba28b3d3c8936a8db4e90
Reviewed-on: https://go-review.googlesource.com/3742
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
Error detection code copied from syscall, where presumably
we actually do it right.
Note that we throw the errno away. The runtime doesn't use it.
Fixes#10052
Change-Id: I8de77dda6bf287276b137646c26b84fa61554ec8
Reviewed-on: https://go-review.googlesource.com/6571
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
OpenBSD's sigprocmask system call passes the signal mask by value
rather than reference, so vars are unnecessary. Additionally,
declaring "var sigset_all = ^sigset_none" means sigset_all won't be
initialized until runtime_init is called, but the first call to
newosproc happens before then.
I've witnessed Go processes on OpenBSD crash from receiving SIGWINCH
on the newly created OS thread before it finished initializing.
Change-Id: I16995e7e466d5e7e50bcaa7d9490173789a0b4cc
Reviewed-on: https://go-review.googlesource.com/6440
Reviewed-by: Mikio Hara <mikioh.mikioh@gmail.com>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Move type definitions from chan1.go to chan.go and select.go.
Remove underscores from names.
Make c.buf unsafe.Pointer instead of *uint8.
Change-Id: I75cf8385bdb9f79eb5a7f7ad319495abbacbe942
Reviewed-on: https://go-review.googlesource.com/4900
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
This fixes runtime's TestBreakpoint on ppc64:
the Breakpoint frame was not showing up in the trace.
It seems like f.frame should be either the frame size
including the saved LR (if any) or the frame size
not including the saved LR.
On ppc64, f.frame is the frame size not including the saved LR.
On arm, f.frame is the frame size not including the saved LR,
except when that's -4, f.frame is 0 instead.
The code here in the runtime expects that f.frame is the frame
size including the saved LR.
Since all three disagree and nothing else uses f.frame anymore,
stop using it here too. Use funcspdelta, which tells us the exact
difference between the FP and SP. If it's zero, LR has not been
saved yet, so the one saved for sigpanic should be recorded.
This fixes TestBreakpoint on both ppc64 and ppc64le.
I don't really understand how it ever worked there.
Change-Id: I2d2c580d5c0252cc8471e828980aeedcab76858d
Reviewed-on: https://go-review.googlesource.com/6430
Reviewed-by: Minux Ma <minux@golang.org>
Plan 9 provides a /dev/random device to return a
stream of random numbers. However, the method used
to generate random numbers on Plan 9 is slow and
reading from /dev/random may block.
We don't want our Go programs to be significantly
slowed down just to slightly improve the distribution
of hash values.
So, we do the same thing as NaCl and rely exclusively
on extendRandom to generate pseudo-random numbers.
Fixes#10028.
Change-Id: I7e11a9b109c22f23608eb09c406b7c3dba31f26a
Reviewed-on: https://go-review.googlesource.com/6386
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
issue #10017: TestGdbPython 'print mapvar' is reported to fail on ppc64.
issue #10002: TestGdbPython 'print mapvar' is reported to fail on arm hardfloat.
The testcase now uses plain line number in main. Unwinding issues are
unrelated to the GDB map prettyprinter feature.
Remove arch-specific t.Skip()s from those two issues.
Fixes#10017Fixes#10002
Change-Id: I9d50ffe2f3eb7bf65dd17c8c76a2677571de68ba
Reviewed-on: https://go-review.googlesource.com/6267
Reviewed-by: Minux Ma <minux@golang.org>
mv cmd/new5l cmd/5l and so on.
Minimal changes to cmd/dist and cmd/go to keep things building.
More can be deleted in followup CLs.
Change-Id: I1449eca7654ce2580d1f413a56dc4a75f3d4618b
Reviewed-on: https://go-review.googlesource.com/6361
Reviewed-by: Rob Pike <r@golang.org>
We used to not call traceback from goexit1.
But now tracer does it and crashes on amd64p32:
runtime: unexpected return pc for runtime.getg called from 0x108a4240
goroutine 18 [runnable, locked to thread]:
runtime.traceGoEnd()
src/runtime/trace.go:758 fp=0x10818fe0 sp=0x10818fdc
runtime.goexit1()
src/runtime/proc1.go:1540 +0x20 fp=0x10818fe8 sp=0x10818fe0
runtime.getg(0x0)
src/runtime/asm_386.s:2414 fp=0x10818fec sp=0x10818fe8
created by runtime/pprof_test.TestTraceStress
src/runtime/pprof/trace_test.go:123 +0x500
Return PC from goexit1 points right after goexit (+0x6).
It happens to work most of the time somehow.
This change fixes traceback from goexit1 by adding an additional NOP to goexit.
Fixes#9931
Change-Id: Ied25240a181b0a2d7bc98127b3ed9068e9a1a13e
Reviewed-on: https://go-review.googlesource.com/5460
Reviewed-by: Russ Cox <rsc@golang.org>
This is to be used by an lldb script inside go_darwin_arm_exec to pause
the execution of tests on iOS so the working directory can be adjusted
into something resembling a GOROOT.
Change-Id: I69ea2d4d871800ae56634b23ffa48583559ddbc6
Reviewed-on: https://go-review.googlesource.com/6363
Reviewed-by: Minux Ma <minux@golang.org>
Change-Id: I9b08b74214e5a41a7e98866a993b038030a4c073
Reviewed-on: https://go-review.googlesource.com/6251
Reviewed-by: Hyang-Ah Hana Kim <hyangah@gmail.com>
Previously, the typeDead check in greyobject was under a separate
!useCheckmark conditional. Put it with the rest of the !useCheckmark
code. Also move a comment about atomic update of the marked bit to
where we actually do that update now.
Change-Id: Ief5f16401a25739ad57d959607b8d81ffe0bc211
Reviewed-on: https://go-review.googlesource.com/6271
Reviewed-by: Rick Hudson <rlh@golang.org>
Change-Id: I1bb0b8b11e8c7686b85657050fd7cf926afe4d29
Reviewed-on: https://go-review.googlesource.com/6200
Reviewed-by: Hyang-Ah Hana Kim <hyangah@gmail.com>
Previously, the memory allocator on Plan 9 did
not free memory properly. It was only able to
free the last allocated block.
This change implements a variant of the
Kernighan & Ritchie memory allocator with
coalescing and splitting.
The most notable differences are:
- no header is prefixing the allocated blocks, since
the size is always specified when calling sysFree,
- the free list is nil-terminated instead of circular.
Fixes#9736.
Fixes#9803.
Fixes#9952.
Change-Id: I00d533714e4144a0012f69820d31cbb0253031a3
Reviewed-on: https://go-review.googlesource.com/5524
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Disable the test properly on nacl systems, tested on nacl/amd64p32.
Change-Id: Iffe210be4f9c426bfc47f2dd3a8f0c6b5a398cc3
Reviewed-on: https://go-review.googlesource.com/6093
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Update #9993
If the physical page size of the machine is larger than the logical
heap size, for example 8k logical, 64k physical, then madvise(2) will
round up the requested amount to a 64k boundary and may discard pages
close to the page being madvised.
This patch disables the scavenger in these situations, which at the moment
is only ppc64 and ppc64le systems. NaCl also uses a 64k page size, but
it's not clear if it is affected by this problem.
Change-Id: Ib897f8d3df5bd915ddc0b510f2fd90a30ef329ca
Reviewed-on: https://go-review.googlesource.com/6091
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Needs the Go tool, which we do not have on iOS. (No Fork.)
Change-Id: Iedf69f5ca81d66515647746546c9b304c8ec10c4
Reviewed-on: https://go-review.googlesource.com/6102
Reviewed-by: Hyang-Ah Hana Kim <hyangah@gmail.com>
There is no sense in trying to netpoll while there is
already a thread blocked in netpoll. And in most cases
there must be a thread blocked in netpoll, because
the first otherwise idle thread does blocking netpoll.
On some program I see that netpoll called from findrunnable
consumes 3% of time.
Change-Id: I0af1a73d637bffd9770ea50cb9278839716e8816
Reviewed-on: https://go-review.googlesource.com/4553
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
This makes Go's CPU profiling code somewhat more idiomatic; e.g.,
using := instead of forward declaring variables, using "int" for
element counts instead of "uintptr", and slices instead of C-style
pointer+length. This makes the code easier to read and eliminates a
lot of type conversion clutter.
Additionally, in sigprof we can collect just maxCPUProfStack stack
frames, as cpuprof won't use more than that anyway.
Change-Id: I0235b5ae552191bcbb453b14add6d8c01381bd06
Reviewed-on: https://go-review.googlesource.com/6072
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
The first call is pointless. It appears to simply be a mistake.
benchmark old ns/op new ns/op delta
BenchmarkComplexAlgMap 90.7 76.1 -16.10%
Change-Id: Id0194c9f09cea8b68f17b2ac751a8e3240e47f19
Reviewed-on: https://go-review.googlesource.com/5284
Reviewed-by: Keith Randall <khr@golang.org>
Gives tests a way to find the bundle that contains their testdata, and
is generally useful for finding resources.
Change-Id: Idfa03e8543af927c17bc8ec8aadc5014ec82df28
Reviewed-on: https://go-review.googlesource.com/6000
Reviewed-by: Hyang-Ah Hana Kim <hyangah@gmail.com>
Updates #10002
The gdb test added in 1c82e236f5 is failing on most arm systems.
Temporarily disable this test so that we can return to a working arm build.
Change-Id: Iff96ea8d5a99e1ceacf4979e864ff196e5503535
Reviewed-on: https://go-review.googlesource.com/5902
Reviewed-by: Ian Lance Taylor <iant@golang.org>
We return memory to the kernel with madvise(..., DONTNEED).
Also mark returned memory with NOHUGEPAGE to keep the kernel from
merging this memory into a huge page, effectively reallocating it.
Only known to be a problem on linux/{386,amd64,amd64p32} at the moment.
It may come up on other os/arch combinations in the future.
Fixes#8832
Change-Id: Ifffc6627a0296926e3f189a8a9b6e4bdb54c79eb
Reviewed-on: https://go-review.googlesource.com/5660
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
We need to distinguish pointers to free spans, which indicate bugs in
our pointer analysis, from pointers to never-in-the-heap spans, which
can legitimately arise from sysAlloc/mmap/etc. This normally isn't a
problem because the heap is contiguous, but in some situations (32
bit, particularly) the heap must grow around an already allocated
region.
The bad pointer test is disabled so this fix doesn't actually do
anything, but it removes one barrier from reenabling it.
Fixes#9872.
Change-Id: I0a92db4d43b642c58d2b40af69c906a8d9777f88
Reviewed-on: https://go-review.googlesource.com/5780
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Available darwin/arm devices sporadically have trouble mapping 256M.
I would really appreciate it if anyone could check my working on
this, and make sure sure there aren't obviously bad consequences I
haven't considered.
Change-Id: Id1a8edae104d974fcf5f9333274f958625467f79
Reviewed-on: https://go-review.googlesource.com/5752
Reviewed-by: Keith Randall <khr@golang.org>
Since allglock is held in this function, there's no point to
tip-toeing around allgs. Just use a for-range loop.
Change-Id: I1ee61c7e8cac8b8ebc8107c0c22f739db5db9840
Reviewed-on: https://go-review.googlesource.com/5882
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
Previously, we had three loops in the garbage collector that all
cleared the per-G GC flags. Consolidate these into one function.
This one function is designed to work in a concurrent setting. As a
result, it's slightly more expensive than the loops it replaces during
STW phases, but these happen at most twice per GC.
Change-Id: Id1ec0074fd58865eb0112b8a0547b267802d0df1
Reviewed-on: https://go-review.googlesource.com/5881
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
The loop in gcMark is redundant with the gcworkdone resetting
performed by markroot, which called a few lines later in gcMark.
Change-Id: Ie0a826a614ecfa79e6e6b866e8d1de40ba515856
Reviewed-on: https://go-review.googlesource.com/5880
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
Package runtime's Go code was converted to directly call getcallerpc
and getcallersp in https://golang.org/cl/138740043, but the assembly
implementations were not removed.
Change-Id: Ib2eaee674d594cbbe799925aae648af782a01c83
Reviewed-on: https://go-review.googlesource.com/5901
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
NetBSD's semaphore implementation is derived from OpenBSD's, but has
subsequently diverged due to cleanups that were only applied to the
latter (https://golang.org/cl/137960043, https://golang.org/cl/5563).
This CL applies analogous cleanups for NetBSD.
Notably, we can also remove the scary NetBSD deadlock warning.
NetBSD's manual pages document that lwp_unpark on a not-yet-parked LWP
will cause that LWP's next lwp_park system call to return immediately,
so there's no race hazard.
Change-Id: Ib06844c420d2496ac289748eba13eb4700bbbbb2
Reviewed-on: https://go-review.googlesource.com/5564
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Joel Sing <jsing@google.com>
(gdb) p x
Python Exception <class 'gdb.error'> There is no member named b.:
$2 = map[string]string
->
(gdb) p x
$1 = map[string]string = {["shane"] = "hansen"}
Change-Id: I874d02a029f2ac9afc5ab666afb65760ec2c3177
Reviewed-on: https://go-review.googlesource.com/5522
Reviewed-by: Ian Lance Taylor <iant@golang.org>
OpenBSD's thrsleep system call includes an "abort" parameter, which
specifies a memory address to be tested after being registered on the
sleep channel (i.e., capable of being woken up by thrwakeup). By
passing a pointer to waitsemacount for this parameter, we avoid race
conditions without needing a lock. Instead we just need to use
atomicload, cas, and xadd to mutate the semaphore count.
Change-Id: If9f2ab7cfd682da217f9912783cadea7e72283a8
Reviewed-on: https://go-review.googlesource.com/5563
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Joel Sing <jsing@google.com>
When GODEBUG=gctrace=2 two gcs are preformed. During the first gc
the stack scan sets the g's gcscanvalid and gcworkdone flags to true
indicating that the stacks have to be scanned and do not need to
be rescanned. These need to be reset to false for the second GC so the
stacks are rescanned, otherwise if the only pointer to an object is
on the stack it will not be discovered and the object will be freed.
Typically this will include the object that was just allocated in
the mallocgc call that initiated the GC.
Change-Id: Ic25163f4689905fd810c90abfca777324005c02f
Reviewed-on: https://go-review.googlesource.com/5861
Reviewed-by: Russ Cox <rsc@golang.org>
Currently sync.Mutex is fully cooperative. That is, once contention is discovered,
the goroutine calls into scheduler. This is suboptimal as the resource can become
free soon after (especially if critical sections are short). Server software
usually runs at ~~50% CPU utilization, that is, switching to other goroutines
is not necessary profitable.
This change adds limited active spinning to sync.Mutex if:
1. running on a multicore machine and
2. GOMAXPROCS>1 and
3. there is at least one other running P and
4. local runq is empty.
As opposed to runtime mutex we don't do passive spinning,
because there can be work on global runq on on other Ps.
benchmark old ns/op new ns/op delta
BenchmarkMutexNoSpin 1271 1272 +0.08%
BenchmarkMutexNoSpin-2 702 683 -2.71%
BenchmarkMutexNoSpin-4 377 372 -1.33%
BenchmarkMutexNoSpin-8 197 190 -3.55%
BenchmarkMutexNoSpin-16 131 122 -6.87%
BenchmarkMutexNoSpin-32 170 164 -3.53%
BenchmarkMutexSpin 4724 4728 +0.08%
BenchmarkMutexSpin-2 2501 2491 -0.40%
BenchmarkMutexSpin-4 1330 1325 -0.38%
BenchmarkMutexSpin-8 684 684 +0.00%
BenchmarkMutexSpin-16 414 372 -10.14%
BenchmarkMutexSpin-32 559 469 -16.10%
BenchmarkMutex 19.1 19.1 +0.00%
BenchmarkMutex-2 81.6 54.3 -33.46%
BenchmarkMutex-4 143 100 -30.07%
BenchmarkMutex-8 154 156 +1.30%
BenchmarkMutex-16 140 159 +13.57%
BenchmarkMutex-32 141 163 +15.60%
BenchmarkMutexSlack 33.3 31.2 -6.31%
BenchmarkMutexSlack-2 122 97.7 -19.92%
BenchmarkMutexSlack-4 168 158 -5.95%
BenchmarkMutexSlack-8 152 158 +3.95%
BenchmarkMutexSlack-16 140 159 +13.57%
BenchmarkMutexSlack-32 146 162 +10.96%
BenchmarkMutexWork 154 154 +0.00%
BenchmarkMutexWork-2 89.2 89.9 +0.78%
BenchmarkMutexWork-4 139 86.1 -38.06%
BenchmarkMutexWork-8 177 162 -8.47%
BenchmarkMutexWork-16 170 173 +1.76%
BenchmarkMutexWork-32 176 176 +0.00%
BenchmarkMutexWorkSlack 160 160 +0.00%
BenchmarkMutexWorkSlack-2 103 99.1 -3.79%
BenchmarkMutexWorkSlack-4 155 148 -4.52%
BenchmarkMutexWorkSlack-8 176 170 -3.41%
BenchmarkMutexWorkSlack-16 170 173 +1.76%
BenchmarkMutexWorkSlack-32 175 176 +0.57%
"No work" benchmarks are not very interesting (BenchmarkMutex and
BenchmarkMutexSlack), as they are absolutely not realistic.
Fixes#8889
Change-Id: I6f14f42af1fa48f73a776fdd11f0af6dd2bb428b
Reviewed-on: https://go-review.googlesource.com/5430
Reviewed-by: Rick Hudson <rlh@golang.org>
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
This change deletes the C implementations of
the Go compiler and assembler from the master branch.
The Go implementations are a bit slower right now,
due mainly to garbage generated by taking addresses
of stack variables all over the place (it was C code,
after all). That will be cleaned up (mechanically) over the
next week or so, and things will get faster.
Change-Id: I66b2b3477aec8835f9960d0798f5752dcd98d08f
The slow path of heapBitsForObjects somewhat subtly assumes that the
pointer will not point to the first word of the object and will round
the pointer wrong if this assumption is violated. This assumption is
safe because the fast path should always take care of this case, but
there's no benefit to making this assumption, it makes the code more
difficult to experiment with than necessary, and it's trivial to
eliminate.
Change-Id: Iedd336f7d529a27d3abeb83e77dfb32a285ea73a
Reviewed-on: https://go-review.googlesource.com/5636
Reviewed-by: Russ Cox <rsc@golang.org>