bug249.go:10:5: error: incompatible type in initialization
bug249.go:26:5: error: incompatible type in initialization
R=rsc
CC=golang-dev
https://golang.org/cl/198058
import1.go:12:8: error: redefinition of ‘bufio’
import1.go:11:8: note: previous definition of ‘bufio’ was here
import1.go:16:2: error: redefinition of ‘fmt’
import1.go:15:2: note: previous definition of ‘fmt’ was here
import1.go:11:8: error: imported and not used: bufio
R=rsc
CC=golang-dev
https://golang.org/cl/194165
I have to admit that "cannot use type p.T as type p.T" is a
bit weak. 8g gives a similar error ("cannot use v1 (type p.T)
as type p.T in assignment").
bug3.go:37:5: error: incompatible type in initialization (incompatible type for method ‘M’ (different parameter types))
bug3.go:38:5: error: incompatible type in initialization (incompatible type for method ‘M’ (different parameter types))
bug3.go:43:5: error: incompatible type in initialization (incompatible type for method ‘M’ (different parameter types))
bug3.go:44:5: error: incompatible type in initialization (incompatible type for method ‘M’ (different parameter types))
bug3.go:49:5: error: incompatible types in assignment (cannot use type p.T as type p.T)
bug3.go:50:5: error: incompatible types in assignment (cannot use type p.T as type p.T)
bug3.go:55:5: error: incompatible types in assignment (incompatible type for method ‘M’ (different parameter types))
bug3.go:56:5: error: incompatible types in assignment (incompatible type for method ‘M’ (different parameter types))
bug3.go:57:6: error: incompatible types in assignment (incompatible type for method ‘M’ (different parameter types))
bug3.go:58:6: error: incompatible types in assignment (incompatible type for method ‘M’ (different parameter types))
bug3.go:59:5: error: incompatible types in assignment (incompatible type for method ‘M’ (different parameter types))
bug3.go:60:5: error: incompatible types in assignment (incompatible type for method ‘M’ (different parameter types))
bug3.go:61:6: error: incompatible types in assignment (incompatible type for method ‘M’ (different parameter types))
bug3.go:62:6: error: incompatible types in assignment (incompatible type for method ‘M’ (different parameter types))
R=rsc
CC=golang-dev
https://golang.org/cl/199044
I got it wrong because gccgo was incorrectly failing to clear
the value when a nonblocking receive did not receive
anything.
R=rsc
CC=golang-dev
https://golang.org/cl/194161
bug228.go:11:25: error: invalid use of ‘...’
bug228.go:13:13: error: ‘...’ only permits one name
bug228.go:15:20: error: ‘...’ must be last parameter
bug228.go:17:7: error: expected type
bug228.go:19:8: error: expected type
R=rsc
CC=golang-dev
https://golang.org/cl/196077
* example-based syntax errors (go.errors)
* enable bison's more specific errors
and translate grammar token names into
tokens like ++
* test cases
R=ken2, r, ken3
CC=golang-dev
https://golang.org/cl/194085
bonus: type switch now detects multiple uses of identical interface types.
bonus: interface types are now order-independent, following the spec.
R=ken2
CC=golang-dev
https://golang.org/cl/194053
Since gcco runs goroutines in independent threads, it needs
locking for the global variables. This shows up when I use
ordinary increments rather than locked increments for var++.
R=ken2, ken3
CC=golang-dev
https://golang.org/cl/190074
(Thanks to ken and rsc for pointing this out)
rsc:
ken pointed out that there's a race in the new
one-lock-per-channel code. the issue is that
if one goroutine has gone to sleep doing
select {
case <-c1:
case <-c2:
}
and then two more goroutines try to send
on c1 and c2 simultaneously, the way that
the code makes sure only one wins is the
selgen field manipulation in dequeue:
// if sgp is stale, ignore it
if(sgp->selgen != sgp->g->selgen) {
//prints("INVALID PSEUDOG POINTER\n");
freesg(c, sgp);
goto loop;
}
// invalidate any others
sgp->g->selgen++;
but because the global lock is gone both
goroutines will be fiddling with sgp->g->selgen
at the same time.
This results in a 7% slowdown in the single threaded case for a
ping-pong microbenchmark.
Since the cas predominantly succeeds, adding a simple check first
didn't make any difference.
R=rsc
CC=golang-dev
https://golang.org/cl/180068
* better error for lookup of unexported field
* do not assign "ideal string" type to typed string literal
* do not confuse methods and fields during interface check
Fixes#410.
Fixes#411.
Fixes#426.
R=ken2
https://golang.org/cl/179069