(Replacement for CL 11884043.)
1) Explain a[i] and a[i:j] where a is of type *A as
shortcut for (*a)[i] and (*a)[i:j], respectively.
2) Together with 1), because len() of nil slices is
well defined, there's no need to special case nil
operands anymore.
3) The result of indexing or slicing a constant string
is always a non-constant byte or string value.
4) The result of slicing an untyped string is a value
of type string.
5) If the operand of a valid slice a[i:j] is nil (i, j
must be 0 for it to be valid - this already follows
from the in-range rules), the result is a nil slice.
Fixes#4913.
Fixes#5951.
R=r, rsc, iant, ken
CC=golang-dev
https://golang.org/cl/12198043
CL submitted prematurely by mistake.
««« original CL description
spec: clarify index and selector expressions
1) Explain a[i] and a[i:j] where a is of type *A as
shortcut for (*a)[i] and (*a)[i:j], respectively.
2) Together with 1), because len() of nil slices is
well defined, there's no need to special case nil
operands anymore.
3) The result of indexing or slicing a constant string
is always a non-constant byte or string value.
4) The result of slicing an untyped string is a value
of type string.
5) If the operand of a valid slice a[i:j] is nil (i, j
must be 0 for it to be valid - this already follows
from the in-range rules), the result is a nil slice.
Fixes#4913.
Fixes#5951.
R=rsc, r, iant, ken
CC=golang-dev
https://golang.org/cl/11884043
»»»
R=r
CC=golang-dev
https://golang.org/cl/12170046
1) Explain a[i] and a[i:j] where a is of type *A as
shortcut for (*a)[i] and (*a)[i:j], respectively.
2) Together with 1), because len() of nil slices is
well defined, there's no need to special case nil
operands anymore.
3) The result of indexing or slicing a constant string
is always a non-constant byte or string value.
4) The result of slicing an untyped string is a value
of type string.
5) If the operand of a valid slice a[i:j] is nil (i, j
must be 0 for it to be valid - this already follows
from the in-range rules), the result is a nil slice.
Fixes#4913.
Fixes#5951.
R=rsc, r, iant, ken
CC=golang-dev
https://golang.org/cl/11884043
Phrases like "returns whether or not the image is opaque" could be
describing what the function does (it always returns, regardless of
the opacity) or what it returns (a boolean indicating the opacity).
Even when the "or not" is missing, the phrasing is bizarre.
Go with "reports whether", which is still clunky but at least makes
it clear we're talking about the return value.
These were edited by hand. A few were cleaned up in other ways.
R=golang-dev, dsymonds
CC=golang-dev
https://golang.org/cl/11699043
In practice, rejecting an entire structure due to a single invalid byte
in a string is just too picky, and too hard to track down.
Be consistent with the bulk of the standard library by converting
invalid UTF-8 into UTF-8 with replacement runes.
R=golang-dev, crawshaw
CC=golang-dev
https://golang.org/cl/11211045
The notion of a named type is crucial for the definition
of type identity, assignability, definitions of methods.
Explicitly introduce the notion with an extra sentence.
Fixes#5682.
R=r, rsc, iant
CC=golang-dev
https://golang.org/cl/11055043
The existing compilers convert empty strings to empty
but non-nil byte and rune slices. The spec required
a nil byte and rune slice in those cases. That seems
an odd additional requirement. Adjust the spec to
match the reality.
Also, removed over-specification for conversions of
nil []byte and []rune: such nil slices already act
like empty slices and thus don't need extra language.
Added extra examples instead.
Fixes#5704.
R=rsc, r, iant
CC=golang-dev
https://golang.org/cl/10440045
The significant change between TLS 1.0 and 1.1 is the addition of an explicit IV in the case of CBC encrypted records. Support for TLS 1.1 is needed in order to support TLS 1.2.
R=golang-dev, bradfitz
CC=golang-dev
https://golang.org/cl/7880043