mirror of
https://github.com/golang/go
synced 2024-11-19 22:34:48 -07:00
278 lines
7.3 KiB
Go
278 lines
7.3 KiB
Go
|
// Copyright 2009 The Go Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package runtime
|
||
|
|
||
|
import "unsafe"
|
||
|
|
||
|
var sigset_none sigset
|
||
|
var sigset_all sigset = sigset{^uint32(0), ^uint32(0)}
|
||
|
|
||
|
// Linux futex.
|
||
|
//
|
||
|
// futexsleep(uint32 *addr, uint32 val)
|
||
|
// futexwakeup(uint32 *addr)
|
||
|
//
|
||
|
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
|
||
|
// Futexwakeup wakes up threads sleeping on addr.
|
||
|
// Futexsleep is allowed to wake up spuriously.
|
||
|
|
||
|
const (
|
||
|
_FUTEX_WAIT = 0
|
||
|
_FUTEX_WAKE = 1
|
||
|
)
|
||
|
|
||
|
// Atomically,
|
||
|
// if(*addr == val) sleep
|
||
|
// Might be woken up spuriously; that's allowed.
|
||
|
// Don't sleep longer than ns; ns < 0 means forever.
|
||
|
//go:nosplit
|
||
|
func futexsleep(addr *uint32, val uint32, ns int64) {
|
||
|
var ts timespec
|
||
|
|
||
|
// Some Linux kernels have a bug where futex of
|
||
|
// FUTEX_WAIT returns an internal error code
|
||
|
// as an errno. Libpthread ignores the return value
|
||
|
// here, and so can we: as it says a few lines up,
|
||
|
// spurious wakeups are allowed.
|
||
|
if ns < 0 {
|
||
|
futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, nil, nil, 0)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// NOTE: tv_nsec is int64 on amd64, so this assumes a little-endian system.
|
||
|
ts.tv_nsec = 0
|
||
|
ts.set_sec(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec))))
|
||
|
futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, unsafe.Pointer(&ts), nil, 0)
|
||
|
}
|
||
|
|
||
|
// If any procs are sleeping on addr, wake up at most cnt.
|
||
|
//go:nosplit
|
||
|
func futexwakeup(addr *uint32, cnt uint32) {
|
||
|
ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE, cnt, nil, nil, 0)
|
||
|
if ret >= 0 {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// I don't know that futex wakeup can return
|
||
|
// EAGAIN or EINTR, but if it does, it would be
|
||
|
// safe to loop and call futex again.
|
||
|
onM_signalok(func() {
|
||
|
print("futexwakeup addr=", addr, " returned ", ret, "\n")
|
||
|
})
|
||
|
|
||
|
*(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
|
||
|
}
|
||
|
|
||
|
func getproccount() int32 {
|
||
|
var buf [16]uintptr
|
||
|
r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0])
|
||
|
n := int32(0)
|
||
|
for _, v := range buf[:r/ptrSize] {
|
||
|
for i := 0; i < 64; i++ {
|
||
|
n += int32(v & 1)
|
||
|
v >>= 1
|
||
|
}
|
||
|
}
|
||
|
if n == 0 {
|
||
|
n = 1
|
||
|
}
|
||
|
return n
|
||
|
}
|
||
|
|
||
|
// Clone, the Linux rfork.
|
||
|
const (
|
||
|
_CLONE_VM = 0x100
|
||
|
_CLONE_FS = 0x200
|
||
|
_CLONE_FILES = 0x400
|
||
|
_CLONE_SIGHAND = 0x800
|
||
|
_CLONE_PTRACE = 0x2000
|
||
|
_CLONE_VFORK = 0x4000
|
||
|
_CLONE_PARENT = 0x8000
|
||
|
_CLONE_THREAD = 0x10000
|
||
|
_CLONE_NEWNS = 0x20000
|
||
|
_CLONE_SYSVSEM = 0x40000
|
||
|
_CLONE_SETTLS = 0x80000
|
||
|
_CLONE_PARENT_SETTID = 0x100000
|
||
|
_CLONE_CHILD_CLEARTID = 0x200000
|
||
|
_CLONE_UNTRACED = 0x800000
|
||
|
_CLONE_CHILD_SETTID = 0x1000000
|
||
|
_CLONE_STOPPED = 0x2000000
|
||
|
_CLONE_NEWUTS = 0x4000000
|
||
|
_CLONE_NEWIPC = 0x8000000
|
||
|
)
|
||
|
|
||
|
func newosproc(mp *m, stk unsafe.Pointer) {
|
||
|
/*
|
||
|
* note: strace gets confused if we use CLONE_PTRACE here.
|
||
|
*/
|
||
|
var flags int32 = _CLONE_VM | /* share memory */
|
||
|
_CLONE_FS | /* share cwd, etc */
|
||
|
_CLONE_FILES | /* share fd table */
|
||
|
_CLONE_SIGHAND | /* share sig handler table */
|
||
|
_CLONE_THREAD /* revisit - okay for now */
|
||
|
|
||
|
mp.tls[0] = uintptr(mp.id) // so 386 asm can find it
|
||
|
if false {
|
||
|
print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", funcPC(clone), " id=", mp.id, "/", mp.tls[0], " ostk=", &mp, "\n")
|
||
|
}
|
||
|
|
||
|
// Disable signals during clone, so that the new thread starts
|
||
|
// with signals disabled. It will enable them in minit.
|
||
|
var oset sigset
|
||
|
rtsigprocmask(_SIG_SETMASK, &sigset_all, &oset, int32(unsafe.Sizeof(oset)))
|
||
|
ret := clone(flags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(funcPC(mstart)))
|
||
|
rtsigprocmask(_SIG_SETMASK, &oset, nil, int32(unsafe.Sizeof(oset)))
|
||
|
|
||
|
if ret < 0 {
|
||
|
print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n")
|
||
|
gothrow("newosproc")
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func osinit() {
|
||
|
ncpu = getproccount()
|
||
|
}
|
||
|
|
||
|
// Random bytes initialized at startup. These come
|
||
|
// from the ELF AT_RANDOM auxiliary vector (vdso_linux_amd64.c).
|
||
|
// byte* runtime·startup_random_data;
|
||
|
// uint32 runtime·startup_random_data_len;
|
||
|
|
||
|
var urandom_data [_HashRandomBytes]byte
|
||
|
var urandom_dev = []byte("/dev/random\x00")
|
||
|
|
||
|
//go:nosplit
|
||
|
func get_random_data(rnd *unsafe.Pointer, rnd_len *int32) {
|
||
|
if startup_random_data != nil {
|
||
|
*rnd = unsafe.Pointer(startup_random_data)
|
||
|
*rnd_len = int32(startup_random_data_len)
|
||
|
return
|
||
|
}
|
||
|
fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
|
||
|
if read(fd, unsafe.Pointer(&urandom_data), _HashRandomBytes) == _HashRandomBytes {
|
||
|
*rnd = unsafe.Pointer(&urandom_data[0])
|
||
|
*rnd_len = _HashRandomBytes
|
||
|
} else {
|
||
|
*rnd = nil
|
||
|
*rnd_len = 0
|
||
|
}
|
||
|
close(fd)
|
||
|
}
|
||
|
|
||
|
func goenvs() {
|
||
|
goenvs_unix()
|
||
|
}
|
||
|
|
||
|
// Called to initialize a new m (including the bootstrap m).
|
||
|
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
|
||
|
func mpreinit(mp *m) {
|
||
|
mp.gsignal = malg(32 * 1024) // Linux wants >= 2K
|
||
|
mp.gsignal.m = mp
|
||
|
}
|
||
|
|
||
|
// Called to initialize a new m (including the bootstrap m).
|
||
|
// Called on the new thread, can not allocate memory.
|
||
|
func minit() {
|
||
|
// Initialize signal handling.
|
||
|
_g_ := getg()
|
||
|
signalstack((*byte)(unsafe.Pointer(_g_.m.gsignal.stack.lo)), 32*1024)
|
||
|
rtsigprocmask(_SIG_SETMASK, &sigset_none, nil, int32(unsafe.Sizeof(sigset_none)))
|
||
|
}
|
||
|
|
||
|
// Called from dropm to undo the effect of an minit.
|
||
|
func unminit() {
|
||
|
signalstack(nil, 0)
|
||
|
}
|
||
|
|
||
|
func memlimit() uintptr {
|
||
|
/*
|
||
|
TODO: Convert to Go when something actually uses the result.
|
||
|
|
||
|
Rlimit rl;
|
||
|
extern byte runtime·text[], runtime·end[];
|
||
|
uintptr used;
|
||
|
|
||
|
if(runtime·getrlimit(RLIMIT_AS, &rl) != 0)
|
||
|
return 0;
|
||
|
if(rl.rlim_cur >= 0x7fffffff)
|
||
|
return 0;
|
||
|
|
||
|
// Estimate our VM footprint excluding the heap.
|
||
|
// Not an exact science: use size of binary plus
|
||
|
// some room for thread stacks.
|
||
|
used = runtime·end - runtime·text + (64<<20);
|
||
|
if(used >= rl.rlim_cur)
|
||
|
return 0;
|
||
|
|
||
|
// If there's not at least 16 MB left, we're probably
|
||
|
// not going to be able to do much. Treat as no limit.
|
||
|
rl.rlim_cur -= used;
|
||
|
if(rl.rlim_cur < (16<<20))
|
||
|
return 0;
|
||
|
|
||
|
return rl.rlim_cur - used;
|
||
|
*/
|
||
|
|
||
|
return 0
|
||
|
}
|
||
|
|
||
|
//#ifdef GOARCH_386
|
||
|
//#define sa_handler k_sa_handler
|
||
|
//#endif
|
||
|
|
||
|
func sigreturn()
|
||
|
func sigtramp()
|
||
|
|
||
|
func setsig(i int32, fn uintptr, restart bool) {
|
||
|
var sa sigactiont
|
||
|
memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
|
||
|
sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER
|
||
|
if restart {
|
||
|
sa.sa_flags |= _SA_RESTART
|
||
|
}
|
||
|
sa.sa_mask = ^uint64(0)
|
||
|
// Although Linux manpage says "sa_restorer element is obsolete and
|
||
|
// should not be used". x86_64 kernel requires it. Only use it on
|
||
|
// x86.
|
||
|
if GOARCH == "386" || GOARCH == "amd64" {
|
||
|
sa.sa_restorer = funcPC(sigreturn)
|
||
|
}
|
||
|
if fn == funcPC(sighandler) {
|
||
|
fn = funcPC(sigtramp)
|
||
|
}
|
||
|
sa.sa_handler = fn
|
||
|
if rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask)) != 0 {
|
||
|
gothrow("rt_sigaction failure")
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func getsig(i int32) uintptr {
|
||
|
var sa sigactiont
|
||
|
|
||
|
memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
|
||
|
if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 {
|
||
|
gothrow("rt_sigaction read failure")
|
||
|
}
|
||
|
if sa.sa_handler == funcPC(sigtramp) {
|
||
|
return funcPC(sighandler)
|
||
|
}
|
||
|
return sa.sa_handler
|
||
|
}
|
||
|
|
||
|
func signalstack(p *byte, n int32) {
|
||
|
var st sigaltstackt
|
||
|
st.ss_sp = p
|
||
|
st.ss_size = uintptr(n)
|
||
|
st.ss_flags = 0
|
||
|
if p == nil {
|
||
|
st.ss_flags = _SS_DISABLE
|
||
|
}
|
||
|
sigaltstack(&st, nil)
|
||
|
}
|
||
|
|
||
|
func unblocksignals() {
|
||
|
rtsigprocmask(_SIG_SETMASK, &sigset_none, nil, int32(unsafe.Sizeof(sigset_none)))
|
||
|
}
|