1
0
mirror of https://github.com/golang/go synced 2024-10-05 04:21:22 -06:00
go/src/pkg/runtime/thread_openbsd.c

282 lines
6.5 KiB
C
Raw Normal View History

// Use of this source file is governed by a BSD-style
// license that can be found in the LICENSE file.`
#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "stack.h"
enum
{
ESRCH = 3,
ENOTSUP = 91,
// From OpenBSD's sys/time.h
CLOCK_REALTIME = 0,
CLOCK_VIRTUAL = 1,
CLOCK_PROF = 2,
CLOCK_MONOTONIC = 3
};
extern SigTab runtime·sigtab[];
static Sigset sigset_none;
static Sigset sigset_all = ~(Sigset)0;
extern int64 runtime·tfork(void *param, uintptr psize, M *mp, G *gp, void (*fn)(void));
extern int32 runtime·thrsleep(void *ident, int32 clock_id, void *tsp, void *lock, const int32 *abort);
extern int32 runtime·thrwakeup(void *ident, int32 n);
// From OpenBSD's <sys/sysctl.h>
#define CTL_HW 6
#define HW_NCPU 3
static int32
getncpu(void)
{
uint32 mib[2];
uint32 out;
int32 ret;
uintptr nout;
// Fetch hw.ncpu via sysctl.
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
nout = sizeof out;
out = 0;
ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0);
if(ret >= 0)
return out;
else
return 1;
}
uintptr
runtime·semacreate(void)
{
return 1;
}
int32
runtime·semasleep(int64 ns)
{
Timespec ts;
// spin-mutex lock
while(runtime·xchg(&m->waitsemalock, 1))
runtime·osyield();
for(;;) {
// lock held
if(m->waitsemacount == 0) {
// sleep until semaphore != 0 or timeout.
// thrsleep unlocks m->waitsemalock.
if(ns < 0)
runtime·thrsleep(&m->waitsemacount, 0, nil, &m->waitsemalock, nil);
else {
ns += runtime·nanotime();
ts.tv_sec = ns/1000000000LL;
ts.tv_nsec = ns%1000000000LL;
runtime·thrsleep(&m->waitsemacount, CLOCK_REALTIME, &ts, &m->waitsemalock, nil);
}
// reacquire lock
while(runtime·xchg(&m->waitsemalock, 1))
runtime·osyield();
}
// lock held (again)
if(m->waitsemacount != 0) {
// semaphore is available.
m->waitsemacount--;
// spin-mutex unlock
runtime·atomicstore(&m->waitsemalock, 0);
return 0; // semaphore acquired
}
// semaphore not available.
// if there is a timeout, stop now.
// otherwise keep trying.
if(ns >= 0)
break;
}
// lock held but giving up
// spin-mutex unlock
runtime·atomicstore(&m->waitsemalock, 0);
return -1;
}
void
runtime·semawakeup(M *mp)
{
uint32 ret;
// spin-mutex lock
while(runtime·xchg(&mp->waitsemalock, 1))
runtime·osyield();
mp->waitsemacount++;
ret = runtime·thrwakeup(&mp->waitsemacount, 1);
if(ret != 0 && ret != ESRCH)
runtime·printf("thrwakeup addr=%p sem=%d ret=%d\n", &mp->waitsemacount, mp->waitsemacount, ret);
// spin-mutex unlock
runtime·atomicstore(&mp->waitsemalock, 0);
}
void
runtime·newosproc(M *mp, void *stk)
{
Tfork param;
Sigset oset;
int32 ret;
if(0) {
runtime·printf(
"newosproc stk=%p m=%p g=%p id=%d/%d ostk=%p\n",
stk, mp, mp->g0, mp->id, (int32)mp->tls[0], &mp);
}
mp->tls[0] = mp->id; // so 386 asm can find it
param.tf_tcb = (byte*)&mp->tls[0];
param.tf_tid = (int32*)&mp->procid;
param.tf_stack = stk;
oset = runtime·sigprocmask(SIG_SETMASK, sigset_all);
ret = runtime·tfork((byte*)&param, sizeof(param), mp, mp->g0, runtime·mstart);
runtime·sigprocmask(SIG_SETMASK, oset);
if(ret < 0) {
runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount() - 1, -ret);
if (ret == -ENOTSUP)
runtime·printf("runtime: is kern.rthreads disabled?\n");
runtime·throw("runtime.newosproc");
}
}
void
runtime·osinit(void)
{
runtime·ncpu = getncpu();
}
void
runtime·get_random_data(byte **rnd, int32 *rnd_len)
{
static byte urandom_data[HashRandomBytes];
int32 fd;
fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0);
if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) {
*rnd = urandom_data;
*rnd_len = HashRandomBytes;
} else {
*rnd = nil;
*rnd_len = 0;
}
runtime·close(fd);
}
void
runtime·goenvs(void)
{
runtime·goenvs_unix();
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
void
runtime·mpreinit(M *mp)
{
mp->gsignal = runtime·malg(32*1024);
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
void
runtime·minit(void)
{
// Initialize signal handling
runtime·signalstack((byte*)m->gsignal->stackguard - StackGuard, 32*1024);
runtime·sigprocmask(SIG_SETMASK, sigset_none);
}
// Called from dropm to undo the effect of an minit.
void
runtime·unminit(void)
{
runtime·signalstack(nil, 0);
}
void
runtime·sigpanic(void)
{
switch(g->sig) {
case SIGBUS:
if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) {
if(g->sigpc == 0)
runtime·panicstring("call of nil func value");
runtime·panicstring("invalid memory address or nil pointer dereference");
}
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGSEGV:
if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) {
if(g->sigpc == 0)
runtime·panicstring("call of nil func value");
runtime·panicstring("invalid memory address or nil pointer dereference");
}
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGFPE:
switch(g->sigcode0) {
case FPE_INTDIV:
runtime·panicstring("integer divide by zero");
case FPE_INTOVF:
runtime·panicstring("integer overflow");
}
runtime·panicstring("floating point error");
}
runtime·panicstring(runtime·sigtab[g->sig].name);
}
uintptr
runtime·memlimit(void)
{
return 0;
}
void
runtime·setprof(bool on)
{
USED(on);
}
static int8 badcallback[] = "runtime: cgo callback on thread not created by Go.\n";
// This runs on a foreign stack, without an m or a g. No stack split.
#pragma textflag 7
void
runtime·badcallback(void)
{
runtime·write(2, badcallback, sizeof badcallback - 1);
}
static int8 badsignal[] = "runtime: signal received on thread not created by Go: ";
// This runs on a foreign stack, without an m or a g. No stack split.
#pragma textflag 7
void
runtime: discard SIGPROF delivered to non-Go threads. Signal handlers are global resources but many language environments (Go, C++ at Google, etc) assume they have sole ownership of a particular handler. Signal handlers in mixed-language applications must therefore be robust against unexpected delivery of certain signals, such as SIGPROF. The default Go signal handler runtime·sigtramp assumes that it will never be called on a non-Go thread, but this assumption is violated by when linking in C++ code that spawns threads. Specifically, the handler asserts the thread has an associated "m" (Go scheduler). This CL is a very simple workaround: discard SIGPROF delivered to non-Go threads. runtime.badsignal(int32) now receives the signal number; if it returns without panicking (e.g. sig==SIGPROF) the signal is discarded. I don't think there is any really satisfactory solution to the problem of signal-based profiling in a mixed-language application. It's not only the issue of handler clobbering, but also that a C++ SIGPROF handler called in a Go thread can't unwind the Go stack (and vice versa). The best we can hope for is not crashing. Note: - I've ported this to all POSIX platforms, except ARM-linux which already ignores unexpected signals on m-less threads. - I've avoided tail-calling runtime.badsignal because AFAICT the 6a/6l don't support it. - I've avoided hoisting 'push sig' (common to both function calls) because it makes the code harder to read. - Fixed an (apparently incorrect?) docstring. R=iant, rsc, minux.ma CC=golang-dev https://golang.org/cl/6498057
2012-09-04 12:40:49 -06:00
runtime·badsignal(int32 sig)
{
runtime: discard SIGPROF delivered to non-Go threads. Signal handlers are global resources but many language environments (Go, C++ at Google, etc) assume they have sole ownership of a particular handler. Signal handlers in mixed-language applications must therefore be robust against unexpected delivery of certain signals, such as SIGPROF. The default Go signal handler runtime·sigtramp assumes that it will never be called on a non-Go thread, but this assumption is violated by when linking in C++ code that spawns threads. Specifically, the handler asserts the thread has an associated "m" (Go scheduler). This CL is a very simple workaround: discard SIGPROF delivered to non-Go threads. runtime.badsignal(int32) now receives the signal number; if it returns without panicking (e.g. sig==SIGPROF) the signal is discarded. I don't think there is any really satisfactory solution to the problem of signal-based profiling in a mixed-language application. It's not only the issue of handler clobbering, but also that a C++ SIGPROF handler called in a Go thread can't unwind the Go stack (and vice versa). The best we can hope for is not crashing. Note: - I've ported this to all POSIX platforms, except ARM-linux which already ignores unexpected signals on m-less threads. - I've avoided tail-calling runtime.badsignal because AFAICT the 6a/6l don't support it. - I've avoided hoisting 'push sig' (common to both function calls) because it makes the code harder to read. - Fixed an (apparently incorrect?) docstring. R=iant, rsc, minux.ma CC=golang-dev https://golang.org/cl/6498057
2012-09-04 12:40:49 -06:00
if (sig == SIGPROF) {
return; // Ignore SIGPROFs intended for a non-Go thread.
}
runtime·write(2, badsignal, sizeof badsignal - 1);
if (0 <= sig && sig < NSIG) {
// Call runtime·findnull dynamically to circumvent static stack size check.
static int32 (*findnull)(byte*) = runtime·findnull;
runtime·write(2, runtime·sigtab[sig].name, findnull((byte*)runtime·sigtab[sig].name));
}
runtime·write(2, "\n", 1);
runtime·exit(1);
}