1
0
mirror of https://github.com/golang/go synced 2024-11-19 17:24:41 -07:00
go/src/runtime/proc_test.go

876 lines
19 KiB
Go
Raw Normal View History

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"math"
"net"
"runtime"
"runtime/debug"
"strings"
cmd/gc: capture variables by value Language specification says that variables are captured by reference. And that is what gc compiler does. However, in lots of cases it is possible to capture variables by value under the hood without affecting visible behavior of programs. For example, consider the following typical pattern: func (o *Obj) requestMany(urls []string) []Result { wg := new(sync.WaitGroup) wg.Add(len(urls)) res := make([]Result, len(urls)) for i := range urls { i := i go func() { res[i] = o.requestOne(urls[i]) wg.Done() }() } wg.Wait() return res } Currently o, wg, res, and i are captured by reference causing 3+len(urls) allocations (e.g. PPARAM o is promoted to PPARAMREF and moved to heap). But all of them can be captured by value without changing behavior. This change implements simple strategy for capturing by value: if a captured variable is not addrtaken and never assigned to, then it is captured by value (it is effectively const). This simple strategy turned out to be very effective: ~80% of all captures in std lib are turned into value captures. The remaining 20% are mostly in defers and non-escaping closures, that is, they do not cause allocations anyway. benchmark old allocs new allocs delta BenchmarkCompressedZipGarbage 153 126 -17.65% BenchmarkEncodeDigitsSpeed1e4 91 69 -24.18% BenchmarkEncodeDigitsSpeed1e5 178 129 -27.53% BenchmarkEncodeDigitsSpeed1e6 1510 1051 -30.40% BenchmarkEncodeDigitsDefault1e4 100 75 -25.00% BenchmarkEncodeDigitsDefault1e5 193 139 -27.98% BenchmarkEncodeDigitsDefault1e6 1420 985 -30.63% BenchmarkEncodeDigitsCompress1e4 100 75 -25.00% BenchmarkEncodeDigitsCompress1e5 193 139 -27.98% BenchmarkEncodeDigitsCompress1e6 1420 985 -30.63% BenchmarkEncodeTwainSpeed1e4 109 81 -25.69% BenchmarkEncodeTwainSpeed1e5 211 151 -28.44% BenchmarkEncodeTwainSpeed1e6 1588 1097 -30.92% BenchmarkEncodeTwainDefault1e4 103 77 -25.24% BenchmarkEncodeTwainDefault1e5 199 143 -28.14% BenchmarkEncodeTwainDefault1e6 1324 917 -30.74% BenchmarkEncodeTwainCompress1e4 103 77 -25.24% BenchmarkEncodeTwainCompress1e5 190 137 -27.89% BenchmarkEncodeTwainCompress1e6 1327 919 -30.75% BenchmarkConcurrentDBExec 16223 16220 -0.02% BenchmarkConcurrentStmtQuery 17687 16182 -8.51% BenchmarkConcurrentStmtExec 5191 5186 -0.10% BenchmarkConcurrentTxQuery 17665 17661 -0.02% BenchmarkConcurrentTxExec 15154 15150 -0.03% BenchmarkConcurrentTxStmtQuery 17661 16157 -8.52% BenchmarkConcurrentTxStmtExec 3677 3673 -0.11% BenchmarkConcurrentRandom 14000 13614 -2.76% BenchmarkManyConcurrentQueries 25 22 -12.00% BenchmarkDecodeComplex128Slice 318 252 -20.75% BenchmarkDecodeFloat64Slice 318 252 -20.75% BenchmarkDecodeInt32Slice 318 252 -20.75% BenchmarkDecodeStringSlice 2318 2252 -2.85% BenchmarkDecode 11 8 -27.27% BenchmarkEncodeGray 64 56 -12.50% BenchmarkEncodeNRGBOpaque 64 56 -12.50% BenchmarkEncodeNRGBA 67 58 -13.43% BenchmarkEncodePaletted 68 60 -11.76% BenchmarkEncodeRGBOpaque 64 56 -12.50% BenchmarkGoLookupIP 153 139 -9.15% BenchmarkGoLookupIPNoSuchHost 508 466 -8.27% BenchmarkGoLookupIPWithBrokenNameServer 245 226 -7.76% BenchmarkClientServer 62 59 -4.84% BenchmarkClientServerParallel4 62 59 -4.84% BenchmarkClientServerParallel64 62 59 -4.84% BenchmarkClientServerParallelTLS4 79 76 -3.80% BenchmarkClientServerParallelTLS64 112 109 -2.68% BenchmarkCreateGoroutinesCapture 10 6 -40.00% BenchmarkAfterFunc 1006 1005 -0.10% Fixes #6632. Change-Id: I0cd51e4d356331d7f3c5f447669080cd19b0d2ca Reviewed-on: https://go-review.googlesource.com/3166 Reviewed-by: Russ Cox <rsc@golang.org>
2015-01-19 12:59:58 -07:00
"sync"
"sync/atomic"
"syscall"
"testing"
"time"
)
var stop = make(chan bool, 1)
func perpetuumMobile() {
select {
case <-stop:
default:
go perpetuumMobile()
}
}
func TestStopTheWorldDeadlock(t *testing.T) {
if testing.Short() {
t.Skip("skipping during short test")
}
maxprocs := runtime.GOMAXPROCS(3)
compl := make(chan bool, 2)
go func() {
for i := 0; i != 1000; i += 1 {
runtime.GC()
}
compl <- true
}()
go func() {
for i := 0; i != 1000; i += 1 {
runtime.GOMAXPROCS(3)
}
compl <- true
}()
go perpetuumMobile()
<-compl
<-compl
stop <- true
runtime.GOMAXPROCS(maxprocs)
}
func TestYieldProgress(t *testing.T) {
testYieldProgress(false)
}
func TestYieldLockedProgress(t *testing.T) {
testYieldProgress(true)
}
func testYieldProgress(locked bool) {
c := make(chan bool)
cack := make(chan bool)
go func() {
if locked {
runtime.LockOSThread()
}
for {
select {
case <-c:
cack <- true
return
default:
runtime.Gosched()
}
}
}()
time.Sleep(10 * time.Millisecond)
c <- true
<-cack
}
func TestYieldLocked(t *testing.T) {
const N = 10
c := make(chan bool)
go func() {
runtime.LockOSThread()
for i := 0; i < N; i++ {
runtime.Gosched()
time.Sleep(time.Millisecond)
}
c <- true
// runtime.UnlockOSThread() is deliberately omitted
}()
<-c
}
func TestGoroutineParallelism(t *testing.T) {
if runtime.NumCPU() == 1 {
// Takes too long, too easy to deadlock, etc.
t.Skip("skipping on uniprocessor")
}
P := 4
N := 10
if testing.Short() {
P = 3
N = 3
}
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(P))
// If runtime triggers a forced GC during this test then it will deadlock,
// since the goroutines can't be stopped/preempted.
// Disable GC for this test (see issue #10958).
defer debug.SetGCPercent(debug.SetGCPercent(-1))
for try := 0; try < N; try++ {
done := make(chan bool)
x := uint32(0)
for p := 0; p < P; p++ {
// Test that all P goroutines are scheduled at the same time
go func(p int) {
for i := 0; i < 3; i++ {
expected := uint32(P*i + p)
for atomic.LoadUint32(&x) != expected {
}
atomic.StoreUint32(&x, expected+1)
}
done <- true
}(p)
}
for p := 0; p < P; p++ {
<-done
}
}
}
// Test that all runnable goroutines are scheduled at the same time.
func TestGoroutineParallelism2(t *testing.T) {
//testGoroutineParallelism2(t, false, false)
testGoroutineParallelism2(t, true, false)
testGoroutineParallelism2(t, false, true)
testGoroutineParallelism2(t, true, true)
}
func testGoroutineParallelism2(t *testing.T, load, netpoll bool) {
if runtime.NumCPU() == 1 {
// Takes too long, too easy to deadlock, etc.
t.Skip("skipping on uniprocessor")
}
P := 4
N := 10
if testing.Short() {
N = 3
}
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(P))
// If runtime triggers a forced GC during this test then it will deadlock,
// since the goroutines can't be stopped/preempted.
// Disable GC for this test (see issue #10958).
defer debug.SetGCPercent(debug.SetGCPercent(-1))
for try := 0; try < N; try++ {
if load {
// Create P goroutines and wait until they all run.
// When we run the actual test below, worker threads
// running the goroutines will start parking.
done := make(chan bool)
x := uint32(0)
for p := 0; p < P; p++ {
go func() {
if atomic.AddUint32(&x, 1) == uint32(P) {
done <- true
return
}
for atomic.LoadUint32(&x) != uint32(P) {
}
}()
}
<-done
}
if netpoll {
// Enable netpoller, affects schedler behavior.
laddr := "localhost:0"
if runtime.GOOS == "android" {
// On some Android devices, there are no records for localhost,
// see https://golang.org/issues/14486.
// Don't use 127.0.0.1 for every case, it won't work on IPv6-only systems.
laddr = "127.0.0.1:0"
}
ln, err := net.Listen("tcp", laddr)
if err != nil {
defer ln.Close() // yup, defer in a loop
}
}
done := make(chan bool)
x := uint32(0)
// Spawn P goroutines in a nested fashion just to differ from TestGoroutineParallelism.
for p := 0; p < P/2; p++ {
go func(p int) {
for p2 := 0; p2 < 2; p2++ {
go func(p2 int) {
for i := 0; i < 3; i++ {
expected := uint32(P*i + p*2 + p2)
for atomic.LoadUint32(&x) != expected {
}
atomic.StoreUint32(&x, expected+1)
}
done <- true
}(p2)
}
}(p)
}
for p := 0; p < P; p++ {
<-done
}
}
}
func TestBlockLocked(t *testing.T) {
const N = 10
c := make(chan bool)
go func() {
runtime.LockOSThread()
for i := 0; i < N; i++ {
c <- true
}
runtime.UnlockOSThread()
}()
for i := 0; i < N; i++ {
<-c
}
}
func TestTimerFairness(t *testing.T) {
done := make(chan bool)
c := make(chan bool)
for i := 0; i < 2; i++ {
go func() {
for {
select {
case c <- true:
case <-done:
return
}
}
}()
}
timer := time.After(20 * time.Millisecond)
for {
select {
case <-c:
case <-timer:
close(done)
return
}
}
}
func TestTimerFairness2(t *testing.T) {
done := make(chan bool)
c := make(chan bool)
for i := 0; i < 2; i++ {
go func() {
timer := time.After(20 * time.Millisecond)
var buf [1]byte
for {
syscall.Read(0, buf[0:0])
select {
case c <- true:
case <-c:
case <-timer:
done <- true
return
}
}
}()
}
<-done
<-done
}
// The function is used to test preemption at split stack checks.
// Declaring a var avoids inlining at the call site.
var preempt = func() int {
var a [128]int
sum := 0
for _, v := range a {
sum += v
}
return sum
}
func TestPreemption(t *testing.T) {
// Test that goroutines are preempted at function calls.
N := 5
if testing.Short() {
N = 2
}
c := make(chan bool)
var x uint32
for g := 0; g < 2; g++ {
go func(g int) {
for i := 0; i < N; i++ {
for atomic.LoadUint32(&x) != uint32(g) {
preempt()
}
atomic.StoreUint32(&x, uint32(1-g))
}
c <- true
}(g)
}
<-c
<-c
}
func TestPreemptionGC(t *testing.T) {
// Test that pending GC preempts running goroutines.
P := 5
N := 10
if testing.Short() {
P = 3
N = 2
}
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(P + 1))
var stop uint32
for i := 0; i < P; i++ {
go func() {
for atomic.LoadUint32(&stop) == 0 {
preempt()
}
}()
}
for i := 0; i < N; i++ {
runtime.Gosched()
runtime.GC()
}
atomic.StoreUint32(&stop, 1)
}
func TestGCFairness(t *testing.T) {
output := runTestProg(t, "testprog", "GCFairness")
want := "OK\n"
if output != want {
t.Fatalf("want %s, got %s\n", want, output)
}
}
runtime: fix goroutine priority elevation Currently it's possible for user code to exploit the high scheduler priority of the GC worker in conjunction with the runnext optimization to elevate a user goroutine to high priority so it will always run even if there are other runnable goroutines. For example, if a goroutine is in a tight allocation loop, the following can happen: 1. Goroutine 1 allocates, triggering a GC. 2. G 1 attempts an assist, but fails and blocks. 3. The scheduler runs the GC worker, since it is high priority. Note that this also starts a new scheduler quantum. 4. The GC worker does enough work to satisfy the assist. 5. The GC worker readies G 1, putting it in runnext. 6. GC finishes and the scheduler runs G 1 from runnext, giving it the rest of the GC worker's quantum. 7. Go to 1. Even if there are other goroutines on the run queue, they never get a chance to run in the above sequence. This requires a confluence of circumstances that make it unlikely, though not impossible, that it would happen in "real" code. In the test added by this commit, we force this confluence by setting GOMAXPROCS to 1 and GOGC to 1 so it's easy for the test to repeated trigger GC and wake from a blocked assist. We fix this by making GC always put user goroutines at the end of the run queue, instead of in runnext. This makes it so user code can't piggy-back on the GC's high priority to make a user goroutine act like it has high priority. The only other situation where GC wakes user goroutines is waking all blocked assists at the end, but this uses the global run queue and hence doesn't have this problem. Fixes #15706. Change-Id: I1589dee4b7b7d0c9c8575ed3472226084dfce8bc Reviewed-on: https://go-review.googlesource.com/23172 Reviewed-by: Rick Hudson <rlh@golang.org>
2016-05-17 16:46:03 -06:00
func TestGCFairness2(t *testing.T) {
output := runTestProg(t, "testprog", "GCFairness2")
want := "OK\n"
if output != want {
t.Fatalf("want %s, got %s\n", want, output)
}
}
func TestNumGoroutine(t *testing.T) {
output := runTestProg(t, "testprog", "NumGoroutine")
want := "1\n"
if output != want {
t.Fatalf("want %q, got %q", want, output)
}
buf := make([]byte, 1<<20)
// Try up to 10 times for a match before giving up.
// This is a fundamentally racy check but it's important
// to notice if NumGoroutine and Stack are _always_ out of sync.
for i := 0; ; i++ {
// Give goroutines about to exit a chance to exit.
// The NumGoroutine and Stack below need to see
// the same state of the world, so anything we can do
// to keep it quiet is good.
runtime.Gosched()
n := runtime.NumGoroutine()
buf = buf[:runtime.Stack(buf, true)]
nstk := strings.Count(string(buf), "goroutine ")
if n == nstk {
break
}
if i >= 10 {
t.Fatalf("NumGoroutine=%d, but found %d goroutines in stack dump: %s", n, nstk, buf)
}
}
}
runtime: yield time slice to most recently readied G Currently, when the runtime ready()s a G, it adds it to the end of the current P's run queue and continues running. If there are many other things in the run queue, this can result in a significant delay before the ready()d G actually runs and can hurt fairness when other Gs in the run queue are CPU hogs. For example, if there are three Gs sharing a P, one of which is a CPU hog that never voluntarily gives up the P and the other two of which are doing small amounts of work and communicating back and forth on an unbuffered channel, the two communicating Gs will get very little CPU time. Change this so that when G1 ready()s G2 and then blocks, the scheduler immediately hands off the remainder of G1's time slice to G2. In the above example, the two communicating Gs will now act as a unit and together get half of the CPU time, while the CPU hog gets the other half of the CPU time. This fixes the problem demonstrated by the ping-pong benchmark added in the previous commit: benchmark old ns/op new ns/op delta BenchmarkPingPongHog 684287 825 -99.88% On the x/benchmarks suite, this change improves the performance of garbage by ~6% (for GOMAXPROCS=1 and 4), and json by 28% and 36% for GOMAXPROCS=1 and 4. It has negligible effect on heap size. This has no effect on the go1 benchmark suite since those benchmarks are mostly single-threaded. Change-Id: I858a08eaa78f702ea98a5fac99d28a4ac91d339f Reviewed-on: https://go-review.googlesource.com/9289 Reviewed-by: Rick Hudson <rlh@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2015-04-22 12:42:26 -06:00
func TestPingPongHog(t *testing.T) {
if testing.Short() {
t.Skip("skipping in -short mode")
}
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(1))
done := make(chan bool)
hogChan, lightChan := make(chan bool), make(chan bool)
hogCount, lightCount := 0, 0
run := func(limit int, counter *int, wake chan bool) {
for {
select {
case <-done:
return
case <-wake:
for i := 0; i < limit; i++ {
*counter++
}
wake <- true
}
}
}
// Start two co-scheduled hog goroutines.
for i := 0; i < 2; i++ {
go run(1e6, &hogCount, hogChan)
}
// Start two co-scheduled light goroutines.
for i := 0; i < 2; i++ {
go run(1e3, &lightCount, lightChan)
}
// Start goroutine pairs and wait for a few preemption rounds.
hogChan <- true
lightChan <- true
time.Sleep(100 * time.Millisecond)
close(done)
<-hogChan
<-lightChan
// Check that hogCount and lightCount are within a factor of
// 5, which indicates that both pairs of goroutines handed off
// the P within a time-slice to their buddy. We can use a
// fairly large factor here to make this robust: if the
// scheduler isn't working right, the gap should be ~1000X.
const factor = 5
if hogCount > lightCount*factor || lightCount > hogCount*factor {
t.Fatalf("want hogCount/lightCount in [%v, %v]; got %d/%d = %g", 1.0/factor, factor, hogCount, lightCount, float64(hogCount)/float64(lightCount))
runtime: yield time slice to most recently readied G Currently, when the runtime ready()s a G, it adds it to the end of the current P's run queue and continues running. If there are many other things in the run queue, this can result in a significant delay before the ready()d G actually runs and can hurt fairness when other Gs in the run queue are CPU hogs. For example, if there are three Gs sharing a P, one of which is a CPU hog that never voluntarily gives up the P and the other two of which are doing small amounts of work and communicating back and forth on an unbuffered channel, the two communicating Gs will get very little CPU time. Change this so that when G1 ready()s G2 and then blocks, the scheduler immediately hands off the remainder of G1's time slice to G2. In the above example, the two communicating Gs will now act as a unit and together get half of the CPU time, while the CPU hog gets the other half of the CPU time. This fixes the problem demonstrated by the ping-pong benchmark added in the previous commit: benchmark old ns/op new ns/op delta BenchmarkPingPongHog 684287 825 -99.88% On the x/benchmarks suite, this change improves the performance of garbage by ~6% (for GOMAXPROCS=1 and 4), and json by 28% and 36% for GOMAXPROCS=1 and 4. It has negligible effect on heap size. This has no effect on the go1 benchmark suite since those benchmarks are mostly single-threaded. Change-Id: I858a08eaa78f702ea98a5fac99d28a4ac91d339f Reviewed-on: https://go-review.googlesource.com/9289 Reviewed-by: Rick Hudson <rlh@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
2015-04-22 12:42:26 -06:00
}
}
func BenchmarkPingPongHog(b *testing.B) {
if b.N == 0 {
return
}
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(1))
// Create a CPU hog
stop, done := make(chan bool), make(chan bool)
go func() {
for {
select {
case <-stop:
done <- true
return
default:
}
}
}()
// Ping-pong b.N times
ping, pong := make(chan bool), make(chan bool)
go func() {
for j := 0; j < b.N; j++ {
pong <- <-ping
}
close(stop)
done <- true
}()
go func() {
for i := 0; i < b.N; i++ {
ping <- <-pong
}
done <- true
}()
b.ResetTimer()
ping <- true // Start ping-pong
<-stop
b.StopTimer()
<-ping // Let last ponger exit
<-done // Make sure goroutines exit
<-done
<-done
}
func stackGrowthRecursive(i int) {
var pad [128]uint64
if i != 0 && pad[0] == 0 {
stackGrowthRecursive(i - 1)
}
}
func TestPreemptSplitBig(t *testing.T) {
if testing.Short() {
t.Skip("skipping in -short mode")
}
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(2))
stop := make(chan int)
go big(stop)
for i := 0; i < 3; i++ {
time.Sleep(10 * time.Microsecond) // let big start running
runtime.GC()
}
close(stop)
}
func big(stop chan int) int {
n := 0
for {
// delay so that gc is sure to have asked for a preemption
for i := 0; i < 1e9; i++ {
n++
}
// call bigframe, which used to miss the preemption in its prologue.
bigframe(stop)
// check if we've been asked to stop.
select {
case <-stop:
return n
}
}
}
func bigframe(stop chan int) int {
// not splitting the stack will overflow.
// small will notice that it needs a stack split and will
// catch the overflow.
var x [8192]byte
return small(stop, &x)
}
func small(stop chan int, x *[8192]byte) int {
for i := range x {
x[i] = byte(i)
}
sum := 0
for i := range x {
sum += int(x[i])
}
// keep small from being a leaf function, which might
// make it not do any stack check at all.
nonleaf(stop)
return sum
}
func nonleaf(stop chan int) bool {
// do something that won't be inlined:
select {
case <-stop:
return true
default:
return false
}
}
func TestSchedLocalQueue(t *testing.T) {
runtime.RunSchedLocalQueueTest()
}
func TestSchedLocalQueueSteal(t *testing.T) {
runtime.RunSchedLocalQueueStealTest()
}
func TestSchedLocalQueueEmpty(t *testing.T) {
if runtime.NumCPU() == 1 {
// Takes too long and does not trigger the race.
t.Skip("skipping on uniprocessor")
}
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(4))
// If runtime triggers a forced GC during this test then it will deadlock,
// since the goroutines can't be stopped/preempted during spin wait.
defer debug.SetGCPercent(debug.SetGCPercent(-1))
iters := int(1e5)
if testing.Short() {
iters = 1e2
}
runtime.RunSchedLocalQueueEmptyTest(iters)
}
func benchmarkStackGrowth(b *testing.B, rec int) {
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
stackGrowthRecursive(rec)
}
})
}
func BenchmarkStackGrowth(b *testing.B) {
benchmarkStackGrowth(b, 10)
}
func BenchmarkStackGrowthDeep(b *testing.B) {
benchmarkStackGrowth(b, 1024)
}
func BenchmarkCreateGoroutines(b *testing.B) {
benchmarkCreateGoroutines(b, 1)
}
func BenchmarkCreateGoroutinesParallel(b *testing.B) {
benchmarkCreateGoroutines(b, runtime.GOMAXPROCS(-1))
}
func benchmarkCreateGoroutines(b *testing.B, procs int) {
c := make(chan bool)
var f func(n int)
f = func(n int) {
if n == 0 {
c <- true
return
}
go f(n - 1)
}
for i := 0; i < procs; i++ {
go f(b.N / procs)
}
for i := 0; i < procs; i++ {
<-c
}
}
cmd/gc: capture variables by value Language specification says that variables are captured by reference. And that is what gc compiler does. However, in lots of cases it is possible to capture variables by value under the hood without affecting visible behavior of programs. For example, consider the following typical pattern: func (o *Obj) requestMany(urls []string) []Result { wg := new(sync.WaitGroup) wg.Add(len(urls)) res := make([]Result, len(urls)) for i := range urls { i := i go func() { res[i] = o.requestOne(urls[i]) wg.Done() }() } wg.Wait() return res } Currently o, wg, res, and i are captured by reference causing 3+len(urls) allocations (e.g. PPARAM o is promoted to PPARAMREF and moved to heap). But all of them can be captured by value without changing behavior. This change implements simple strategy for capturing by value: if a captured variable is not addrtaken and never assigned to, then it is captured by value (it is effectively const). This simple strategy turned out to be very effective: ~80% of all captures in std lib are turned into value captures. The remaining 20% are mostly in defers and non-escaping closures, that is, they do not cause allocations anyway. benchmark old allocs new allocs delta BenchmarkCompressedZipGarbage 153 126 -17.65% BenchmarkEncodeDigitsSpeed1e4 91 69 -24.18% BenchmarkEncodeDigitsSpeed1e5 178 129 -27.53% BenchmarkEncodeDigitsSpeed1e6 1510 1051 -30.40% BenchmarkEncodeDigitsDefault1e4 100 75 -25.00% BenchmarkEncodeDigitsDefault1e5 193 139 -27.98% BenchmarkEncodeDigitsDefault1e6 1420 985 -30.63% BenchmarkEncodeDigitsCompress1e4 100 75 -25.00% BenchmarkEncodeDigitsCompress1e5 193 139 -27.98% BenchmarkEncodeDigitsCompress1e6 1420 985 -30.63% BenchmarkEncodeTwainSpeed1e4 109 81 -25.69% BenchmarkEncodeTwainSpeed1e5 211 151 -28.44% BenchmarkEncodeTwainSpeed1e6 1588 1097 -30.92% BenchmarkEncodeTwainDefault1e4 103 77 -25.24% BenchmarkEncodeTwainDefault1e5 199 143 -28.14% BenchmarkEncodeTwainDefault1e6 1324 917 -30.74% BenchmarkEncodeTwainCompress1e4 103 77 -25.24% BenchmarkEncodeTwainCompress1e5 190 137 -27.89% BenchmarkEncodeTwainCompress1e6 1327 919 -30.75% BenchmarkConcurrentDBExec 16223 16220 -0.02% BenchmarkConcurrentStmtQuery 17687 16182 -8.51% BenchmarkConcurrentStmtExec 5191 5186 -0.10% BenchmarkConcurrentTxQuery 17665 17661 -0.02% BenchmarkConcurrentTxExec 15154 15150 -0.03% BenchmarkConcurrentTxStmtQuery 17661 16157 -8.52% BenchmarkConcurrentTxStmtExec 3677 3673 -0.11% BenchmarkConcurrentRandom 14000 13614 -2.76% BenchmarkManyConcurrentQueries 25 22 -12.00% BenchmarkDecodeComplex128Slice 318 252 -20.75% BenchmarkDecodeFloat64Slice 318 252 -20.75% BenchmarkDecodeInt32Slice 318 252 -20.75% BenchmarkDecodeStringSlice 2318 2252 -2.85% BenchmarkDecode 11 8 -27.27% BenchmarkEncodeGray 64 56 -12.50% BenchmarkEncodeNRGBOpaque 64 56 -12.50% BenchmarkEncodeNRGBA 67 58 -13.43% BenchmarkEncodePaletted 68 60 -11.76% BenchmarkEncodeRGBOpaque 64 56 -12.50% BenchmarkGoLookupIP 153 139 -9.15% BenchmarkGoLookupIPNoSuchHost 508 466 -8.27% BenchmarkGoLookupIPWithBrokenNameServer 245 226 -7.76% BenchmarkClientServer 62 59 -4.84% BenchmarkClientServerParallel4 62 59 -4.84% BenchmarkClientServerParallel64 62 59 -4.84% BenchmarkClientServerParallelTLS4 79 76 -3.80% BenchmarkClientServerParallelTLS64 112 109 -2.68% BenchmarkCreateGoroutinesCapture 10 6 -40.00% BenchmarkAfterFunc 1006 1005 -0.10% Fixes #6632. Change-Id: I0cd51e4d356331d7f3c5f447669080cd19b0d2ca Reviewed-on: https://go-review.googlesource.com/3166 Reviewed-by: Russ Cox <rsc@golang.org>
2015-01-19 12:59:58 -07:00
func BenchmarkCreateGoroutinesCapture(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
const N = 4
var wg sync.WaitGroup
wg.Add(N)
for i := 0; i < N; i++ {
i := i
go func() {
if i >= N {
b.Logf("bad") // just to capture b
}
wg.Done()
}()
}
wg.Wait()
}
}
cmd/gc: transform closure calls to function calls Currently we always create context objects for closures that capture variables. However, it is completely unnecessary for direct calls of closures (whether it is func()(), defer func()() or go func()()). This change transforms any OCALLFUNC(OCLOSURE) to normal function call. Closed variables become function arguments. This transformation is especially beneficial for go func(), because we do not need to allocate context object on heap. But it makes direct closure calls a bit faster as well (see BenchmarkClosureCall). On implementation level it required to introduce yet another compiler pass. However, the pass iterates only over xtop, so it should not be an issue. Transformation consists of two parts: closure transformation and call site transformation. We can't run these parts on different sides of escape analysis, because tree state is inconsistent. We can do both parts during typecheck, we don't know how to capture variables and don't have call site. We can't do both parts during walk of OCALLFUNC, because we can walk OCLOSURE body earlier. So now capturevars pass only decides how to capture variables (this info is required for escape analysis). New transformclosure pass, that runs just before order/walk, does all transformations of a closure. And later walk of OCALLFUNC(OCLOSURE) transforms call site. benchmark old ns/op new ns/op delta BenchmarkClosureCall 4.89 3.09 -36.81% BenchmarkCreateGoroutinesCapture 1634 1294 -20.81% benchmark old allocs new allocs delta BenchmarkCreateGoroutinesCapture 6 2 -66.67% benchmark old bytes new bytes delta BenchmarkCreateGoroutinesCapture 176 48 -72.73% Change-Id: Ic85e1706e18c3235cc45b3c0c031a9c1cdb7a40e Reviewed-on: https://go-review.googlesource.com/4050 Reviewed-by: Russ Cox <rsc@golang.org>
2015-02-06 05:09:46 -07:00
func BenchmarkClosureCall(b *testing.B) {
sum := 0
off1 := 1
for i := 0; i < b.N; i++ {
off2 := 2
func() {
sum += i + off1 + off2
}()
}
_ = sum
}
runtime: only sleep before stealing work from a running P The sleep in question does not make sense if the stolen-from P cannot run the stolen G. The usleep(3) has been observed delaying execution of woken G's by ~60us; skipping it reduces the wakeup-to-execution latency to ~7us in these cases, improving CPU utilization. Benchmarks added by this change: name old time/op new time/op delta WakeupParallelSpinning/0s-12 14.4µs ± 1% 14.3µs ± 1% ~ (p=0.227 n=19+20) WakeupParallelSpinning/1µs-12 18.3µs ± 0% 18.3µs ± 1% ~ (p=0.950 n=20+19) WakeupParallelSpinning/2µs-12 22.3µs ± 1% 22.3µs ± 1% ~ (p=0.670 n=20+18) WakeupParallelSpinning/5µs-12 31.7µs ± 0% 31.7µs ± 0% ~ (p=0.460 n=20+17) WakeupParallelSpinning/10µs-12 51.8µs ± 0% 51.8µs ± 0% ~ (p=0.883 n=20+20) WakeupParallelSpinning/20µs-12 91.9µs ± 0% 91.9µs ± 0% ~ (p=0.245 n=20+20) WakeupParallelSpinning/50µs-12 214µs ± 0% 214µs ± 0% ~ (p=0.509 n=19+20) WakeupParallelSpinning/100µs-12 335µs ± 0% 335µs ± 0% -0.05% (p=0.006 n=17+15) WakeupParallelSyscall/0s-12 228µs ± 2% 129µs ± 1% -43.32% (p=0.000 n=20+19) WakeupParallelSyscall/1µs-12 232µs ± 1% 131µs ± 1% -43.60% (p=0.000 n=19+20) WakeupParallelSyscall/2µs-12 236µs ± 1% 133µs ± 1% -43.44% (p=0.000 n=18+19) WakeupParallelSyscall/5µs-12 248µs ± 2% 139µs ± 1% -43.68% (p=0.000 n=18+19) WakeupParallelSyscall/10µs-12 263µs ± 3% 150µs ± 2% -42.97% (p=0.000 n=18+20) WakeupParallelSyscall/20µs-12 281µs ± 2% 170µs ± 1% -39.43% (p=0.000 n=19+19) WakeupParallelSyscall/50µs-12 345µs ± 4% 246µs ± 7% -28.85% (p=0.000 n=20+20) WakeupParallelSyscall/100µs-12 460µs ± 5% 350µs ± 4% -23.85% (p=0.000 n=20+20) Benchmarks associated with the change that originally added this sleep (see https://golang.org/s/go15gomaxprocs): name old time/op new time/op delta Chain 19.4µs ± 2% 19.3µs ± 1% ~ (p=0.101 n=19+20) ChainBuf 19.5µs ± 2% 19.4µs ± 2% ~ (p=0.840 n=19+19) Chain-2 19.9µs ± 1% 19.9µs ± 2% ~ (p=0.734 n=19+19) ChainBuf-2 20.0µs ± 2% 20.0µs ± 2% ~ (p=0.175 n=19+17) Chain-4 20.3µs ± 1% 20.1µs ± 1% -0.62% (p=0.010 n=19+18) ChainBuf-4 20.3µs ± 1% 20.2µs ± 1% -0.52% (p=0.023 n=19+19) Powser 2.09s ± 1% 2.10s ± 3% ~ (p=0.908 n=19+19) Powser-2 2.21s ± 1% 2.20s ± 1% -0.35% (p=0.010 n=19+18) Powser-4 2.31s ± 2% 2.31s ± 2% ~ (p=0.578 n=18+19) Sieve 13.6s ± 1% 13.6s ± 1% ~ (p=0.909 n=17+18) Sieve-2 8.02s ±52% 7.28s ±15% ~ (p=0.336 n=20+16) Sieve-4 4.00s ±35% 3.98s ±26% ~ (p=0.654 n=20+18) Change-Id: I58edd8ce01075859d871e2348fc0833e9c01f70f Reviewed-on: https://go-review.googlesource.com/78538 Reviewed-by: Austin Clements <austin@google.com>
2017-11-15 13:47:22 -07:00
func benchmarkWakeupParallel(b *testing.B, spin func(time.Duration)) {
if runtime.GOMAXPROCS(0) == 1 {
b.Skip("skipping: GOMAXPROCS=1")
}
wakeDelay := 5 * time.Microsecond
for _, delay := range []time.Duration{
0,
1 * time.Microsecond,
2 * time.Microsecond,
5 * time.Microsecond,
10 * time.Microsecond,
20 * time.Microsecond,
50 * time.Microsecond,
100 * time.Microsecond,
} {
b.Run(delay.String(), func(b *testing.B) {
if b.N == 0 {
return
}
// Start two goroutines, which alternate between being
// sender and receiver in the following protocol:
//
// - The receiver spins for `delay` and then does a
// blocking receive on a channel.
//
// - The sender spins for `delay+wakeDelay` and then
// sends to the same channel. (The addition of
// `wakeDelay` improves the probability that the
// receiver will be blocking when the send occurs when
// the goroutines execute in parallel.)
//
// In each iteration of the benchmark, each goroutine
// acts once as sender and once as receiver, so each
// goroutine spins for delay twice.
//
// BenchmarkWakeupParallel is used to estimate how
// efficiently the scheduler parallelizes goroutines in
// the presence of blocking:
//
// - If both goroutines are executed on the same core,
// an increase in delay by N will increase the time per
// iteration by 4*N, because all 4 delays are
// serialized.
//
// - Otherwise, an increase in delay by N will increase
// the time per iteration by 2*N, and the time per
// iteration is 2 * (runtime overhead + chan
// send/receive pair + delay + wakeDelay). This allows
// the runtime overhead, including the time it takes
// for the unblocked goroutine to be scheduled, to be
// estimated.
ping, pong := make(chan struct{}), make(chan struct{})
start := make(chan struct{})
done := make(chan struct{})
go func() {
<-start
for i := 0; i < b.N; i++ {
// sender
spin(delay + wakeDelay)
ping <- struct{}{}
// receiver
spin(delay)
<-pong
}
done <- struct{}{}
}()
go func() {
for i := 0; i < b.N; i++ {
// receiver
spin(delay)
<-ping
// sender
spin(delay + wakeDelay)
pong <- struct{}{}
}
done <- struct{}{}
}()
b.ResetTimer()
start <- struct{}{}
<-done
<-done
})
}
}
func BenchmarkWakeupParallelSpinning(b *testing.B) {
benchmarkWakeupParallel(b, func(d time.Duration) {
end := time.Now().Add(d)
for time.Now().Before(end) {
// do nothing
}
})
}
// sysNanosleep is defined by OS-specific files (such as runtime_linux_test.go)
// to sleep for the given duration. If nil, dependent tests are skipped.
// The implementation should invoke a blocking system call and not
// call time.Sleep, which would deschedule the goroutine.
var sysNanosleep func(d time.Duration)
runtime: only sleep before stealing work from a running P The sleep in question does not make sense if the stolen-from P cannot run the stolen G. The usleep(3) has been observed delaying execution of woken G's by ~60us; skipping it reduces the wakeup-to-execution latency to ~7us in these cases, improving CPU utilization. Benchmarks added by this change: name old time/op new time/op delta WakeupParallelSpinning/0s-12 14.4µs ± 1% 14.3µs ± 1% ~ (p=0.227 n=19+20) WakeupParallelSpinning/1µs-12 18.3µs ± 0% 18.3µs ± 1% ~ (p=0.950 n=20+19) WakeupParallelSpinning/2µs-12 22.3µs ± 1% 22.3µs ± 1% ~ (p=0.670 n=20+18) WakeupParallelSpinning/5µs-12 31.7µs ± 0% 31.7µs ± 0% ~ (p=0.460 n=20+17) WakeupParallelSpinning/10µs-12 51.8µs ± 0% 51.8µs ± 0% ~ (p=0.883 n=20+20) WakeupParallelSpinning/20µs-12 91.9µs ± 0% 91.9µs ± 0% ~ (p=0.245 n=20+20) WakeupParallelSpinning/50µs-12 214µs ± 0% 214µs ± 0% ~ (p=0.509 n=19+20) WakeupParallelSpinning/100µs-12 335µs ± 0% 335µs ± 0% -0.05% (p=0.006 n=17+15) WakeupParallelSyscall/0s-12 228µs ± 2% 129µs ± 1% -43.32% (p=0.000 n=20+19) WakeupParallelSyscall/1µs-12 232µs ± 1% 131µs ± 1% -43.60% (p=0.000 n=19+20) WakeupParallelSyscall/2µs-12 236µs ± 1% 133µs ± 1% -43.44% (p=0.000 n=18+19) WakeupParallelSyscall/5µs-12 248µs ± 2% 139µs ± 1% -43.68% (p=0.000 n=18+19) WakeupParallelSyscall/10µs-12 263µs ± 3% 150µs ± 2% -42.97% (p=0.000 n=18+20) WakeupParallelSyscall/20µs-12 281µs ± 2% 170µs ± 1% -39.43% (p=0.000 n=19+19) WakeupParallelSyscall/50µs-12 345µs ± 4% 246µs ± 7% -28.85% (p=0.000 n=20+20) WakeupParallelSyscall/100µs-12 460µs ± 5% 350µs ± 4% -23.85% (p=0.000 n=20+20) Benchmarks associated with the change that originally added this sleep (see https://golang.org/s/go15gomaxprocs): name old time/op new time/op delta Chain 19.4µs ± 2% 19.3µs ± 1% ~ (p=0.101 n=19+20) ChainBuf 19.5µs ± 2% 19.4µs ± 2% ~ (p=0.840 n=19+19) Chain-2 19.9µs ± 1% 19.9µs ± 2% ~ (p=0.734 n=19+19) ChainBuf-2 20.0µs ± 2% 20.0µs ± 2% ~ (p=0.175 n=19+17) Chain-4 20.3µs ± 1% 20.1µs ± 1% -0.62% (p=0.010 n=19+18) ChainBuf-4 20.3µs ± 1% 20.2µs ± 1% -0.52% (p=0.023 n=19+19) Powser 2.09s ± 1% 2.10s ± 3% ~ (p=0.908 n=19+19) Powser-2 2.21s ± 1% 2.20s ± 1% -0.35% (p=0.010 n=19+18) Powser-4 2.31s ± 2% 2.31s ± 2% ~ (p=0.578 n=18+19) Sieve 13.6s ± 1% 13.6s ± 1% ~ (p=0.909 n=17+18) Sieve-2 8.02s ±52% 7.28s ±15% ~ (p=0.336 n=20+16) Sieve-4 4.00s ±35% 3.98s ±26% ~ (p=0.654 n=20+18) Change-Id: I58edd8ce01075859d871e2348fc0833e9c01f70f Reviewed-on: https://go-review.googlesource.com/78538 Reviewed-by: Austin Clements <austin@google.com>
2017-11-15 13:47:22 -07:00
func BenchmarkWakeupParallelSyscall(b *testing.B) {
if sysNanosleep == nil {
b.Skipf("skipping on %v; sysNanosleep not defined", runtime.GOOS)
}
runtime: only sleep before stealing work from a running P The sleep in question does not make sense if the stolen-from P cannot run the stolen G. The usleep(3) has been observed delaying execution of woken G's by ~60us; skipping it reduces the wakeup-to-execution latency to ~7us in these cases, improving CPU utilization. Benchmarks added by this change: name old time/op new time/op delta WakeupParallelSpinning/0s-12 14.4µs ± 1% 14.3µs ± 1% ~ (p=0.227 n=19+20) WakeupParallelSpinning/1µs-12 18.3µs ± 0% 18.3µs ± 1% ~ (p=0.950 n=20+19) WakeupParallelSpinning/2µs-12 22.3µs ± 1% 22.3µs ± 1% ~ (p=0.670 n=20+18) WakeupParallelSpinning/5µs-12 31.7µs ± 0% 31.7µs ± 0% ~ (p=0.460 n=20+17) WakeupParallelSpinning/10µs-12 51.8µs ± 0% 51.8µs ± 0% ~ (p=0.883 n=20+20) WakeupParallelSpinning/20µs-12 91.9µs ± 0% 91.9µs ± 0% ~ (p=0.245 n=20+20) WakeupParallelSpinning/50µs-12 214µs ± 0% 214µs ± 0% ~ (p=0.509 n=19+20) WakeupParallelSpinning/100µs-12 335µs ± 0% 335µs ± 0% -0.05% (p=0.006 n=17+15) WakeupParallelSyscall/0s-12 228µs ± 2% 129µs ± 1% -43.32% (p=0.000 n=20+19) WakeupParallelSyscall/1µs-12 232µs ± 1% 131µs ± 1% -43.60% (p=0.000 n=19+20) WakeupParallelSyscall/2µs-12 236µs ± 1% 133µs ± 1% -43.44% (p=0.000 n=18+19) WakeupParallelSyscall/5µs-12 248µs ± 2% 139µs ± 1% -43.68% (p=0.000 n=18+19) WakeupParallelSyscall/10µs-12 263µs ± 3% 150µs ± 2% -42.97% (p=0.000 n=18+20) WakeupParallelSyscall/20µs-12 281µs ± 2% 170µs ± 1% -39.43% (p=0.000 n=19+19) WakeupParallelSyscall/50µs-12 345µs ± 4% 246µs ± 7% -28.85% (p=0.000 n=20+20) WakeupParallelSyscall/100µs-12 460µs ± 5% 350µs ± 4% -23.85% (p=0.000 n=20+20) Benchmarks associated with the change that originally added this sleep (see https://golang.org/s/go15gomaxprocs): name old time/op new time/op delta Chain 19.4µs ± 2% 19.3µs ± 1% ~ (p=0.101 n=19+20) ChainBuf 19.5µs ± 2% 19.4µs ± 2% ~ (p=0.840 n=19+19) Chain-2 19.9µs ± 1% 19.9µs ± 2% ~ (p=0.734 n=19+19) ChainBuf-2 20.0µs ± 2% 20.0µs ± 2% ~ (p=0.175 n=19+17) Chain-4 20.3µs ± 1% 20.1µs ± 1% -0.62% (p=0.010 n=19+18) ChainBuf-4 20.3µs ± 1% 20.2µs ± 1% -0.52% (p=0.023 n=19+19) Powser 2.09s ± 1% 2.10s ± 3% ~ (p=0.908 n=19+19) Powser-2 2.21s ± 1% 2.20s ± 1% -0.35% (p=0.010 n=19+18) Powser-4 2.31s ± 2% 2.31s ± 2% ~ (p=0.578 n=18+19) Sieve 13.6s ± 1% 13.6s ± 1% ~ (p=0.909 n=17+18) Sieve-2 8.02s ±52% 7.28s ±15% ~ (p=0.336 n=20+16) Sieve-4 4.00s ±35% 3.98s ±26% ~ (p=0.654 n=20+18) Change-Id: I58edd8ce01075859d871e2348fc0833e9c01f70f Reviewed-on: https://go-review.googlesource.com/78538 Reviewed-by: Austin Clements <austin@google.com>
2017-11-15 13:47:22 -07:00
benchmarkWakeupParallel(b, func(d time.Duration) {
sysNanosleep(d)
runtime: only sleep before stealing work from a running P The sleep in question does not make sense if the stolen-from P cannot run the stolen G. The usleep(3) has been observed delaying execution of woken G's by ~60us; skipping it reduces the wakeup-to-execution latency to ~7us in these cases, improving CPU utilization. Benchmarks added by this change: name old time/op new time/op delta WakeupParallelSpinning/0s-12 14.4µs ± 1% 14.3µs ± 1% ~ (p=0.227 n=19+20) WakeupParallelSpinning/1µs-12 18.3µs ± 0% 18.3µs ± 1% ~ (p=0.950 n=20+19) WakeupParallelSpinning/2µs-12 22.3µs ± 1% 22.3µs ± 1% ~ (p=0.670 n=20+18) WakeupParallelSpinning/5µs-12 31.7µs ± 0% 31.7µs ± 0% ~ (p=0.460 n=20+17) WakeupParallelSpinning/10µs-12 51.8µs ± 0% 51.8µs ± 0% ~ (p=0.883 n=20+20) WakeupParallelSpinning/20µs-12 91.9µs ± 0% 91.9µs ± 0% ~ (p=0.245 n=20+20) WakeupParallelSpinning/50µs-12 214µs ± 0% 214µs ± 0% ~ (p=0.509 n=19+20) WakeupParallelSpinning/100µs-12 335µs ± 0% 335µs ± 0% -0.05% (p=0.006 n=17+15) WakeupParallelSyscall/0s-12 228µs ± 2% 129µs ± 1% -43.32% (p=0.000 n=20+19) WakeupParallelSyscall/1µs-12 232µs ± 1% 131µs ± 1% -43.60% (p=0.000 n=19+20) WakeupParallelSyscall/2µs-12 236µs ± 1% 133µs ± 1% -43.44% (p=0.000 n=18+19) WakeupParallelSyscall/5µs-12 248µs ± 2% 139µs ± 1% -43.68% (p=0.000 n=18+19) WakeupParallelSyscall/10µs-12 263µs ± 3% 150µs ± 2% -42.97% (p=0.000 n=18+20) WakeupParallelSyscall/20µs-12 281µs ± 2% 170µs ± 1% -39.43% (p=0.000 n=19+19) WakeupParallelSyscall/50µs-12 345µs ± 4% 246µs ± 7% -28.85% (p=0.000 n=20+20) WakeupParallelSyscall/100µs-12 460µs ± 5% 350µs ± 4% -23.85% (p=0.000 n=20+20) Benchmarks associated with the change that originally added this sleep (see https://golang.org/s/go15gomaxprocs): name old time/op new time/op delta Chain 19.4µs ± 2% 19.3µs ± 1% ~ (p=0.101 n=19+20) ChainBuf 19.5µs ± 2% 19.4µs ± 2% ~ (p=0.840 n=19+19) Chain-2 19.9µs ± 1% 19.9µs ± 2% ~ (p=0.734 n=19+19) ChainBuf-2 20.0µs ± 2% 20.0µs ± 2% ~ (p=0.175 n=19+17) Chain-4 20.3µs ± 1% 20.1µs ± 1% -0.62% (p=0.010 n=19+18) ChainBuf-4 20.3µs ± 1% 20.2µs ± 1% -0.52% (p=0.023 n=19+19) Powser 2.09s ± 1% 2.10s ± 3% ~ (p=0.908 n=19+19) Powser-2 2.21s ± 1% 2.20s ± 1% -0.35% (p=0.010 n=19+18) Powser-4 2.31s ± 2% 2.31s ± 2% ~ (p=0.578 n=18+19) Sieve 13.6s ± 1% 13.6s ± 1% ~ (p=0.909 n=17+18) Sieve-2 8.02s ±52% 7.28s ±15% ~ (p=0.336 n=20+16) Sieve-4 4.00s ±35% 3.98s ±26% ~ (p=0.654 n=20+18) Change-Id: I58edd8ce01075859d871e2348fc0833e9c01f70f Reviewed-on: https://go-review.googlesource.com/78538 Reviewed-by: Austin Clements <austin@google.com>
2017-11-15 13:47:22 -07:00
})
}
type Matrix [][]float64
func BenchmarkMatmult(b *testing.B) {
b.StopTimer()
// matmult is O(N**3) but testing expects O(b.N),
// so we need to take cube root of b.N
n := int(math.Cbrt(float64(b.N))) + 1
A := makeMatrix(n)
B := makeMatrix(n)
C := makeMatrix(n)
b.StartTimer()
matmult(nil, A, B, C, 0, n, 0, n, 0, n, 8)
}
func makeMatrix(n int) Matrix {
m := make(Matrix, n)
for i := 0; i < n; i++ {
m[i] = make([]float64, n)
for j := 0; j < n; j++ {
m[i][j] = float64(i*n + j)
}
}
return m
}
func matmult(done chan<- struct{}, A, B, C Matrix, i0, i1, j0, j1, k0, k1, threshold int) {
di := i1 - i0
dj := j1 - j0
dk := k1 - k0
if di >= dj && di >= dk && di >= threshold {
// divide in two by y axis
mi := i0 + di/2
done1 := make(chan struct{}, 1)
go matmult(done1, A, B, C, i0, mi, j0, j1, k0, k1, threshold)
matmult(nil, A, B, C, mi, i1, j0, j1, k0, k1, threshold)
<-done1
} else if dj >= dk && dj >= threshold {
// divide in two by x axis
mj := j0 + dj/2
done1 := make(chan struct{}, 1)
go matmult(done1, A, B, C, i0, i1, j0, mj, k0, k1, threshold)
matmult(nil, A, B, C, i0, i1, mj, j1, k0, k1, threshold)
<-done1
} else if dk >= threshold {
// divide in two by "k" axis
// deliberately not parallel because of data races
mk := k0 + dk/2
matmult(nil, A, B, C, i0, i1, j0, j1, k0, mk, threshold)
matmult(nil, A, B, C, i0, i1, j0, j1, mk, k1, threshold)
} else {
// the matrices are small enough, compute directly
for i := i0; i < i1; i++ {
for j := j0; j < j1; j++ {
for k := k0; k < k1; k++ {
C[i][j] += A[i][k] * B[k][j]
}
}
}
}
if done != nil {
done <- struct{}{}
}
}
runtime: improve randomized stealing logic During random stealing we steal 4*GOMAXPROCS times from random procs. One would expect that most of the time we check all procs this way, but due to low quality PRNG we actually miss procs with frightening probability. Below are modelling experiment results for 1e6 tries: GOMAXPROCS = 2 : missed 1 procs 7944 times GOMAXPROCS = 3 : missed 1 procs 101620 times GOMAXPROCS = 3 : missed 2 procs 3571 times GOMAXPROCS = 4 : missed 1 procs 63916 times GOMAXPROCS = 4 : missed 2 procs 61 times GOMAXPROCS = 4 : missed 3 procs 16 times GOMAXPROCS = 5 : missed 1 procs 133136 times GOMAXPROCS = 5 : missed 2 procs 1025 times GOMAXPROCS = 5 : missed 3 procs 101 times GOMAXPROCS = 5 : missed 4 procs 15 times GOMAXPROCS = 8 : missed 1 procs 151765 times GOMAXPROCS = 8 : missed 2 procs 5057 times GOMAXPROCS = 8 : missed 3 procs 1726 times GOMAXPROCS = 8 : missed 4 procs 68 times GOMAXPROCS = 12 : missed 1 procs 199081 times GOMAXPROCS = 12 : missed 2 procs 27489 times GOMAXPROCS = 12 : missed 3 procs 3113 times GOMAXPROCS = 12 : missed 4 procs 233 times GOMAXPROCS = 12 : missed 5 procs 9 times GOMAXPROCS = 16 : missed 1 procs 237477 times GOMAXPROCS = 16 : missed 2 procs 30037 times GOMAXPROCS = 16 : missed 3 procs 9466 times GOMAXPROCS = 16 : missed 4 procs 1334 times GOMAXPROCS = 16 : missed 5 procs 192 times GOMAXPROCS = 16 : missed 6 procs 5 times GOMAXPROCS = 16 : missed 7 procs 1 times GOMAXPROCS = 16 : missed 8 procs 1 times A missed proc won't lead to underutilization because we check all procs again after dropping P. But it can lead to an unpleasant situation when we miss a proc, drop P, check all procs, discover work, acquire P, miss the proc again, repeat. Improve stealing logic to cover all procs. Also don't enter spinning mode and try to steal when there is nobody around. Change-Id: Ibb6b122cc7fb836991bad7d0639b77c807aab4c2 Reviewed-on: https://go-review.googlesource.com/20836 Reviewed-by: Rick Hudson <rlh@golang.org> Run-TryBot: Dmitry Vyukov <dvyukov@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Austin Clements <austin@google.com> Reviewed-by: Marvin Stenger <marvin.stenger94@gmail.com>
2016-03-18 05:52:52 -06:00
func TestStealOrder(t *testing.T) {
runtime.RunStealOrderTest()
}
func TestLockOSThreadNesting(t *testing.T) {
go func() {
e, i := runtime.LockOSCounts()
if e != 0 || i != 0 {
t.Errorf("want locked counts 0, 0; got %d, %d", e, i)
return
}
runtime.LockOSThread()
runtime.LockOSThread()
runtime.UnlockOSThread()
e, i = runtime.LockOSCounts()
if e != 1 || i != 0 {
t.Errorf("want locked counts 1, 0; got %d, %d", e, i)
return
}
runtime.UnlockOSThread()
e, i = runtime.LockOSCounts()
if e != 0 || i != 0 {
t.Errorf("want locked counts 0, 0; got %d, %d", e, i)
return
}
}()
}
func TestLockOSThreadExit(t *testing.T) {
testLockOSThreadExit(t, "testprog")
}
func testLockOSThreadExit(t *testing.T, prog string) {
output := runTestProg(t, prog, "LockOSThreadMain", "GOMAXPROCS=1")
want := "OK\n"
if output != want {
t.Errorf("want %s, got %s\n", want, output)
}
output = runTestProg(t, prog, "LockOSThreadAlt")
if output != want {
t.Errorf("want %s, got %s\n", want, output)
}
}