1
0
mirror of https://github.com/golang/go synced 2024-11-13 20:00:23 -07:00
go/src/pkg/runtime/proc_test.go

477 lines
8.6 KiB
Go
Raw Normal View History

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"math"
"runtime"
"sync/atomic"
"syscall"
"testing"
"time"
)
var stop = make(chan bool, 1)
func perpetuumMobile() {
select {
case <-stop:
default:
go perpetuumMobile()
}
}
func TestStopTheWorldDeadlock(t *testing.T) {
if testing.Short() {
t.Skip("skipping during short test")
}
maxprocs := runtime.GOMAXPROCS(3)
compl := make(chan bool, 2)
go func() {
for i := 0; i != 1000; i += 1 {
runtime.GC()
}
compl <- true
}()
go func() {
for i := 0; i != 1000; i += 1 {
runtime.GOMAXPROCS(3)
}
compl <- true
}()
go perpetuumMobile()
<-compl
<-compl
stop <- true
runtime.GOMAXPROCS(maxprocs)
}
func TestYieldProgress(t *testing.T) {
testYieldProgress(t, false)
}
func TestYieldLockedProgress(t *testing.T) {
testYieldProgress(t, true)
}
func testYieldProgress(t *testing.T, locked bool) {
c := make(chan bool)
cack := make(chan bool)
go func() {
if locked {
runtime.LockOSThread()
}
for {
select {
case <-c:
cack <- true
return
default:
runtime.Gosched()
}
}
}()
time.Sleep(10 * time.Millisecond)
c <- true
<-cack
}
func TestYieldLocked(t *testing.T) {
const N = 10
c := make(chan bool)
go func() {
runtime.LockOSThread()
for i := 0; i < N; i++ {
runtime.Gosched()
time.Sleep(time.Millisecond)
}
c <- true
// runtime.UnlockOSThread() is deliberately omitted
}()
<-c
}
func TestGoroutineParallelism(t *testing.T) {
P := 4
N := 10
if testing.Short() {
P = 3
N = 3
}
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(P))
for try := 0; try < N; try++ {
done := make(chan bool)
x := uint32(0)
for p := 0; p < P; p++ {
// Test that all P goroutines are scheduled at the same time
go func(p int) {
for i := 0; i < 3; i++ {
expected := uint32(P*i + p)
for atomic.LoadUint32(&x) != expected {
}
atomic.StoreUint32(&x, expected+1)
}
done <- true
}(p)
}
for p := 0; p < P; p++ {
<-done
}
}
}
func TestBlockLocked(t *testing.T) {
const N = 10
c := make(chan bool)
go func() {
runtime.LockOSThread()
for i := 0; i < N; i++ {
c <- true
}
runtime.UnlockOSThread()
}()
for i := 0; i < N; i++ {
<-c
}
}
func TestTimerFairness(t *testing.T) {
done := make(chan bool)
c := make(chan bool)
for i := 0; i < 2; i++ {
go func() {
for {
select {
case c <- true:
case <-done:
return
}
}
}()
}
timer := time.After(20 * time.Millisecond)
for {
select {
case <-c:
case <-timer:
close(done)
return
}
}
}
func TestTimerFairness2(t *testing.T) {
done := make(chan bool)
c := make(chan bool)
for i := 0; i < 2; i++ {
go func() {
timer := time.After(20 * time.Millisecond)
var buf [1]byte
for {
syscall.Read(0, buf[0:0])
select {
case c <- true:
case <-c:
case <-timer:
done <- true
return
}
}
}()
}
<-done
<-done
}
// The function is used to test preemption at split stack checks.
// Declaring a var avoids inlining at the call site.
var preempt = func() int {
var a [128]int
sum := 0
for _, v := range a {
sum += v
}
return sum
}
func TestPreemption(t *testing.T) {
// Test that goroutines are preempted at function calls.
N := 5
if testing.Short() {
N = 2
}
c := make(chan bool)
var x uint32
for g := 0; g < 2; g++ {
go func(g int) {
for i := 0; i < N; i++ {
for atomic.LoadUint32(&x) != uint32(g) {
preempt()
}
atomic.StoreUint32(&x, uint32(1-g))
}
c <- true
}(g)
}
<-c
<-c
}
func TestPreemptionGC(t *testing.T) {
// Test that pending GC preempts running goroutines.
P := 5
N := 10
if testing.Short() {
P = 3
N = 2
}
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(P + 1))
var stop uint32
for i := 0; i < P; i++ {
go func() {
for atomic.LoadUint32(&stop) == 0 {
preempt()
}
}()
}
for i := 0; i < N; i++ {
runtime.Gosched()
runtime.GC()
}
atomic.StoreUint32(&stop, 1)
}
func TestGCFairness(t *testing.T) {
output := executeTest(t, testGCFairnessSource, nil)
want := "OK\n"
if output != want {
t.Fatalf("want %s, got %s\n", want, output)
}
}
const testGCFairnessSource = `
package main
import (
"fmt"
"os"
"runtime"
"time"
)
func main() {
runtime.GOMAXPROCS(1)
f, err := os.Open("/dev/null")
if os.IsNotExist(err) {
// This test tests what it is intended to test only if writes are fast.
// If there is no /dev/null, we just don't execute the test.
fmt.Println("OK")
return
}
if err != nil {
fmt.Println(err)
os.Exit(1)
}
for i := 0; i < 2; i++ {
go func() {
for {
f.Write([]byte("."))
}
}()
}
time.Sleep(10 * time.Millisecond)
fmt.Println("OK")
}
`
func stackGrowthRecursive(i int) {
var pad [128]uint64
if i != 0 && pad[0] == 0 {
stackGrowthRecursive(i - 1)
}
}
func TestPreemptSplitBig(t *testing.T) {
if testing.Short() {
t.Skip("skipping in -short mode")
}
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(2))
stop := make(chan int)
go big(stop)
for i := 0; i < 3; i++ {
time.Sleep(10 * time.Microsecond) // let big start running
runtime.GC()
}
close(stop)
}
func big(stop chan int) int {
n := 0
for {
// delay so that gc is sure to have asked for a preemption
for i := 0; i < 1e9; i++ {
n++
}
// call bigframe, which used to miss the preemption in its prologue.
bigframe(stop)
// check if we've been asked to stop.
select {
case <-stop:
return n
}
}
}
func bigframe(stop chan int) int {
// not splitting the stack will overflow.
// small will notice that it needs a stack split and will
// catch the overflow.
var x [8192]byte
return small(stop, &x)
}
func small(stop chan int, x *[8192]byte) int {
for i := range x {
x[i] = byte(i)
}
sum := 0
for i := range x {
sum += int(x[i])
}
// keep small from being a leaf function, which might
// make it not do any stack check at all.
nonleaf(stop)
return sum
}
func nonleaf(stop chan int) bool {
// do something that won't be inlined:
select {
case <-stop:
return true
default:
return false
}
}
func TestSchedLocalQueue(t *testing.T) {
runtime.TestSchedLocalQueue1()
}
func TestSchedLocalQueueSteal(t *testing.T) {
runtime.TestSchedLocalQueueSteal1()
}
func benchmarkStackGrowth(b *testing.B, rec int) {
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
stackGrowthRecursive(rec)
}
})
}
func BenchmarkStackGrowth(b *testing.B) {
benchmarkStackGrowth(b, 10)
}
func BenchmarkStackGrowthDeep(b *testing.B) {
benchmarkStackGrowth(b, 1024)
}
func BenchmarkCreateGoroutines(b *testing.B) {
benchmarkCreateGoroutines(b, 1)
}
func BenchmarkCreateGoroutinesParallel(b *testing.B) {
benchmarkCreateGoroutines(b, runtime.GOMAXPROCS(-1))
}
func benchmarkCreateGoroutines(b *testing.B, procs int) {
c := make(chan bool)
var f func(n int)
f = func(n int) {
if n == 0 {
c <- true
return
}
go f(n - 1)
}
for i := 0; i < procs; i++ {
go f(b.N / procs)
}
for i := 0; i < procs; i++ {
<-c
}
}
type Matrix [][]float64
func BenchmarkMatmult(b *testing.B) {
b.StopTimer()
// matmult is O(N**3) but testing expects O(b.N),
// so we need to take cube root of b.N
n := int(math.Cbrt(float64(b.N))) + 1
A := makeMatrix(n)
B := makeMatrix(n)
C := makeMatrix(n)
b.StartTimer()
matmult(nil, A, B, C, 0, n, 0, n, 0, n, 8)
}
func makeMatrix(n int) Matrix {
m := make(Matrix, n)
for i := 0; i < n; i++ {
m[i] = make([]float64, n)
for j := 0; j < n; j++ {
m[i][j] = float64(i*n + j)
}
}
return m
}
func matmult(done chan<- struct{}, A, B, C Matrix, i0, i1, j0, j1, k0, k1, threshold int) {
di := i1 - i0
dj := j1 - j0
dk := k1 - k0
if di >= dj && di >= dk && di >= threshold {
// divide in two by y axis
mi := i0 + di/2
done1 := make(chan struct{}, 1)
go matmult(done1, A, B, C, i0, mi, j0, j1, k0, k1, threshold)
matmult(nil, A, B, C, mi, i1, j0, j1, k0, k1, threshold)
<-done1
} else if dj >= dk && dj >= threshold {
// divide in two by x axis
mj := j0 + dj/2
done1 := make(chan struct{}, 1)
go matmult(done1, A, B, C, i0, i1, j0, mj, k0, k1, threshold)
matmult(nil, A, B, C, i0, i1, mj, j1, k0, k1, threshold)
<-done1
} else if dk >= threshold {
// divide in two by "k" axis
// deliberately not parallel because of data races
mk := k0 + dk/2
matmult(nil, A, B, C, i0, i1, j0, j1, k0, mk, threshold)
matmult(nil, A, B, C, i0, i1, j0, j1, mk, k1, threshold)
} else {
// the matrices are small enough, compute directly
for i := i0; i < i1; i++ {
for j := j0; j < j1; j++ {
for k := k0; k < k1; k++ {
C[i][j] += A[i][k] * B[k][j]
}
}
}
}
if done != nil {
done <- struct{}{}
}
}