1
0
mirror of https://github.com/golang/go synced 2024-10-04 16:31:22 -06:00
go/src/pkg/runtime/export_test.go

97 lines
2.2 KiB
Go
Raw Normal View History

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Export guts for testing.
package runtime
var Fadd64 = fadd64
var Fsub64 = fsub64
var Fmul64 = fmul64
var Fdiv64 = fdiv64
var F64to32 = f64to32
var F32to64 = f32to64
var Fcmp64 = fcmp64
var Fintto64 = fintto64
var F64toint = f64toint
func entersyscall()
func exitsyscall()
func golockedOSThread() bool
func stackguard() (sp, limit uintptr)
var Entersyscall = entersyscall
var Exitsyscall = exitsyscall
var LockedOSThread = golockedOSThread
var Stackguard = stackguard
type LFNode struct {
Next *LFNode
Pushcnt uintptr
}
runtime: use goc2c as much as possible Package runtime's C functions written to be called from Go started out written in C using carefully constructed argument lists and the FLUSH macro to write a result back to memory. For some functions, the appropriate parameter list ended up being architecture-dependent due to differences in alignment, so we added 'goc2c', which takes a .goc file containing Go func declarations but C bodies, rewrites the Go func declaration to equivalent C declarations for the target architecture, adds the needed FLUSH statements, and writes out an equivalent C file. That C file is compiled as part of package runtime. Native Client's x86-64 support introduces the most complex alignment rules yet, breaking many functions that could until now be portably written in C. Using goc2c for those avoids the breakage. Separately, Keith's work on emitting stack information from the C compiler would require the hand-written functions to add #pragmas specifying how many arguments are result parameters. Using goc2c for those avoids maintaining #pragmas. For both reasons, use goc2c for as many Go-called C functions as possible. This CL is a replay of the bulk of CL 15400047 and CL 15790043, both of which were reviewed as part of the NaCl port and are checked in to the NaCl branch. This CL is part of bringing the NaCl code into the main tree. No new code here, just reformatting and occasional movement into .h files. LGTM=r R=dave, alex.brainman, r CC=golang-codereviews https://golang.org/cl/65220044
2014-02-20 13:58:47 -07:00
func lfstackpush_go(head *uint64, node *LFNode)
func lfstackpop_go(head *uint64) *LFNode
runtime: use goc2c as much as possible Package runtime's C functions written to be called from Go started out written in C using carefully constructed argument lists and the FLUSH macro to write a result back to memory. For some functions, the appropriate parameter list ended up being architecture-dependent due to differences in alignment, so we added 'goc2c', which takes a .goc file containing Go func declarations but C bodies, rewrites the Go func declaration to equivalent C declarations for the target architecture, adds the needed FLUSH statements, and writes out an equivalent C file. That C file is compiled as part of package runtime. Native Client's x86-64 support introduces the most complex alignment rules yet, breaking many functions that could until now be portably written in C. Using goc2c for those avoids the breakage. Separately, Keith's work on emitting stack information from the C compiler would require the hand-written functions to add #pragmas specifying how many arguments are result parameters. Using goc2c for those avoids maintaining #pragmas. For both reasons, use goc2c for as many Go-called C functions as possible. This CL is a replay of the bulk of CL 15400047 and CL 15790043, both of which were reviewed as part of the NaCl port and are checked in to the NaCl branch. This CL is part of bringing the NaCl code into the main tree. No new code here, just reformatting and occasional movement into .h files. LGTM=r R=dave, alex.brainman, r CC=golang-codereviews https://golang.org/cl/65220044
2014-02-20 13:58:47 -07:00
var LFStackPush = lfstackpush_go
var LFStackPop = lfstackpop_go
type ParFor struct {
body *byte
done uint32
Nthr uint32
nthrmax uint32
thrseq uint32
Cnt uint32
Ctx *byte
wait bool
}
runtime: use goc2c as much as possible Package runtime's C functions written to be called from Go started out written in C using carefully constructed argument lists and the FLUSH macro to write a result back to memory. For some functions, the appropriate parameter list ended up being architecture-dependent due to differences in alignment, so we added 'goc2c', which takes a .goc file containing Go func declarations but C bodies, rewrites the Go func declaration to equivalent C declarations for the target architecture, adds the needed FLUSH statements, and writes out an equivalent C file. That C file is compiled as part of package runtime. Native Client's x86-64 support introduces the most complex alignment rules yet, breaking many functions that could until now be portably written in C. Using goc2c for those avoids the breakage. Separately, Keith's work on emitting stack information from the C compiler would require the hand-written functions to add #pragmas specifying how many arguments are result parameters. Using goc2c for those avoids maintaining #pragmas. For both reasons, use goc2c for as many Go-called C functions as possible. This CL is a replay of the bulk of CL 15400047 and CL 15790043, both of which were reviewed as part of the NaCl port and are checked in to the NaCl branch. This CL is part of bringing the NaCl code into the main tree. No new code here, just reformatting and occasional movement into .h files. LGTM=r R=dave, alex.brainman, r CC=golang-codereviews https://golang.org/cl/65220044
2014-02-20 13:58:47 -07:00
func newParFor(nthrmax uint32) *ParFor
func parForSetup(desc *ParFor, nthr, n uint32, ctx *byte, wait bool, body func(*ParFor, uint32))
func parForDo(desc *ParFor)
func parForIters(desc *ParFor, tid uintptr) (uintptr, uintptr)
runtime: use goc2c as much as possible Package runtime's C functions written to be called from Go started out written in C using carefully constructed argument lists and the FLUSH macro to write a result back to memory. For some functions, the appropriate parameter list ended up being architecture-dependent due to differences in alignment, so we added 'goc2c', which takes a .goc file containing Go func declarations but C bodies, rewrites the Go func declaration to equivalent C declarations for the target architecture, adds the needed FLUSH statements, and writes out an equivalent C file. That C file is compiled as part of package runtime. Native Client's x86-64 support introduces the most complex alignment rules yet, breaking many functions that could until now be portably written in C. Using goc2c for those avoids the breakage. Separately, Keith's work on emitting stack information from the C compiler would require the hand-written functions to add #pragmas specifying how many arguments are result parameters. Using goc2c for those avoids maintaining #pragmas. For both reasons, use goc2c for as many Go-called C functions as possible. This CL is a replay of the bulk of CL 15400047 and CL 15790043, both of which were reviewed as part of the NaCl port and are checked in to the NaCl branch. This CL is part of bringing the NaCl code into the main tree. No new code here, just reformatting and occasional movement into .h files. LGTM=r R=dave, alex.brainman, r CC=golang-codereviews https://golang.org/cl/65220044
2014-02-20 13:58:47 -07:00
var NewParFor = newParFor
var ParForSetup = parForSetup
var ParForDo = parForDo
func ParForIters(desc *ParFor, tid uint32) (uint32, uint32) {
runtime: use goc2c as much as possible Package runtime's C functions written to be called from Go started out written in C using carefully constructed argument lists and the FLUSH macro to write a result back to memory. For some functions, the appropriate parameter list ended up being architecture-dependent due to differences in alignment, so we added 'goc2c', which takes a .goc file containing Go func declarations but C bodies, rewrites the Go func declaration to equivalent C declarations for the target architecture, adds the needed FLUSH statements, and writes out an equivalent C file. That C file is compiled as part of package runtime. Native Client's x86-64 support introduces the most complex alignment rules yet, breaking many functions that could until now be portably written in C. Using goc2c for those avoids the breakage. Separately, Keith's work on emitting stack information from the C compiler would require the hand-written functions to add #pragmas specifying how many arguments are result parameters. Using goc2c for those avoids maintaining #pragmas. For both reasons, use goc2c for as many Go-called C functions as possible. This CL is a replay of the bulk of CL 15400047 and CL 15790043, both of which were reviewed as part of the NaCl port and are checked in to the NaCl branch. This CL is part of bringing the NaCl code into the main tree. No new code here, just reformatting and occasional movement into .h files. LGTM=r R=dave, alex.brainman, r CC=golang-codereviews https://golang.org/cl/65220044
2014-02-20 13:58:47 -07:00
begin, end := parForIters(desc, uintptr(tid))
return uint32(begin), uint32(end)
}
func testSchedLocalQueue()
func testSchedLocalQueueSteal()
var TestSchedLocalQueue1 = testSchedLocalQueue
var TestSchedLocalQueueSteal1 = testSchedLocalQueueSteal
func haveGoodHash() bool
func stringHash(s string, seed uintptr) uintptr
func bytesHash(b []byte, seed uintptr) uintptr
func int32Hash(i uint32, seed uintptr) uintptr
func int64Hash(i uint64, seed uintptr) uintptr
var HaveGoodHash = haveGoodHash
var StringHash = stringHash
var BytesHash = bytesHash
var Int32Hash = int32Hash
var Int64Hash = int64Hash
var hashLoad float64 // declared in hashmap.c
var HashLoad = &hashLoad
func memclrBytes(b []byte)
var MemclrBytes = memclrBytes
runtime: use goc2c as much as possible Package runtime's C functions written to be called from Go started out written in C using carefully constructed argument lists and the FLUSH macro to write a result back to memory. For some functions, the appropriate parameter list ended up being architecture-dependent due to differences in alignment, so we added 'goc2c', which takes a .goc file containing Go func declarations but C bodies, rewrites the Go func declaration to equivalent C declarations for the target architecture, adds the needed FLUSH statements, and writes out an equivalent C file. That C file is compiled as part of package runtime. Native Client's x86-64 support introduces the most complex alignment rules yet, breaking many functions that could until now be portably written in C. Using goc2c for those avoids the breakage. Separately, Keith's work on emitting stack information from the C compiler would require the hand-written functions to add #pragmas specifying how many arguments are result parameters. Using goc2c for those avoids maintaining #pragmas. For both reasons, use goc2c for as many Go-called C functions as possible. This CL is a replay of the bulk of CL 15400047 and CL 15790043, both of which were reviewed as part of the NaCl port and are checked in to the NaCl branch. This CL is part of bringing the NaCl code into the main tree. No new code here, just reformatting and occasional movement into .h files. LGTM=r R=dave, alex.brainman, r CC=golang-codereviews https://golang.org/cl/65220044
2014-02-20 13:58:47 -07:00
func gogoBytes() int32
var GogoBytes = gogoBytes
runtime: handle Go calls C calls Go panic correctly on windows/386 32-bit Windows uses "structured exception handling" (SEH) to handle hardware faults: that there is a per-thread linked list of fault handlers maintained in user space instead of something like Unix's signal handlers. The structures in the linked list are required to live on the OS stack, and the usual discipline is that the function that pushes a record (allocated from the current stack frame) onto the list pops that record before returning. Not to pop the entry before returning creates a dangling pointer error: the list head points to a stack frame that no longer exists. Go pushes an SEH record in the top frame of every OS thread, and that record suffices for all Go execution on that thread, at least until cgo gets involved. If we call into C using cgo, that called C code may push its own SEH records, but by the convention it must pop them before returning back to the Go code. We assume it does, and that's fine. If the C code calls back into Go, we want the Go SEH handler to become active again, not whatever C has set up. So runtime.callbackasm1, which handles a call from C back into Go, pushes a new SEH record before calling the Go code and pops it when the Go code returns. That's also fine. It can happen that when Go calls C calls Go like this, the inner Go code panics. We allow a defer in the outer Go to recover the panic, effectively wiping not only the inner Go frames but also the C calls. This sequence was not popping the SEH stack up to what it was before the cgo calls, so it was creating the dangling pointer warned about above. When eventually the m stack was used enough to overwrite the dangling SEH records, the SEH chain was lost, and any future panic would not end up in Go's handler. The bug in TestCallbackPanic and friends was thus creating a situation where TestSetPanicOnFault - which causes a hardware fault - would not find the Go fault handler and instead crash the binary. Add checks to TestCallbackPanicLocked to diagnose the mistake in that test instead of leaving a bad state for another test case to stumble over. Fix bug by restoring SEH chain during deferred "endcgo" cleanup. This bug is likely present in Go 1.2.1, but since it depends on Go calling C calling Go, with the inner Go panicking and the outer Go recovering the panic, it seems not important enough to bother fixing before Go 1.3. Certainly no one has complained. Fixes #7470. LGTM=alex.brainman R=golang-codereviews, alex.brainman CC=golang-codereviews, iant, khr https://golang.org/cl/71440043
2014-03-05 09:10:40 -07:00
func getseh_go() uintptr
var GetSEH = getseh_go