1
0
mirror of https://github.com/golang/go synced 2024-11-14 15:30:54 -07:00
go/src/crypto/sha1/sha1block_arm.s

218 lines
5.5 KiB
ArmAsm
Raw Normal View History

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// ARM version of md5block.go
#include "textflag.h"
// SHA1 block routine. See sha1block.go for Go equivalent.
//
// There are 80 rounds of 4 types:
// - rounds 0-15 are type 1 and load data (ROUND1 macro).
// - rounds 16-19 are type 1 and do not load data (ROUND1x macro).
// - rounds 20-39 are type 2 and do not load data (ROUND2 macro).
// - rounds 40-59 are type 3 and do not load data (ROUND3 macro).
// - rounds 60-79 are type 4 and do not load data (ROUND4 macro).
//
// Each round loads or shuffles the data, then computes a per-round
// function of b, c, d, and then mixes the result into and rotates the
// five registers a, b, c, d, e holding the intermediate results.
//
// The register rotation is implemented by rotating the arguments to
// the round macros instead of by explicit move instructions.
// Register definitions
data = 0 // Pointer to incoming data
const = 1 // Current constant for SHA round
a = 2 // SHA1 accumulator
b = 3 // SHA1 accumulator
c = 4 // SHA1 accumulator
d = 5 // SHA1 accumulator
e = 6 // SHA1 accumulator
t0 = 7 // Temporary
t1 = 8 // Temporary
// r9, r10 are forbidden
// r11 is OK provided you check the assembler that no synthetic instructions use it
t2 = 11 // Temporary
ctr = 12 // loop counter
w = 14 // point to w buffer
// func block(dig *digest, p []byte)
// 0(FP) is *digest
// 4(FP) is p.array (struct Slice)
// 8(FP) is p.len
//12(FP) is p.cap
//
// Stack frame
p_end = -4 // -4(SP) pointer to the end of data
p_data = p_end - 4 // -8(SP) current data pointer
w_buf = p_data - 4*80 // -328(SP) 80 words temporary buffer w uint32[80]
saved = w_buf - 4*5 // -348(SP) saved sha1 registers a,b,c,d,e - these must be last
// Total size +4 for saved LR is 352
// w[i] = p[j]<<24 | p[j+1]<<16 | p[j+2]<<8 | p[j+3]
// e += w[i]
#define LOAD(e) \
MOVBU 2(R(data)), R(t0) ; \
MOVBU 3(R(data)), R(t1) ; \
MOVBU 1(R(data)), R(t2) ; \
ORR R(t0)<<8, R(t1), R(t0) ; \
MOVBU.P 4(R(data)), R(t1) ; \
ORR R(t2)<<16, R(t0), R(t0) ; \
ORR R(t1)<<24, R(t0), R(t0) ; \
MOVW.P R(t0), 4(R(w)) ; \
ADD R(t0), R(e), R(e)
// tmp := w[(i-3)&0xf] ^ w[(i-8)&0xf] ^ w[(i-14)&0xf] ^ w[(i)&0xf]
// w[i&0xf] = tmp<<1 | tmp>>(32-1)
// e += w[i&0xf]
#define SHUFFLE(e) \
MOVW (-16*4)(R(w)), R(t0) ; \
MOVW (-14*4)(R(w)), R(t1) ; \
MOVW (-8*4)(R(w)), R(t2) ; \
EOR R(t0), R(t1), R(t0) ; \
MOVW (-3*4)(R(w)), R(t1) ; \
EOR R(t2), R(t0), R(t0) ; \
EOR R(t0), R(t1), R(t0) ; \
MOVW R(t0)@>(32-1), R(t0) ; \
MOVW.P R(t0), 4(R(w)) ; \
ADD R(t0), R(e), R(e)
// t1 = (b & c) | ((~b) & d)
#define FUNC1(a, b, c, d, e) \
MVN R(b), R(t1) ; \
AND R(b), R(c), R(t0) ; \
AND R(d), R(t1), R(t1) ; \
ORR R(t0), R(t1), R(t1)
// t1 = b ^ c ^ d
#define FUNC2(a, b, c, d, e) \
EOR R(b), R(c), R(t1) ; \
EOR R(d), R(t1), R(t1)
// t1 = (b & c) | (b & d) | (c & d) =
// t1 = (b & c) | ((b | c) & d)
#define FUNC3(a, b, c, d, e) \
ORR R(b), R(c), R(t0) ; \
AND R(b), R(c), R(t1) ; \
AND R(d), R(t0), R(t0) ; \
ORR R(t0), R(t1), R(t1)
#define FUNC4 FUNC2
// a5 := a<<5 | a>>(32-5)
// b = b<<30 | b>>(32-30)
// e = a5 + t1 + e + const
#define MIX(a, b, c, d, e) \
ADD R(t1), R(e), R(e) ; \
MOVW R(b)@>(32-30), R(b) ; \
ADD R(a)@>(32-5), R(e), R(e) ; \
ADD R(const), R(e), R(e)
#define ROUND1(a, b, c, d, e) \
LOAD(e) ; \
FUNC1(a, b, c, d, e) ; \
MIX(a, b, c, d, e)
#define ROUND1x(a, b, c, d, e) \
SHUFFLE(e) ; \
FUNC1(a, b, c, d, e) ; \
MIX(a, b, c, d, e)
#define ROUND2(a, b, c, d, e) \
SHUFFLE(e) ; \
FUNC2(a, b, c, d, e) ; \
MIX(a, b, c, d, e)
#define ROUND3(a, b, c, d, e) \
SHUFFLE(e) ; \
FUNC3(a, b, c, d, e) ; \
MIX(a, b, c, d, e)
#define ROUND4(a, b, c, d, e) \
SHUFFLE(e) ; \
FUNC4(a, b, c, d, e) ; \
MIX(a, b, c, d, e)
// func block(dig *digest, p []byte)
TEXT ·block(SB), 0, $352-16
MOVW p+4(FP), R(data) // pointer to the data
MOVW p_len+8(FP), R(t0) // number of bytes
ADD R(data), R(t0)
MOVW R(t0), p_end(SP) // pointer to end of data
// Load up initial SHA1 accumulator
MOVW dig+0(FP), R(t0)
MOVM.IA (R(t0)), [R(a),R(b),R(c),R(d),R(e)]
loop:
// Save registers at SP+4 onwards
MOVM.IB [R(a),R(b),R(c),R(d),R(e)], (R13)
MOVW $w_buf(SP), R(w)
MOVW $0x5A827999, R(const)
MOVW $3, R(ctr)
loop1: ROUND1(a, b, c, d, e)
ROUND1(e, a, b, c, d)
ROUND1(d, e, a, b, c)
ROUND1(c, d, e, a, b)
ROUND1(b, c, d, e, a)
SUB.S $1, R(ctr)
BNE loop1
ROUND1(a, b, c, d, e)
ROUND1x(e, a, b, c, d)
ROUND1x(d, e, a, b, c)
ROUND1x(c, d, e, a, b)
ROUND1x(b, c, d, e, a)
MOVW $0x6ED9EBA1, R(const)
MOVW $4, R(ctr)
loop2: ROUND2(a, b, c, d, e)
ROUND2(e, a, b, c, d)
ROUND2(d, e, a, b, c)
ROUND2(c, d, e, a, b)
ROUND2(b, c, d, e, a)
SUB.S $1, R(ctr)
BNE loop2
MOVW $0x8F1BBCDC, R(const)
MOVW $4, R(ctr)
loop3: ROUND3(a, b, c, d, e)
ROUND3(e, a, b, c, d)
ROUND3(d, e, a, b, c)
ROUND3(c, d, e, a, b)
ROUND3(b, c, d, e, a)
SUB.S $1, R(ctr)
BNE loop3
MOVW $0xCA62C1D6, R(const)
MOVW $4, R(ctr)
loop4: ROUND4(a, b, c, d, e)
ROUND4(e, a, b, c, d)
ROUND4(d, e, a, b, c)
ROUND4(c, d, e, a, b)
ROUND4(b, c, d, e, a)
SUB.S $1, R(ctr)
BNE loop4
// Accumulate - restoring registers from SP+4
MOVM.IB (R13), [R(t0),R(t1),R(t2),R(ctr),R(w)]
ADD R(t0), R(a)
ADD R(t1), R(b)
ADD R(t2), R(c)
ADD R(ctr), R(d)
ADD R(w), R(e)
MOVW p_end(SP), R(t0)
CMP R(t0), R(data)
BLO loop
// Save final SHA1 accumulator
MOVW dig+0(FP), R(t0)
MOVM.IA [R(a),R(b),R(c),R(d),R(e)], (R(t0))
RET