2008-06-30 12:50:36 -06:00
|
|
|
// Copyright 2009 The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
2009-06-17 16:12:16 -06:00
|
|
|
#include "amd64/asm.h"
|
2008-06-30 12:50:36 -06:00
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT _rt0_amd64(SB),7,$-8
|
2008-06-30 12:50:36 -06:00
|
|
|
// copy arguments forward on an even stack
|
2009-11-17 09:20:58 -07:00
|
|
|
MOVQ 0(DI), AX // argc
|
|
|
|
LEAQ 8(DI), BX // argv
|
2008-06-30 12:50:36 -06:00
|
|
|
SUBQ $(4*8+7), SP // 2args 2auto
|
2010-04-09 15:15:15 -06:00
|
|
|
ANDQ $~15, SP
|
2008-06-30 12:50:36 -06:00
|
|
|
MOVQ AX, 16(SP)
|
|
|
|
MOVQ BX, 24(SP)
|
|
|
|
|
2010-04-09 15:15:15 -06:00
|
|
|
// if there is an initcgo, call it.
|
|
|
|
MOVQ initcgo(SB), AX
|
|
|
|
TESTQ AX, AX
|
2010-08-04 18:50:22 -06:00
|
|
|
JZ needtls
|
2010-04-09 15:15:15 -06:00
|
|
|
CALL AX
|
2011-07-19 08:47:33 -06:00
|
|
|
CMPL runtime·iswindows(SB), $0
|
|
|
|
JEQ ok
|
2010-08-04 18:50:22 -06:00
|
|
|
|
|
|
|
needtls:
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
LEAQ runtime·tls0(SB), DI
|
|
|
|
CALL runtime·settls(SB)
|
2010-08-04 18:50:22 -06:00
|
|
|
|
|
|
|
// store through it, to make sure it works
|
|
|
|
get_tls(BX)
|
|
|
|
MOVQ $0x123, g(BX)
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
MOVQ runtime·tls0(SB), AX
|
2010-08-04 18:50:22 -06:00
|
|
|
CMPQ AX, $0x123
|
|
|
|
JEQ 2(PC)
|
|
|
|
MOVL AX, 0 // abort
|
|
|
|
ok:
|
|
|
|
// set the per-goroutine and per-mach "registers"
|
|
|
|
get_tls(BX)
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
LEAQ runtime·g0(SB), CX
|
2010-08-04 18:50:22 -06:00
|
|
|
MOVQ CX, g(BX)
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
LEAQ runtime·m0(SB), AX
|
2010-08-04 18:50:22 -06:00
|
|
|
MOVQ AX, m(BX)
|
|
|
|
|
|
|
|
// save m->g0 = g0
|
|
|
|
MOVQ CX, m_g0(AX)
|
2008-06-30 12:50:36 -06:00
|
|
|
|
2008-07-11 20:16:39 -06:00
|
|
|
// create istack out of the given (operating system) stack
|
2008-12-19 04:13:39 -07:00
|
|
|
LEAQ (-8192+104)(SP), AX
|
2010-08-04 18:50:22 -06:00
|
|
|
MOVQ AX, g_stackguard(CX)
|
|
|
|
MOVQ SP, g_stackbase(CX)
|
2008-06-30 12:50:36 -06:00
|
|
|
|
2008-12-15 16:07:35 -07:00
|
|
|
CLD // convention is D is always left cleared
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
CALL runtime·check(SB)
|
2008-06-30 12:50:36 -06:00
|
|
|
|
|
|
|
MOVL 16(SP), AX // copy argc
|
|
|
|
MOVL AX, 0(SP)
|
|
|
|
MOVQ 24(SP), AX // copy argv
|
|
|
|
MOVQ AX, 8(SP)
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
CALL runtime·args(SB)
|
|
|
|
CALL runtime·osinit(SB)
|
|
|
|
CALL runtime·schedinit(SB)
|
2008-08-05 15:21:42 -06:00
|
|
|
|
2008-07-11 20:16:39 -06:00
|
|
|
// create a new goroutine to start program
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
PUSHQ $runtime·mainstart(SB) // entry
|
2009-06-17 16:12:16 -06:00
|
|
|
PUSHQ $0 // arg size
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
CALL runtime·newproc(SB)
|
2008-07-11 20:16:39 -06:00
|
|
|
POPQ AX
|
|
|
|
POPQ AX
|
2008-12-04 09:30:54 -07:00
|
|
|
|
2008-09-22 14:47:59 -06:00
|
|
|
// start this M
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
CALL runtime·mstart(SB)
|
2008-06-30 12:50:36 -06:00
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
CALL runtime·notok(SB) // never returns
|
2008-06-30 12:50:36 -06:00
|
|
|
RET
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·mainstart(SB),7,$0
|
2009-01-20 15:40:00 -07:00
|
|
|
CALL main·init(SB)
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
CALL runtime·initdone(SB)
|
2008-09-18 16:56:46 -06:00
|
|
|
CALL main·main(SB)
|
2008-09-22 14:47:59 -06:00
|
|
|
PUSHQ $0
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
CALL runtime·exit(SB)
|
2008-09-22 14:47:59 -06:00
|
|
|
POPQ AX
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
CALL runtime·notok(SB)
|
2008-09-18 16:56:46 -06:00
|
|
|
RET
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·breakpoint(SB),7,$0
|
2008-07-11 20:16:39 -06:00
|
|
|
BYTE $0xcc
|
2008-06-30 12:50:36 -06:00
|
|
|
RET
|
|
|
|
|
2008-07-11 20:16:39 -06:00
|
|
|
/*
|
|
|
|
* go-routine
|
|
|
|
*/
|
2008-07-07 18:59:32 -06:00
|
|
|
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
// void gosave(Gobuf*)
|
2009-06-17 16:12:16 -06:00
|
|
|
// save state in Gobuf; setjmp
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·gosave(SB), 7, $0
|
2008-07-11 20:16:39 -06:00
|
|
|
MOVQ 8(SP), AX // gobuf
|
2009-06-17 16:12:16 -06:00
|
|
|
LEAQ 8(SP), BX // caller's SP
|
|
|
|
MOVQ BX, gobuf_sp(AX)
|
|
|
|
MOVQ 0(SP), BX // caller's PC
|
|
|
|
MOVQ BX, gobuf_pc(AX)
|
2010-08-04 18:50:22 -06:00
|
|
|
get_tls(CX)
|
|
|
|
MOVQ g(CX), BX
|
|
|
|
MOVQ BX, gobuf_g(AX)
|
2008-06-30 12:50:36 -06:00
|
|
|
RET
|
|
|
|
|
2009-06-17 16:12:16 -06:00
|
|
|
// void gogo(Gobuf*, uintptr)
|
|
|
|
// restore state from Gobuf; longjmp
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·gogo(SB), 7, $0
|
2009-06-17 16:12:16 -06:00
|
|
|
MOVQ 16(SP), AX // return 2nd arg
|
|
|
|
MOVQ 8(SP), BX // gobuf
|
2010-08-04 18:50:22 -06:00
|
|
|
MOVQ gobuf_g(BX), DX
|
|
|
|
MOVQ 0(DX), CX // make sure g != nil
|
|
|
|
get_tls(CX)
|
|
|
|
MOVQ DX, g(CX)
|
2009-06-17 16:12:16 -06:00
|
|
|
MOVQ gobuf_sp(BX), SP // restore SP
|
|
|
|
MOVQ gobuf_pc(BX), BX
|
|
|
|
JMP BX
|
|
|
|
|
|
|
|
// void gogocall(Gobuf*, void (*fn)(void))
|
|
|
|
// restore state from Gobuf but then call fn.
|
|
|
|
// (call fn, returning to state in Gobuf)
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·gogocall(SB), 7, $0
|
2009-06-17 16:12:16 -06:00
|
|
|
MOVQ 16(SP), AX // fn
|
|
|
|
MOVQ 8(SP), BX // gobuf
|
2010-08-04 18:50:22 -06:00
|
|
|
MOVQ gobuf_g(BX), DX
|
|
|
|
get_tls(CX)
|
|
|
|
MOVQ DX, g(CX)
|
|
|
|
MOVQ 0(DX), CX // make sure g != nil
|
2009-06-17 16:12:16 -06:00
|
|
|
MOVQ gobuf_sp(BX), SP // restore SP
|
|
|
|
MOVQ gobuf_pc(BX), BX
|
|
|
|
PUSHQ BX
|
|
|
|
JMP AX
|
|
|
|
POPQ BX // not reached
|
|
|
|
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
// void mcall(void (*fn)(G*))
|
|
|
|
// Switch to m->g0's stack, call fn(g).
|
runtime: stack split + garbage collection bug
The g->sched.sp saved stack pointer and the
g->stackbase and g->stackguard stack bounds
can change even while "the world is stopped",
because a goroutine has to call functions (and
therefore might split its stack) when exiting a
system call to check whether the world is stopped
(and if so, wait until the world continues).
That means the garbage collector cannot access
those values safely (without a race) for goroutines
executing system calls. Instead, save a consistent
triple in g->gcsp, g->gcstack, g->gcguard during
entersyscall and have the garbage collector refer
to those.
The old code was occasionally seeing (because of
the race) an sp and stk that did not correspond to
each other, so that stk - sp was not the number of
stack bytes following sp. In that case, if sp < stk
then the call scanblock(sp, stk - sp) scanned too
many bytes (anything between the two pointers,
which pointed into different allocation blocks).
If sp > stk then stk - sp wrapped around.
On 32-bit, stk - sp is a uintptr (uint32) converted
to int64 in the call to scanblock, so a large (~4G)
but positive number. Scanblock would try to scan
that many bytes and eventually fault accessing
unmapped memory. On 64-bit, stk - sp is a uintptr (uint64)
promoted to int64 in the call to scanblock, so a negative
number. Scanblock would not scan anything, possibly
causing in-use blocks to be freed.
In short, 32-bit platforms would have seen either
ineffective garbage collection or crashes during garbage
collection, while 64-bit platforms would have seen
either ineffective or incorrect garbage collection.
You can see the invalid arguments to scanblock in the
stack traces in issue 1620.
Fixes #1620.
Fixes #1746.
R=iant, r
CC=golang-dev
https://golang.org/cl/4437075
2011-04-27 21:21:12 -06:00
|
|
|
// Fn must never return. It should gogo(&g->sched)
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
// to keep running g.
|
|
|
|
TEXT runtime·mcall(SB), 7, $0
|
|
|
|
MOVQ fn+0(FP), DI
|
|
|
|
|
|
|
|
get_tls(CX)
|
|
|
|
MOVQ g(CX), AX // save state in g->gobuf
|
|
|
|
MOVQ 0(SP), BX // caller's PC
|
|
|
|
MOVQ BX, (g_sched+gobuf_pc)(AX)
|
|
|
|
LEAQ 8(SP), BX // caller's SP
|
|
|
|
MOVQ BX, (g_sched+gobuf_sp)(AX)
|
|
|
|
MOVQ AX, (g_sched+gobuf_g)(AX)
|
|
|
|
|
|
|
|
// switch to m->g0 & its stack, call fn
|
|
|
|
MOVQ m(CX), BX
|
|
|
|
MOVQ m_g0(BX), SI
|
|
|
|
CMPQ SI, AX // if g == m->g0 call badmcall
|
|
|
|
JNE 2(PC)
|
|
|
|
CALL runtime·badmcall(SB)
|
|
|
|
MOVQ SI, g(CX) // g = m->g0
|
|
|
|
MOVQ (g_sched+gobuf_sp)(SI), SP // sp = m->g0->gobuf.sp
|
|
|
|
PUSHQ AX
|
|
|
|
CALL DI
|
|
|
|
POPQ AX
|
|
|
|
CALL runtime·badmcall2(SB)
|
|
|
|
RET
|
|
|
|
|
2008-07-12 12:30:53 -06:00
|
|
|
/*
|
|
|
|
* support for morestack
|
|
|
|
*/
|
|
|
|
|
2009-06-17 16:12:16 -06:00
|
|
|
// Called during function prolog when more stack is needed.
|
2010-08-04 18:50:22 -06:00
|
|
|
// Caller has already done get_tls(CX); MOVQ m(CX), BX.
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·morestack(SB),7,$0
|
2010-08-04 18:50:22 -06:00
|
|
|
// Cannot grow scheduler stack (m->g0).
|
|
|
|
MOVQ m_g0(BX), SI
|
|
|
|
CMPQ g(CX), SI
|
|
|
|
JNE 2(PC)
|
|
|
|
INT $3
|
|
|
|
|
2009-06-17 16:12:16 -06:00
|
|
|
// Called from f.
|
|
|
|
// Set m->morebuf to f's caller.
|
|
|
|
MOVQ 8(SP), AX // f's caller's PC
|
2010-08-04 18:50:22 -06:00
|
|
|
MOVQ AX, (m_morebuf+gobuf_pc)(BX)
|
2009-06-17 16:12:16 -06:00
|
|
|
LEAQ 16(SP), AX // f's caller's SP
|
2010-08-04 18:50:22 -06:00
|
|
|
MOVQ AX, (m_morebuf+gobuf_sp)(BX)
|
2011-01-14 12:05:20 -07:00
|
|
|
MOVQ AX, m_moreargp(BX)
|
2010-08-04 18:50:22 -06:00
|
|
|
get_tls(CX)
|
|
|
|
MOVQ g(CX), SI
|
|
|
|
MOVQ SI, (m_morebuf+gobuf_g)(BX)
|
2009-06-17 16:12:16 -06:00
|
|
|
|
|
|
|
// Set m->morepc to f's PC.
|
|
|
|
MOVQ 0(SP), AX
|
2010-08-04 18:50:22 -06:00
|
|
|
MOVQ AX, m_morepc(BX)
|
2009-06-17 16:12:16 -06:00
|
|
|
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
// Call newstack on m->g0's stack.
|
2010-08-04 18:50:22 -06:00
|
|
|
MOVQ m_g0(BX), BP
|
|
|
|
MOVQ BP, g(CX)
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
MOVQ (g_sched+gobuf_sp)(BP), SP
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
CALL runtime·newstack(SB)
|
2009-06-17 16:12:16 -06:00
|
|
|
MOVQ $0, 0x1003 // crash if newstack returns
|
2009-07-08 19:16:09 -06:00
|
|
|
RET
|
|
|
|
|
|
|
|
// Called from reflection library. Mimics morestack,
|
|
|
|
// reuses stack growth code to create a frame
|
|
|
|
// with the desired args running the desired function.
|
|
|
|
//
|
|
|
|
// func call(fn *byte, arg *byte, argsize uint32).
|
|
|
|
TEXT reflect·call(SB), 7, $0
|
2010-08-04 18:50:22 -06:00
|
|
|
get_tls(CX)
|
|
|
|
MOVQ m(CX), BX
|
|
|
|
|
2009-07-08 19:16:09 -06:00
|
|
|
// Save our caller's state as the PC and SP to
|
|
|
|
// restore when returning from f.
|
|
|
|
MOVQ 0(SP), AX // our caller's PC
|
2010-08-04 18:50:22 -06:00
|
|
|
MOVQ AX, (m_morebuf+gobuf_pc)(BX)
|
2009-07-08 19:16:09 -06:00
|
|
|
LEAQ 8(SP), AX // our caller's SP
|
2010-08-04 18:50:22 -06:00
|
|
|
MOVQ AX, (m_morebuf+gobuf_sp)(BX)
|
|
|
|
MOVQ g(CX), AX
|
|
|
|
MOVQ AX, (m_morebuf+gobuf_g)(BX)
|
2009-07-08 19:16:09 -06:00
|
|
|
|
|
|
|
// Set up morestack arguments to call f on a new stack.
|
2010-03-29 22:48:22 -06:00
|
|
|
// We set f's frame size to 1, as a hint to newstack
|
|
|
|
// that this is a call from reflect·call.
|
|
|
|
// If it turns out that f needs a larger frame than
|
|
|
|
// the default stack, f's usual stack growth prolog will
|
|
|
|
// allocate a new segment (and recopy the arguments).
|
2009-07-08 19:16:09 -06:00
|
|
|
MOVQ 8(SP), AX // fn
|
2010-08-04 18:50:22 -06:00
|
|
|
MOVQ 16(SP), DX // arg frame
|
2009-07-08 19:16:09 -06:00
|
|
|
MOVL 24(SP), CX // arg size
|
|
|
|
|
2010-08-04 18:50:22 -06:00
|
|
|
MOVQ AX, m_morepc(BX) // f's PC
|
2011-01-14 12:05:20 -07:00
|
|
|
MOVQ DX, m_moreargp(BX) // argument frame pointer
|
|
|
|
MOVL CX, m_moreargsize(BX) // f's argument size
|
|
|
|
MOVL $1, m_moreframesize(BX) // f's frame size
|
2009-07-08 19:16:09 -06:00
|
|
|
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
// Call newstack on m->g0's stack.
|
2010-08-04 18:50:22 -06:00
|
|
|
MOVQ m_g0(BX), BP
|
|
|
|
get_tls(CX)
|
|
|
|
MOVQ BP, g(CX)
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
MOVQ (g_sched+gobuf_sp)(BP), SP
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
CALL runtime·newstack(SB)
|
2009-07-08 19:16:09 -06:00
|
|
|
MOVQ $0, 0x1103 // crash if newstack returns
|
2009-06-17 16:12:16 -06:00
|
|
|
RET
|
|
|
|
|
|
|
|
// Return point when leaving stack.
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·lessstack(SB), 7, $0
|
2009-06-17 16:12:16 -06:00
|
|
|
// Save return value in m->cret
|
2010-08-04 18:50:22 -06:00
|
|
|
get_tls(CX)
|
|
|
|
MOVQ m(CX), BX
|
|
|
|
MOVQ AX, m_cret(BX)
|
2009-06-17 16:12:16 -06:00
|
|
|
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
// Call oldstack on m->g0's stack.
|
|
|
|
MOVQ m_g0(BX), BP
|
|
|
|
MOVQ BP, g(CX)
|
|
|
|
MOVQ (g_sched+gobuf_sp)(BP), SP
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
CALL runtime·oldstack(SB)
|
2009-06-17 16:12:16 -06:00
|
|
|
MOVQ $0, 0x1004 // crash if oldstack returns
|
|
|
|
RET
|
|
|
|
|
2009-05-01 19:07:33 -06:00
|
|
|
// morestack trampolines
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·morestack00(SB),7,$0
|
2010-08-04 18:50:22 -06:00
|
|
|
get_tls(CX)
|
|
|
|
MOVQ m(CX), BX
|
2009-05-01 19:07:33 -06:00
|
|
|
MOVQ $0, AX
|
2011-01-14 12:05:20 -07:00
|
|
|
MOVQ AX, m_moreframesize(BX)
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
MOVQ $runtime·morestack(SB), AX
|
2009-05-01 19:07:33 -06:00
|
|
|
JMP AX
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·morestack01(SB),7,$0
|
2010-08-04 18:50:22 -06:00
|
|
|
get_tls(CX)
|
|
|
|
MOVQ m(CX), BX
|
2009-05-01 19:07:33 -06:00
|
|
|
SHLQ $32, AX
|
2011-01-14 12:05:20 -07:00
|
|
|
MOVQ AX, m_moreframesize(BX)
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
MOVQ $runtime·morestack(SB), AX
|
2009-05-01 19:07:33 -06:00
|
|
|
JMP AX
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·morestack10(SB),7,$0
|
2010-08-04 18:50:22 -06:00
|
|
|
get_tls(CX)
|
|
|
|
MOVQ m(CX), BX
|
2009-05-01 19:07:33 -06:00
|
|
|
MOVLQZX AX, AX
|
2011-01-14 12:05:20 -07:00
|
|
|
MOVQ AX, m_moreframesize(BX)
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
MOVQ $runtime·morestack(SB), AX
|
2009-05-01 19:07:33 -06:00
|
|
|
JMP AX
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·morestack11(SB),7,$0
|
2010-08-04 18:50:22 -06:00
|
|
|
get_tls(CX)
|
|
|
|
MOVQ m(CX), BX
|
2011-01-14 12:05:20 -07:00
|
|
|
MOVQ AX, m_moreframesize(BX)
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
MOVQ $runtime·morestack(SB), AX
|
2009-05-01 19:07:33 -06:00
|
|
|
JMP AX
|
|
|
|
|
2009-05-03 20:09:14 -06:00
|
|
|
// subcases of morestack01
|
|
|
|
// with const of 8,16,...48
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·morestack8(SB),7,$0
|
2009-05-03 20:09:14 -06:00
|
|
|
PUSHQ $1
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
MOVQ $morestack<>(SB), AX
|
2009-05-03 20:09:14 -06:00
|
|
|
JMP AX
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·morestack16(SB),7,$0
|
2009-05-03 20:09:14 -06:00
|
|
|
PUSHQ $2
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
MOVQ $morestack<>(SB), AX
|
2009-05-03 20:09:14 -06:00
|
|
|
JMP AX
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·morestack24(SB),7,$0
|
2009-05-03 20:09:14 -06:00
|
|
|
PUSHQ $3
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
MOVQ $morestack<>(SB), AX
|
2009-05-03 20:09:14 -06:00
|
|
|
JMP AX
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·morestack32(SB),7,$0
|
2009-05-03 20:09:14 -06:00
|
|
|
PUSHQ $4
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
MOVQ $morestack<>(SB), AX
|
2009-05-03 20:09:14 -06:00
|
|
|
JMP AX
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·morestack40(SB),7,$0
|
2009-05-03 20:09:14 -06:00
|
|
|
PUSHQ $5
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
MOVQ $morestack<>(SB), AX
|
2009-05-03 20:09:14 -06:00
|
|
|
JMP AX
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·morestack48(SB),7,$0
|
2009-05-03 20:09:14 -06:00
|
|
|
PUSHQ $6
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
MOVQ $morestack<>(SB), AX
|
2009-05-03 20:09:14 -06:00
|
|
|
JMP AX
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT morestack<>(SB),7,$0
|
2010-08-04 18:50:22 -06:00
|
|
|
get_tls(CX)
|
|
|
|
MOVQ m(CX), BX
|
2009-06-17 16:12:16 -06:00
|
|
|
POPQ AX
|
|
|
|
SHLQ $35, AX
|
2011-01-14 12:05:20 -07:00
|
|
|
MOVQ AX, m_moreframesize(BX)
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
MOVQ $runtime·morestack(SB), AX
|
2008-07-12 12:30:53 -06:00
|
|
|
JMP AX
|
|
|
|
|
2008-08-04 17:43:49 -06:00
|
|
|
// bool cas(int32 *val, int32 old, int32 new)
|
|
|
|
// Atomically:
|
|
|
|
// if(*val == old){
|
|
|
|
// *val = new;
|
|
|
|
// return 1;
|
2009-01-27 13:03:53 -07:00
|
|
|
// } else
|
2008-08-04 17:43:49 -06:00
|
|
|
// return 0;
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·cas(SB), 7, $0
|
2008-08-04 17:43:49 -06:00
|
|
|
MOVQ 8(SP), BX
|
|
|
|
MOVL 16(SP), AX
|
|
|
|
MOVL 20(SP), CX
|
|
|
|
LOCK
|
|
|
|
CMPXCHGL CX, 0(BX)
|
|
|
|
JZ 3(PC)
|
|
|
|
MOVL $0, AX
|
|
|
|
RET
|
|
|
|
MOVL $1, AX
|
|
|
|
RET
|
2009-01-27 13:03:53 -07:00
|
|
|
|
2011-02-16 11:21:13 -07:00
|
|
|
// bool casp(void **val, void *old, void *new)
|
|
|
|
// Atomically:
|
|
|
|
// if(*val == old){
|
|
|
|
// *val = new;
|
|
|
|
// return 1;
|
|
|
|
// } else
|
|
|
|
// return 0;
|
|
|
|
TEXT runtime·casp(SB), 7, $0
|
|
|
|
MOVQ 8(SP), BX
|
|
|
|
MOVQ 16(SP), AX
|
|
|
|
MOVQ 24(SP), CX
|
|
|
|
LOCK
|
|
|
|
CMPXCHGQ CX, 0(BX)
|
|
|
|
JZ 3(PC)
|
|
|
|
MOVL $0, AX
|
|
|
|
RET
|
|
|
|
MOVL $1, AX
|
|
|
|
RET
|
|
|
|
|
2011-07-15 09:27:16 -06:00
|
|
|
// uint32 xadd(uint32 volatile *val, int32 delta)
|
|
|
|
// Atomically:
|
|
|
|
// *val += delta;
|
|
|
|
// return *val;
|
|
|
|
TEXT runtime·xadd(SB), 7, $0
|
|
|
|
MOVQ 8(SP), BX
|
|
|
|
MOVL 16(SP), AX
|
|
|
|
MOVL AX, CX
|
|
|
|
LOCK
|
|
|
|
XADDL AX, 0(BX)
|
|
|
|
ADDL CX, AX
|
|
|
|
RET
|
|
|
|
|
runtime: improve Linux mutex
The implementation is hybrid active/passive spin/blocking mutex.
The design minimizes amount of context switches and futex calls.
The idea is that all critical sections in runtime are intentially
small, so pure blocking mutex behaves badly causing
a lot of context switches, thread parking/unparking and kernel calls.
Note that some synthetic benchmarks become somewhat slower,
that's due to increased contention on other data structures,
it should not affect programs that do any real work.
On 2 x Intel E5620, 8 HT cores, 2.4GHz
benchmark old ns/op new ns/op delta
BenchmarkSelectContended 521.00 503.00 -3.45%
BenchmarkSelectContended-2 661.00 320.00 -51.59%
BenchmarkSelectContended-4 1139.00 629.00 -44.78%
BenchmarkSelectContended-8 2870.00 878.00 -69.41%
BenchmarkSelectContended-16 5276.00 818.00 -84.50%
BenchmarkChanContended 112.00 103.00 -8.04%
BenchmarkChanContended-2 631.00 174.00 -72.42%
BenchmarkChanContended-4 682.00 272.00 -60.12%
BenchmarkChanContended-8 1601.00 520.00 -67.52%
BenchmarkChanContended-16 3100.00 372.00 -88.00%
BenchmarkChanSync 253.00 239.00 -5.53%
BenchmarkChanSync-2 5030.00 4648.00 -7.59%
BenchmarkChanSync-4 4826.00 4694.00 -2.74%
BenchmarkChanSync-8 4778.00 4713.00 -1.36%
BenchmarkChanSync-16 5289.00 4710.00 -10.95%
BenchmarkChanProdCons0 273.00 254.00 -6.96%
BenchmarkChanProdCons0-2 599.00 400.00 -33.22%
BenchmarkChanProdCons0-4 1168.00 659.00 -43.58%
BenchmarkChanProdCons0-8 2831.00 1057.00 -62.66%
BenchmarkChanProdCons0-16 4197.00 1037.00 -75.29%
BenchmarkChanProdCons10 150.00 140.00 -6.67%
BenchmarkChanProdCons10-2 607.00 268.00 -55.85%
BenchmarkChanProdCons10-4 1137.00 404.00 -64.47%
BenchmarkChanProdCons10-8 2115.00 828.00 -60.85%
BenchmarkChanProdCons10-16 4283.00 855.00 -80.04%
BenchmarkChanProdCons100 117.00 110.00 -5.98%
BenchmarkChanProdCons100-2 558.00 218.00 -60.93%
BenchmarkChanProdCons100-4 722.00 287.00 -60.25%
BenchmarkChanProdCons100-8 1840.00 431.00 -76.58%
BenchmarkChanProdCons100-16 3394.00 448.00 -86.80%
BenchmarkChanProdConsWork0 2014.00 1996.00 -0.89%
BenchmarkChanProdConsWork0-2 1207.00 1127.00 -6.63%
BenchmarkChanProdConsWork0-4 1913.00 611.00 -68.06%
BenchmarkChanProdConsWork0-8 3016.00 949.00 -68.53%
BenchmarkChanProdConsWork0-16 4320.00 1154.00 -73.29%
BenchmarkChanProdConsWork10 1906.00 1897.00 -0.47%
BenchmarkChanProdConsWork10-2 1123.00 1033.00 -8.01%
BenchmarkChanProdConsWork10-4 1076.00 571.00 -46.93%
BenchmarkChanProdConsWork10-8 2748.00 1096.00 -60.12%
BenchmarkChanProdConsWork10-16 4600.00 1105.00 -75.98%
BenchmarkChanProdConsWork100 1884.00 1852.00 -1.70%
BenchmarkChanProdConsWork100-2 1235.00 1146.00 -7.21%
BenchmarkChanProdConsWork100-4 1217.00 619.00 -49.14%
BenchmarkChanProdConsWork100-8 1534.00 509.00 -66.82%
BenchmarkChanProdConsWork100-16 4126.00 918.00 -77.75%
BenchmarkSyscall 34.40 33.30 -3.20%
BenchmarkSyscall-2 160.00 121.00 -24.38%
BenchmarkSyscall-4 131.00 136.00 +3.82%
BenchmarkSyscall-8 139.00 131.00 -5.76%
BenchmarkSyscall-16 161.00 168.00 +4.35%
BenchmarkSyscallWork 950.00 950.00 +0.00%
BenchmarkSyscallWork-2 481.00 480.00 -0.21%
BenchmarkSyscallWork-4 268.00 270.00 +0.75%
BenchmarkSyscallWork-8 156.00 169.00 +8.33%
BenchmarkSyscallWork-16 188.00 184.00 -2.13%
BenchmarkSemaSyntNonblock 36.40 35.60 -2.20%
BenchmarkSemaSyntNonblock-2 81.40 45.10 -44.59%
BenchmarkSemaSyntNonblock-4 126.00 108.00 -14.29%
BenchmarkSemaSyntNonblock-8 112.00 112.00 +0.00%
BenchmarkSemaSyntNonblock-16 110.00 112.00 +1.82%
BenchmarkSemaSyntBlock 35.30 35.30 +0.00%
BenchmarkSemaSyntBlock-2 118.00 124.00 +5.08%
BenchmarkSemaSyntBlock-4 105.00 108.00 +2.86%
BenchmarkSemaSyntBlock-8 101.00 111.00 +9.90%
BenchmarkSemaSyntBlock-16 112.00 118.00 +5.36%
BenchmarkSemaWorkNonblock 810.00 811.00 +0.12%
BenchmarkSemaWorkNonblock-2 476.00 414.00 -13.03%
BenchmarkSemaWorkNonblock-4 238.00 228.00 -4.20%
BenchmarkSemaWorkNonblock-8 140.00 126.00 -10.00%
BenchmarkSemaWorkNonblock-16 117.00 116.00 -0.85%
BenchmarkSemaWorkBlock 810.00 811.00 +0.12%
BenchmarkSemaWorkBlock-2 454.00 466.00 +2.64%
BenchmarkSemaWorkBlock-4 243.00 241.00 -0.82%
BenchmarkSemaWorkBlock-8 145.00 137.00 -5.52%
BenchmarkSemaWorkBlock-16 132.00 123.00 -6.82%
BenchmarkContendedSemaphore 123.00 102.00 -17.07%
BenchmarkContendedSemaphore-2 34.80 34.90 +0.29%
BenchmarkContendedSemaphore-4 34.70 34.80 +0.29%
BenchmarkContendedSemaphore-8 34.70 34.70 +0.00%
BenchmarkContendedSemaphore-16 34.80 34.70 -0.29%
BenchmarkMutex 26.80 26.00 -2.99%
BenchmarkMutex-2 108.00 45.20 -58.15%
BenchmarkMutex-4 103.00 127.00 +23.30%
BenchmarkMutex-8 109.00 147.00 +34.86%
BenchmarkMutex-16 102.00 152.00 +49.02%
BenchmarkMutexSlack 27.00 26.90 -0.37%
BenchmarkMutexSlack-2 149.00 165.00 +10.74%
BenchmarkMutexSlack-4 121.00 209.00 +72.73%
BenchmarkMutexSlack-8 101.00 158.00 +56.44%
BenchmarkMutexSlack-16 97.00 129.00 +32.99%
BenchmarkMutexWork 792.00 794.00 +0.25%
BenchmarkMutexWork-2 407.00 409.00 +0.49%
BenchmarkMutexWork-4 220.00 209.00 -5.00%
BenchmarkMutexWork-8 267.00 160.00 -40.07%
BenchmarkMutexWork-16 315.00 300.00 -4.76%
BenchmarkMutexWorkSlack 792.00 793.00 +0.13%
BenchmarkMutexWorkSlack-2 406.00 404.00 -0.49%
BenchmarkMutexWorkSlack-4 225.00 212.00 -5.78%
BenchmarkMutexWorkSlack-8 268.00 136.00 -49.25%
BenchmarkMutexWorkSlack-16 300.00 300.00 +0.00%
BenchmarkRWMutexWrite100 27.10 27.00 -0.37%
BenchmarkRWMutexWrite100-2 33.10 40.80 +23.26%
BenchmarkRWMutexWrite100-4 113.00 88.10 -22.04%
BenchmarkRWMutexWrite100-8 119.00 95.30 -19.92%
BenchmarkRWMutexWrite100-16 148.00 109.00 -26.35%
BenchmarkRWMutexWrite10 29.60 29.40 -0.68%
BenchmarkRWMutexWrite10-2 111.00 61.40 -44.68%
BenchmarkRWMutexWrite10-4 270.00 208.00 -22.96%
BenchmarkRWMutexWrite10-8 204.00 185.00 -9.31%
BenchmarkRWMutexWrite10-16 261.00 190.00 -27.20%
BenchmarkRWMutexWorkWrite100 1040.00 1036.00 -0.38%
BenchmarkRWMutexWorkWrite100-2 593.00 580.00 -2.19%
BenchmarkRWMutexWorkWrite100-4 470.00 365.00 -22.34%
BenchmarkRWMutexWorkWrite100-8 468.00 289.00 -38.25%
BenchmarkRWMutexWorkWrite100-16 604.00 374.00 -38.08%
BenchmarkRWMutexWorkWrite10 951.00 951.00 +0.00%
BenchmarkRWMutexWorkWrite10-2 1001.00 928.00 -7.29%
BenchmarkRWMutexWorkWrite10-4 1555.00 1006.00 -35.31%
BenchmarkRWMutexWorkWrite10-8 2085.00 1171.00 -43.84%
BenchmarkRWMutexWorkWrite10-16 2082.00 1614.00 -22.48%
R=rsc, iant, msolo, fw, iant
CC=golang-dev
https://golang.org/cl/4711045
2011-07-29 10:44:06 -06:00
|
|
|
TEXT runtime·xchg(SB), 7, $0
|
|
|
|
MOVQ 8(SP), BX
|
|
|
|
MOVL 16(SP), AX
|
|
|
|
XCHGL AX, 0(BX)
|
|
|
|
RET
|
|
|
|
|
|
|
|
TEXT runtime·procyield(SB),7,$0
|
|
|
|
MOVL 8(SP), AX
|
|
|
|
again:
|
|
|
|
PAUSE
|
|
|
|
SUBL $1, AX
|
|
|
|
JNZ again
|
|
|
|
RET
|
|
|
|
|
2011-07-13 12:22:41 -06:00
|
|
|
TEXT runtime·atomicstorep(SB), 7, $0
|
|
|
|
MOVQ 8(SP), BX
|
|
|
|
MOVQ 16(SP), AX
|
|
|
|
XCHGQ AX, 0(BX)
|
|
|
|
RET
|
|
|
|
|
2011-07-29 11:47:24 -06:00
|
|
|
TEXT runtime·atomicstore(SB), 7, $0
|
|
|
|
MOVQ 8(SP), BX
|
|
|
|
MOVL 16(SP), AX
|
|
|
|
XCHGL AX, 0(BX)
|
|
|
|
RET
|
|
|
|
|
2009-06-03 00:02:12 -06:00
|
|
|
// void jmpdefer(fn, sp);
|
|
|
|
// called from deferreturn.
|
2009-01-27 13:03:53 -07:00
|
|
|
// 1. pop the caller
|
|
|
|
// 2. sub 5 bytes from the callers return
|
|
|
|
// 3. jmp to the argument
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·jmpdefer(SB), 7, $0
|
2009-06-03 00:02:12 -06:00
|
|
|
MOVQ 8(SP), AX // fn
|
|
|
|
MOVQ 16(SP), BX // caller sp
|
|
|
|
LEAQ -8(BX), SP // caller sp after CALL
|
|
|
|
SUBQ $5, (SP) // return to CALL again
|
|
|
|
JMP AX // but first run the deferred function
|
2009-10-03 11:37:12 -06:00
|
|
|
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
// Dummy function to use in saved gobuf.PC,
|
|
|
|
// to match SP pointing at a return address.
|
|
|
|
// The gobuf.PC is unused by the contortions here
|
|
|
|
// but setting it to return will make the traceback code work.
|
|
|
|
TEXT return<>(SB),7,$0
|
|
|
|
RET
|
|
|
|
|
|
|
|
// asmcgocall(void(*fn)(void*), void *arg)
|
2009-10-12 11:26:38 -06:00
|
|
|
// Call fn(arg) on the scheduler stack,
|
|
|
|
// aligned appropriately for the gcc ABI.
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
// See cgocall.c for more details.
|
|
|
|
TEXT runtime·asmcgocall(SB),7,$0
|
|
|
|
MOVQ fn+0(FP), AX
|
|
|
|
MOVQ arg+8(FP), BX
|
|
|
|
MOVQ SP, DX
|
2009-10-12 11:26:38 -06:00
|
|
|
|
|
|
|
// Figure out if we need to switch to m->g0 stack.
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
// We get called to create new OS threads too, and those
|
|
|
|
// come in on the m->g0 stack already.
|
|
|
|
get_tls(CX)
|
|
|
|
MOVQ m(CX), BP
|
|
|
|
MOVQ m_g0(BP), SI
|
|
|
|
MOVQ g(CX), DI
|
|
|
|
CMPQ SI, DI
|
|
|
|
JEQ 6(PC)
|
|
|
|
MOVQ SP, (g_sched+gobuf_sp)(DI)
|
|
|
|
MOVQ $return<>(SB), (g_sched+gobuf_pc)(DI)
|
|
|
|
MOVQ DI, (g_sched+gobuf_g)(DI)
|
|
|
|
MOVQ SI, g(CX)
|
|
|
|
MOVQ (g_sched+gobuf_sp)(SI), SP
|
2009-10-12 11:26:38 -06:00
|
|
|
|
|
|
|
// Now on a scheduling stack (a pthread-created stack).
|
|
|
|
SUBQ $32, SP
|
2009-10-03 11:37:12 -06:00
|
|
|
ANDQ $~15, SP // alignment for gcc ABI
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
MOVQ DI, 16(SP) // save g
|
|
|
|
MOVQ DX, 8(SP) // save SP
|
|
|
|
MOVQ BX, DI // DI = first argument in AMD64 ABI
|
2011-07-19 08:47:33 -06:00
|
|
|
MOVQ BX, CX // CX = first argument in Win64
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
CALL AX
|
2009-10-12 11:26:38 -06:00
|
|
|
|
2010-08-04 18:50:22 -06:00
|
|
|
// Restore registers, g, stack pointer.
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
get_tls(CX)
|
|
|
|
MOVQ 16(SP), DI
|
|
|
|
MOVQ DI, g(CX)
|
2009-10-03 11:37:12 -06:00
|
|
|
MOVQ 8(SP), SP
|
|
|
|
RET
|
|
|
|
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize)
|
|
|
|
// See cgocall.c for more details.
|
|
|
|
TEXT runtime·cgocallback(SB),7,$24
|
|
|
|
MOVQ fn+0(FP), AX
|
|
|
|
MOVQ frame+8(FP), BX
|
|
|
|
MOVQ framesize+16(FP), DX
|
2010-04-09 14:30:11 -06:00
|
|
|
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
// Save current m->g0->sched.sp on stack and then set it to SP.
|
2010-08-04 18:50:22 -06:00
|
|
|
get_tls(CX)
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
MOVQ m(CX), BP
|
|
|
|
MOVQ m_g0(BP), SI
|
|
|
|
PUSHQ (g_sched+gobuf_sp)(SI)
|
|
|
|
MOVQ SP, (g_sched+gobuf_sp)(SI)
|
|
|
|
|
2011-08-18 10:17:09 -06:00
|
|
|
// Switch to m->curg stack and call runtime.cgocallbackg
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
// with the three arguments. Because we are taking over
|
|
|
|
// the execution of m->curg but *not* resuming what had
|
|
|
|
// been running, we need to save that information (m->curg->gobuf)
|
|
|
|
// so that we can restore it when we're done.
|
|
|
|
// We can restore m->curg->gobuf.sp easily, because calling
|
2011-08-18 10:17:09 -06:00
|
|
|
// runtime.cgocallbackg leaves SP unchanged upon return.
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
// To save m->curg->gobuf.pc, we push it onto the stack.
|
|
|
|
// This has the added benefit that it looks to the traceback
|
2011-08-18 10:17:09 -06:00
|
|
|
// routine like cgocallbackg is going to return to that
|
|
|
|
// PC (because we defined cgocallbackg to have
|
runtime: scheduler, cgo reorganization
* Change use of m->g0 stack (aka scheduler stack).
* Provide runtime.mcall(f) to invoke f() on m->g0 stack.
* Replace scheduler loop entry with runtime.mcall(schedule).
Runtime.mcall eliminates the need for fake scheduler states that
exist just to run a bit of code on the m->g0 stack
(Grecovery, Gstackalloc).
The elimination of the scheduler as a loop that stops and
starts using gosave and gogo fixes a bad interaction with the
way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled)
C functions on that stack, and then when calling back into Go,
it sets m->g0->sched.sp below the added call frames, so that
other uses of m->g0's stack will not interfere with those frames.
Unfortunately, gogo (longjmp) back to the scheduler loop at
this point would end up running scheduler with the lower
sp, which no longer points at a valid stack frame for
a call to scheduler. If scheduler then wrote any function call
arguments or local variables to where it expected the stack
frame to be, it would overwrite other data on the stack.
I realized this possibility while debugging a problem with
calling complex Go code in a Go -> C -> Go cgo callback.
This wasn't the bug I was looking for, it turns out, but I believe
it is a real bug nonetheless. Switching to runtime.mcall, which
only adds new frames to the stack and never jumps into
functions running in existing ones, fixes this bug.
* Move cgo-related code out of proc.c into cgocall.c.
* Add very large comment describing cgo call sequences.
* Simpilify, regularize cgo function implementations and names.
* Add test suite as misc/cgo/test.
Now the Go -> C path calls cgocall, which calls asmcgocall,
and the C -> Go path calls cgocallback, which calls cgocallbackg.
The shuffling, which affects mainly the callback case, moves
most of the callback implementation to cgocallback running
on the m->curg stack (not the m->g0 scheduler stack) and
only while accounted for with $GOMAXPROCS (between calls
to exitsyscall and entersyscall).
The previous callback code did not block in startcgocallback's
approximation to exitsyscall, so if, say, the garbage collector
were running, it would still barge in and start doing things
like call malloc. Similarly endcgocallback's approximation of
entersyscall did not call matchmg to kick off new OS threads
when necessary, which caused the bug in issue 1560.
Fixes #1560.
R=iant
CC=golang-dev
https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
|
|
|
// a frame size of 24, the same amount that we use below),
|
|
|
|
// so that the traceback will seamlessly trace back into
|
|
|
|
// the earlier calls.
|
|
|
|
MOVQ m_curg(BP), SI
|
|
|
|
MOVQ SI, g(CX)
|
|
|
|
MOVQ (g_sched+gobuf_sp)(SI), DI // prepare stack as DI
|
|
|
|
|
|
|
|
// Push gobuf.pc
|
|
|
|
MOVQ (g_sched+gobuf_pc)(SI), BP
|
|
|
|
SUBQ $8, DI
|
|
|
|
MOVQ BP, 0(DI)
|
|
|
|
|
|
|
|
// Push arguments to cgocallbackg.
|
|
|
|
// Frame size here must match the frame size above
|
|
|
|
// to trick traceback routines into doing the right thing.
|
|
|
|
SUBQ $24, DI
|
|
|
|
MOVQ AX, 0(DI)
|
|
|
|
MOVQ BX, 8(DI)
|
|
|
|
MOVQ DX, 16(DI)
|
|
|
|
|
|
|
|
// Switch stack and make the call.
|
|
|
|
MOVQ DI, SP
|
|
|
|
CALL runtime·cgocallbackg(SB)
|
|
|
|
|
|
|
|
// Restore g->gobuf (== m->curg->gobuf) from saved values.
|
|
|
|
get_tls(CX)
|
|
|
|
MOVQ g(CX), SI
|
|
|
|
MOVQ 24(SP), BP
|
|
|
|
MOVQ BP, (g_sched+gobuf_pc)(SI)
|
|
|
|
LEAQ (24+8)(SP), DI
|
|
|
|
MOVQ DI, (g_sched+gobuf_sp)(SI)
|
|
|
|
|
|
|
|
// Switch back to m->g0's stack and restore m->g0->sched.sp.
|
|
|
|
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
|
|
|
|
// so we do not have to restore it.)
|
|
|
|
MOVQ m(CX), BP
|
|
|
|
MOVQ m_g0(BP), SI
|
|
|
|
MOVQ SI, g(CX)
|
|
|
|
MOVQ (g_sched+gobuf_sp)(SI), SP
|
|
|
|
POPQ (g_sched+gobuf_sp)(SI)
|
|
|
|
|
|
|
|
// Done!
|
2010-04-09 14:30:11 -06:00
|
|
|
RET
|
|
|
|
|
2009-12-08 19:19:30 -07:00
|
|
|
// check that SP is in range [g->stackbase, g->stackguard)
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·stackcheck(SB), 7, $0
|
2010-08-04 18:50:22 -06:00
|
|
|
get_tls(CX)
|
|
|
|
MOVQ g(CX), AX
|
|
|
|
CMPQ g_stackbase(AX), SP
|
2010-03-30 11:53:16 -06:00
|
|
|
JHI 2(PC)
|
|
|
|
INT $3
|
2010-08-04 18:50:22 -06:00
|
|
|
CMPQ SP, g_stackguard(AX)
|
2010-03-30 11:53:16 -06:00
|
|
|
JHI 2(PC)
|
|
|
|
INT $3
|
|
|
|
RET
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·memclr(SB),7,$0
|
2010-04-05 13:51:09 -06:00
|
|
|
MOVQ 8(SP), DI // arg 1 addr
|
2011-01-25 14:35:36 -07:00
|
|
|
MOVQ 16(SP), CX // arg 2 count
|
2011-07-23 13:46:58 -06:00
|
|
|
MOVQ CX, BX
|
|
|
|
ANDQ $7, BX
|
2011-01-25 14:35:36 -07:00
|
|
|
SHRQ $3, CX
|
2010-04-05 13:51:09 -06:00
|
|
|
MOVQ $0, AX
|
|
|
|
CLD
|
|
|
|
REP
|
|
|
|
STOSQ
|
2011-07-23 13:46:58 -06:00
|
|
|
MOVQ BX, CX
|
|
|
|
REP
|
|
|
|
STOSB
|
2010-04-05 13:51:09 -06:00
|
|
|
RET
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·getcallerpc(SB),7,$0
|
2010-04-05 13:51:09 -06:00
|
|
|
MOVQ x+0(FP),AX // addr of first arg
|
|
|
|
MOVQ -8(AX),AX // get calling pc
|
|
|
|
RET
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·setcallerpc(SB),7,$0
|
2010-04-05 13:51:09 -06:00
|
|
|
MOVQ x+0(FP),AX // addr of first arg
|
|
|
|
MOVQ x+8(FP), BX
|
|
|
|
MOVQ BX, -8(AX) // set calling pc
|
|
|
|
RET
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
TEXT runtime·getcallersp(SB),7,$0
|
2010-04-05 13:51:09 -06:00
|
|
|
MOVQ sp+0(FP), AX
|
|
|
|
RET
|
|
|
|
|
runtime: ,s/[a-zA-Z0-9_]+/runtime·&/g, almost
Prefix all external symbols in runtime by runtime·,
to avoid conflicts with possible symbols of the same
name in linked-in C libraries. The obvious conflicts
are printf, malloc, and free, but hide everything to
avoid future pain.
The symbols left alone are:
** known to cgo **
_cgo_free
_cgo_malloc
libcgo_thread_start
initcgo
ncgocall
** known to linker **
_rt0_$GOARCH
_rt0_$GOARCH_$GOOS
text
etext
data
end
pclntab
epclntab
symtab
esymtab
** known to C compiler **
_divv
_modv
_div64by32
etc (arch specific)
Tested on darwin/386, darwin/amd64, linux/386, linux/amd64.
Built (but not tested) for freebsd/386, freebsd/amd64, linux/arm, windows/386.
R=r, PeterGo
CC=golang-dev
https://golang.org/cl/2899041
2010-11-04 12:00:19 -06:00
|
|
|
GLOBL runtime·tls0(SB), $64
|