1
0
mirror of https://github.com/golang/go synced 2024-10-04 12:31:21 -06:00
go/src/pkg/runtime/asm_amd64.s

1153 lines
24 KiB
ArmAsm
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "zasm_GOOS_GOARCH.h"
TEXT _rt0_amd64(SB),7,$-8
// copy arguments forward on an even stack
MOVQ DI, AX // argc
MOVQ SI, BX // argv
SUBQ $(4*8+7), SP // 2args 2auto
ANDQ $~15, SP
MOVQ AX, 16(SP)
MOVQ BX, 24(SP)
// create istack out of the given (operating system) stack.
// _cgo_init may update stackguard.
MOVQ $runtime·g0(SB), DI
LEAQ (-64*1024+104)(SP), BX
MOVQ BX, g_stackguard(DI)
MOVQ SP, g_stackbase(DI)
// find out information about the processor we're on
MOVQ $0, AX
CPUID
CMPQ AX, $0
JE nocpuinfo
MOVQ $1, AX
CPUID
MOVL CX, runtime·cpuid_ecx(SB)
MOVL DX, runtime·cpuid_edx(SB)
nocpuinfo:
// if there is an _cgo_init, call it.
MOVQ _cgo_init(SB), AX
TESTQ AX, AX
JZ needtls
// g0 already in DI
MOVQ DI, CX // Win64 uses CX for first parameter
MOVQ $setmg_gcc<>(SB), SI
CALL AX
CMPL runtime·iswindows(SB), $0
JEQ ok
needtls:
// skip TLS setup on Plan 9
CMPL runtime·isplan9(SB), $1
JEQ ok
LEAQ runtime·tls0(SB), DI
CALL runtime·settls(SB)
// store through it, to make sure it works
get_tls(BX)
MOVQ $0x123, g(BX)
MOVQ runtime·tls0(SB), AX
CMPQ AX, $0x123
JEQ 2(PC)
MOVL AX, 0 // abort
ok:
// set the per-goroutine and per-mach "registers"
get_tls(BX)
LEAQ runtime·g0(SB), CX
MOVQ CX, g(BX)
LEAQ runtime·m0(SB), AX
MOVQ AX, m(BX)
// save m->g0 = g0
MOVQ CX, m_g0(AX)
CLD // convention is D is always left cleared
CALL runtime·check(SB)
MOVL 16(SP), AX // copy argc
MOVL AX, 0(SP)
MOVQ 24(SP), AX // copy argv
MOVQ AX, 8(SP)
CALL runtime·args(SB)
CALL runtime·osinit(SB)
CALL runtime·hashinit(SB)
CALL runtime·schedinit(SB)
// create a new goroutine to start program
PUSHQ $runtime·main·f(SB) // entry
PUSHQ $0 // arg size
CALL runtime·newproc(SB)
POPQ AX
POPQ AX
// start this M
CALL runtime·mstart(SB)
MOVL $0xf1, 0xf1 // crash
RET
DATA runtime·main·f+0(SB)/8,$runtime·main(SB)
GLOBL runtime·main·f(SB),8,$8
TEXT runtime·breakpoint(SB),7,$0
BYTE $0xcc
RET
TEXT runtime·asminit(SB),7,$0
// No per-thread init.
RET
/*
* go-routine
*/
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), 7, $0
MOVQ 8(SP), AX // gobuf
LEAQ 8(SP), BX // caller's SP
MOVQ BX, gobuf_sp(AX)
MOVQ 0(SP), BX // caller's PC
MOVQ BX, gobuf_pc(AX)
get_tls(CX)
MOVQ g(CX), BX
MOVQ BX, gobuf_g(AX)
RET
// void gogo(Gobuf*, uintptr)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), 7, $0
MOVQ 16(SP), AX // return 2nd arg
MOVQ 8(SP), BX // gobuf
MOVQ gobuf_g(BX), DX
MOVQ 0(DX), CX // make sure g != nil
get_tls(CX)
MOVQ DX, g(CX)
MOVQ gobuf_sp(BX), SP // restore SP
MOVQ gobuf_pc(BX), BX
JMP BX
// void gogocall(Gobuf*, void (*fn)(void), uintptr r0)
// restore state from Gobuf but then call fn.
// (call fn, returning to state in Gobuf)
TEXT runtime·gogocall(SB), 7, $0
MOVQ 24(SP), DX // context
MOVQ 16(SP), AX // fn
MOVQ 8(SP), BX // gobuf
MOVQ gobuf_g(BX), DI
get_tls(CX)
MOVQ DI, g(CX)
MOVQ 0(DI), CX // make sure g != nil
MOVQ gobuf_sp(BX), SP // restore SP
MOVQ gobuf_pc(BX), BX
PUSHQ BX
JMP AX
POPQ BX // not reached
// void gogocallfn(Gobuf*, FuncVal*)
// restore state from Gobuf but then call fn.
// (call fn, returning to state in Gobuf)
TEXT runtime·gogocallfn(SB), 7, $0
MOVQ 16(SP), DX // fn
MOVQ 8(SP), BX // gobuf
MOVQ gobuf_g(BX), AX
get_tls(CX)
MOVQ AX, g(CX)
MOVQ 0(AX), CX // make sure g != nil
MOVQ gobuf_sp(BX), SP // restore SP
MOVQ gobuf_pc(BX), BX
PUSHQ BX
MOVQ 0(DX), BX
JMP BX
POPQ BX // not reached
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// void mcall(void (*fn)(G*))
// Switch to m->g0's stack, call fn(g).
runtime: stack split + garbage collection bug The g->sched.sp saved stack pointer and the g->stackbase and g->stackguard stack bounds can change even while "the world is stopped", because a goroutine has to call functions (and therefore might split its stack) when exiting a system call to check whether the world is stopped (and if so, wait until the world continues). That means the garbage collector cannot access those values safely (without a race) for goroutines executing system calls. Instead, save a consistent triple in g->gcsp, g->gcstack, g->gcguard during entersyscall and have the garbage collector refer to those. The old code was occasionally seeing (because of the race) an sp and stk that did not correspond to each other, so that stk - sp was not the number of stack bytes following sp. In that case, if sp < stk then the call scanblock(sp, stk - sp) scanned too many bytes (anything between the two pointers, which pointed into different allocation blocks). If sp > stk then stk - sp wrapped around. On 32-bit, stk - sp is a uintptr (uint32) converted to int64 in the call to scanblock, so a large (~4G) but positive number. Scanblock would try to scan that many bytes and eventually fault accessing unmapped memory. On 64-bit, stk - sp is a uintptr (uint64) promoted to int64 in the call to scanblock, so a negative number. Scanblock would not scan anything, possibly causing in-use blocks to be freed. In short, 32-bit platforms would have seen either ineffective garbage collection or crashes during garbage collection, while 64-bit platforms would have seen either ineffective or incorrect garbage collection. You can see the invalid arguments to scanblock in the stack traces in issue 1620. Fixes #1620. Fixes #1746. R=iant, r CC=golang-dev https://golang.org/cl/4437075
2011-04-27 21:21:12 -06:00
// Fn must never return. It should gogo(&g->sched)
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// to keep running g.
TEXT runtime·mcall(SB), 7, $0
MOVQ fn+0(FP), DI
get_tls(CX)
MOVQ g(CX), AX // save state in g->gobuf
MOVQ 0(SP), BX // caller's PC
MOVQ BX, (g_sched+gobuf_pc)(AX)
LEAQ 8(SP), BX // caller's SP
MOVQ BX, (g_sched+gobuf_sp)(AX)
MOVQ AX, (g_sched+gobuf_g)(AX)
// switch to m->g0 & its stack, call fn
MOVQ m(CX), BX
MOVQ m_g0(BX), SI
CMPQ SI, AX // if g == m->g0 call badmcall
JNE 2(PC)
CALL runtime·badmcall(SB)
MOVQ SI, g(CX) // g = m->g0
MOVQ (g_sched+gobuf_sp)(SI), SP // sp = m->g0->gobuf.sp
PUSHQ AX
CALL DI
POPQ AX
CALL runtime·badmcall2(SB)
RET
/*
* support for morestack
*/
// Called during function prolog when more stack is needed.
// Caller has already done get_tls(CX); MOVQ m(CX), BX.
TEXT runtime·morestack(SB),7,$0
// Cannot grow scheduler stack (m->g0).
MOVQ m_g0(BX), SI
CMPQ g(CX), SI
JNE 2(PC)
INT $3
MOVQ DX, m_cret(BX)
// Called from f.
// Set m->morebuf to f's caller.
MOVQ 8(SP), AX // f's caller's PC
MOVQ AX, (m_morebuf+gobuf_pc)(BX)
LEAQ 16(SP), AX // f's caller's SP
MOVQ AX, (m_morebuf+gobuf_sp)(BX)
MOVQ AX, m_moreargp(BX)
get_tls(CX)
MOVQ g(CX), SI
MOVQ SI, (m_morebuf+gobuf_g)(BX)
// Set m->morepc to f's PC.
MOVQ 0(SP), AX
MOVQ AX, m_morepc(BX)
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// Call newstack on m->g0's stack.
MOVQ m_g0(BX), BP
MOVQ BP, g(CX)
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
MOVQ (g_sched+gobuf_sp)(BP), SP
CALL runtime·newstack(SB)
MOVQ $0, 0x1003 // crash if newstack returns
RET
// Called from reflection library. Mimics morestack,
// reuses stack growth code to create a frame
// with the desired args running the desired function.
//
// func call(fn *byte, arg *byte, argsize uint32).
TEXT reflect·call(SB), 7, $0
get_tls(CX)
MOVQ m(CX), BX
// Save our caller's state as the PC and SP to
// restore when returning from f.
MOVQ 0(SP), AX // our caller's PC
MOVQ AX, (m_morebuf+gobuf_pc)(BX)
LEAQ 8(SP), AX // our caller's SP
MOVQ AX, (m_morebuf+gobuf_sp)(BX)
MOVQ g(CX), AX
MOVQ AX, (m_morebuf+gobuf_g)(BX)
// Set up morestack arguments to call f on a new stack.
// We set f's frame size to 1, as a hint to newstack
// that this is a call from reflect·call.
// If it turns out that f needs a larger frame than
// the default stack, f's usual stack growth prolog will
// allocate a new segment (and recopy the arguments).
MOVQ 8(SP), AX // fn
MOVQ 16(SP), DX // arg frame
MOVL 24(SP), CX // arg size
MOVQ AX, m_morepc(BX) // f's PC
MOVQ DX, m_moreargp(BX) // argument frame pointer
MOVL CX, m_moreargsize(BX) // f's argument size
MOVL $1, m_moreframesize(BX) // f's frame size
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// Call newstack on m->g0's stack.
MOVQ m_g0(BX), BP
get_tls(CX)
MOVQ BP, g(CX)
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
MOVQ (g_sched+gobuf_sp)(BP), SP
CALL runtime·newstack(SB)
MOVQ $0, 0x1103 // crash if newstack returns
RET
// Return point when leaving stack.
TEXT runtime·lessstack(SB), 7, $0
// Save return value in m->cret
get_tls(CX)
MOVQ m(CX), BX
MOVQ AX, m_cret(BX)
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// Call oldstack on m->g0's stack.
MOVQ m_g0(BX), BP
MOVQ BP, g(CX)
MOVQ (g_sched+gobuf_sp)(BP), SP
CALL runtime·oldstack(SB)
MOVQ $0, 0x1004 // crash if oldstack returns
RET
// morestack trampolines
TEXT runtime·morestack00(SB),7,$0
get_tls(CX)
MOVQ m(CX), BX
MOVQ $0, AX
MOVQ AX, m_moreframesize(BX)
MOVQ $runtime·morestack(SB), AX
JMP AX
TEXT runtime·morestack01(SB),7,$0
get_tls(CX)
MOVQ m(CX), BX
SHLQ $32, AX
MOVQ AX, m_moreframesize(BX)
MOVQ $runtime·morestack(SB), AX
JMP AX
TEXT runtime·morestack10(SB),7,$0
get_tls(CX)
MOVQ m(CX), BX
MOVLQZX AX, AX
MOVQ AX, m_moreframesize(BX)
MOVQ $runtime·morestack(SB), AX
JMP AX
TEXT runtime·morestack11(SB),7,$0
get_tls(CX)
MOVQ m(CX), BX
MOVQ AX, m_moreframesize(BX)
MOVQ $runtime·morestack(SB), AX
JMP AX
// subcases of morestack01
// with const of 8,16,...48
TEXT runtime·morestack8(SB),7,$0
PUSHQ $1
MOVQ $morestack<>(SB), AX
JMP AX
TEXT runtime·morestack16(SB),7,$0
PUSHQ $2
MOVQ $morestack<>(SB), AX
JMP AX
TEXT runtime·morestack24(SB),7,$0
PUSHQ $3
MOVQ $morestack<>(SB), AX
JMP AX
TEXT runtime·morestack32(SB),7,$0
PUSHQ $4
MOVQ $morestack<>(SB), AX
JMP AX
TEXT runtime·morestack40(SB),7,$0
PUSHQ $5
MOVQ $morestack<>(SB), AX
JMP AX
TEXT runtime·morestack48(SB),7,$0
PUSHQ $6
MOVQ $morestack<>(SB), AX
JMP AX
TEXT morestack<>(SB),7,$0
get_tls(CX)
MOVQ m(CX), BX
POPQ AX
SHLQ $35, AX
MOVQ AX, m_moreframesize(BX)
MOVQ $runtime·morestack(SB), AX
JMP AX
// bool cas(int32 *val, int32 old, int32 new)
// Atomically:
// if(*val == old){
// *val = new;
// return 1;
2009-01-27 13:03:53 -07:00
// } else
// return 0;
TEXT runtime·cas(SB), 7, $0
MOVQ 8(SP), BX
MOVL 16(SP), AX
MOVL 20(SP), CX
LOCK
CMPXCHGL CX, 0(BX)
JZ 3(PC)
MOVL $0, AX
RET
MOVL $1, AX
RET
2009-01-27 13:03:53 -07:00
// bool runtime·cas64(uint64 *val, uint64 *old, uint64 new)
// Atomically:
// if(*val == *old){
// *val = new;
// return 1;
// } else {
// *old = *val
// return 0;
// }
TEXT runtime·cas64(SB), 7, $0
MOVQ 8(SP), BX
MOVQ 16(SP), BP
MOVQ 0(BP), AX
MOVQ 24(SP), CX
LOCK
CMPXCHGQ CX, 0(BX)
JNZ cas64_fail
MOVL $1, AX
RET
cas64_fail:
MOVQ AX, 0(BP)
MOVL $0, AX
RET
// bool casp(void **val, void *old, void *new)
// Atomically:
// if(*val == old){
// *val = new;
// return 1;
// } else
// return 0;
TEXT runtime·casp(SB), 7, $0
MOVQ 8(SP), BX
MOVQ 16(SP), AX
MOVQ 24(SP), CX
LOCK
CMPXCHGQ CX, 0(BX)
JZ 3(PC)
MOVL $0, AX
RET
MOVL $1, AX
RET
// uint32 xadd(uint32 volatile *val, int32 delta)
// Atomically:
// *val += delta;
// return *val;
TEXT runtime·xadd(SB), 7, $0
MOVQ 8(SP), BX
MOVL 16(SP), AX
MOVL AX, CX
LOCK
XADDL AX, 0(BX)
ADDL CX, AX
RET
TEXT runtime·xadd64(SB), 7, $0
MOVQ 8(SP), BX
MOVQ 16(SP), AX
MOVQ AX, CX
LOCK
XADDQ AX, 0(BX)
ADDQ CX, AX
RET
runtime: improve Linux mutex The implementation is hybrid active/passive spin/blocking mutex. The design minimizes amount of context switches and futex calls. The idea is that all critical sections in runtime are intentially small, so pure blocking mutex behaves badly causing a lot of context switches, thread parking/unparking and kernel calls. Note that some synthetic benchmarks become somewhat slower, that's due to increased contention on other data structures, it should not affect programs that do any real work. On 2 x Intel E5620, 8 HT cores, 2.4GHz benchmark old ns/op new ns/op delta BenchmarkSelectContended 521.00 503.00 -3.45% BenchmarkSelectContended-2 661.00 320.00 -51.59% BenchmarkSelectContended-4 1139.00 629.00 -44.78% BenchmarkSelectContended-8 2870.00 878.00 -69.41% BenchmarkSelectContended-16 5276.00 818.00 -84.50% BenchmarkChanContended 112.00 103.00 -8.04% BenchmarkChanContended-2 631.00 174.00 -72.42% BenchmarkChanContended-4 682.00 272.00 -60.12% BenchmarkChanContended-8 1601.00 520.00 -67.52% BenchmarkChanContended-16 3100.00 372.00 -88.00% BenchmarkChanSync 253.00 239.00 -5.53% BenchmarkChanSync-2 5030.00 4648.00 -7.59% BenchmarkChanSync-4 4826.00 4694.00 -2.74% BenchmarkChanSync-8 4778.00 4713.00 -1.36% BenchmarkChanSync-16 5289.00 4710.00 -10.95% BenchmarkChanProdCons0 273.00 254.00 -6.96% BenchmarkChanProdCons0-2 599.00 400.00 -33.22% BenchmarkChanProdCons0-4 1168.00 659.00 -43.58% BenchmarkChanProdCons0-8 2831.00 1057.00 -62.66% BenchmarkChanProdCons0-16 4197.00 1037.00 -75.29% BenchmarkChanProdCons10 150.00 140.00 -6.67% BenchmarkChanProdCons10-2 607.00 268.00 -55.85% BenchmarkChanProdCons10-4 1137.00 404.00 -64.47% BenchmarkChanProdCons10-8 2115.00 828.00 -60.85% BenchmarkChanProdCons10-16 4283.00 855.00 -80.04% BenchmarkChanProdCons100 117.00 110.00 -5.98% BenchmarkChanProdCons100-2 558.00 218.00 -60.93% BenchmarkChanProdCons100-4 722.00 287.00 -60.25% BenchmarkChanProdCons100-8 1840.00 431.00 -76.58% BenchmarkChanProdCons100-16 3394.00 448.00 -86.80% BenchmarkChanProdConsWork0 2014.00 1996.00 -0.89% BenchmarkChanProdConsWork0-2 1207.00 1127.00 -6.63% BenchmarkChanProdConsWork0-4 1913.00 611.00 -68.06% BenchmarkChanProdConsWork0-8 3016.00 949.00 -68.53% BenchmarkChanProdConsWork0-16 4320.00 1154.00 -73.29% BenchmarkChanProdConsWork10 1906.00 1897.00 -0.47% BenchmarkChanProdConsWork10-2 1123.00 1033.00 -8.01% BenchmarkChanProdConsWork10-4 1076.00 571.00 -46.93% BenchmarkChanProdConsWork10-8 2748.00 1096.00 -60.12% BenchmarkChanProdConsWork10-16 4600.00 1105.00 -75.98% BenchmarkChanProdConsWork100 1884.00 1852.00 -1.70% BenchmarkChanProdConsWork100-2 1235.00 1146.00 -7.21% BenchmarkChanProdConsWork100-4 1217.00 619.00 -49.14% BenchmarkChanProdConsWork100-8 1534.00 509.00 -66.82% BenchmarkChanProdConsWork100-16 4126.00 918.00 -77.75% BenchmarkSyscall 34.40 33.30 -3.20% BenchmarkSyscall-2 160.00 121.00 -24.38% BenchmarkSyscall-4 131.00 136.00 +3.82% BenchmarkSyscall-8 139.00 131.00 -5.76% BenchmarkSyscall-16 161.00 168.00 +4.35% BenchmarkSyscallWork 950.00 950.00 +0.00% BenchmarkSyscallWork-2 481.00 480.00 -0.21% BenchmarkSyscallWork-4 268.00 270.00 +0.75% BenchmarkSyscallWork-8 156.00 169.00 +8.33% BenchmarkSyscallWork-16 188.00 184.00 -2.13% BenchmarkSemaSyntNonblock 36.40 35.60 -2.20% BenchmarkSemaSyntNonblock-2 81.40 45.10 -44.59% BenchmarkSemaSyntNonblock-4 126.00 108.00 -14.29% BenchmarkSemaSyntNonblock-8 112.00 112.00 +0.00% BenchmarkSemaSyntNonblock-16 110.00 112.00 +1.82% BenchmarkSemaSyntBlock 35.30 35.30 +0.00% BenchmarkSemaSyntBlock-2 118.00 124.00 +5.08% BenchmarkSemaSyntBlock-4 105.00 108.00 +2.86% BenchmarkSemaSyntBlock-8 101.00 111.00 +9.90% BenchmarkSemaSyntBlock-16 112.00 118.00 +5.36% BenchmarkSemaWorkNonblock 810.00 811.00 +0.12% BenchmarkSemaWorkNonblock-2 476.00 414.00 -13.03% BenchmarkSemaWorkNonblock-4 238.00 228.00 -4.20% BenchmarkSemaWorkNonblock-8 140.00 126.00 -10.00% BenchmarkSemaWorkNonblock-16 117.00 116.00 -0.85% BenchmarkSemaWorkBlock 810.00 811.00 +0.12% BenchmarkSemaWorkBlock-2 454.00 466.00 +2.64% BenchmarkSemaWorkBlock-4 243.00 241.00 -0.82% BenchmarkSemaWorkBlock-8 145.00 137.00 -5.52% BenchmarkSemaWorkBlock-16 132.00 123.00 -6.82% BenchmarkContendedSemaphore 123.00 102.00 -17.07% BenchmarkContendedSemaphore-2 34.80 34.90 +0.29% BenchmarkContendedSemaphore-4 34.70 34.80 +0.29% BenchmarkContendedSemaphore-8 34.70 34.70 +0.00% BenchmarkContendedSemaphore-16 34.80 34.70 -0.29% BenchmarkMutex 26.80 26.00 -2.99% BenchmarkMutex-2 108.00 45.20 -58.15% BenchmarkMutex-4 103.00 127.00 +23.30% BenchmarkMutex-8 109.00 147.00 +34.86% BenchmarkMutex-16 102.00 152.00 +49.02% BenchmarkMutexSlack 27.00 26.90 -0.37% BenchmarkMutexSlack-2 149.00 165.00 +10.74% BenchmarkMutexSlack-4 121.00 209.00 +72.73% BenchmarkMutexSlack-8 101.00 158.00 +56.44% BenchmarkMutexSlack-16 97.00 129.00 +32.99% BenchmarkMutexWork 792.00 794.00 +0.25% BenchmarkMutexWork-2 407.00 409.00 +0.49% BenchmarkMutexWork-4 220.00 209.00 -5.00% BenchmarkMutexWork-8 267.00 160.00 -40.07% BenchmarkMutexWork-16 315.00 300.00 -4.76% BenchmarkMutexWorkSlack 792.00 793.00 +0.13% BenchmarkMutexWorkSlack-2 406.00 404.00 -0.49% BenchmarkMutexWorkSlack-4 225.00 212.00 -5.78% BenchmarkMutexWorkSlack-8 268.00 136.00 -49.25% BenchmarkMutexWorkSlack-16 300.00 300.00 +0.00% BenchmarkRWMutexWrite100 27.10 27.00 -0.37% BenchmarkRWMutexWrite100-2 33.10 40.80 +23.26% BenchmarkRWMutexWrite100-4 113.00 88.10 -22.04% BenchmarkRWMutexWrite100-8 119.00 95.30 -19.92% BenchmarkRWMutexWrite100-16 148.00 109.00 -26.35% BenchmarkRWMutexWrite10 29.60 29.40 -0.68% BenchmarkRWMutexWrite10-2 111.00 61.40 -44.68% BenchmarkRWMutexWrite10-4 270.00 208.00 -22.96% BenchmarkRWMutexWrite10-8 204.00 185.00 -9.31% BenchmarkRWMutexWrite10-16 261.00 190.00 -27.20% BenchmarkRWMutexWorkWrite100 1040.00 1036.00 -0.38% BenchmarkRWMutexWorkWrite100-2 593.00 580.00 -2.19% BenchmarkRWMutexWorkWrite100-4 470.00 365.00 -22.34% BenchmarkRWMutexWorkWrite100-8 468.00 289.00 -38.25% BenchmarkRWMutexWorkWrite100-16 604.00 374.00 -38.08% BenchmarkRWMutexWorkWrite10 951.00 951.00 +0.00% BenchmarkRWMutexWorkWrite10-2 1001.00 928.00 -7.29% BenchmarkRWMutexWorkWrite10-4 1555.00 1006.00 -35.31% BenchmarkRWMutexWorkWrite10-8 2085.00 1171.00 -43.84% BenchmarkRWMutexWorkWrite10-16 2082.00 1614.00 -22.48% R=rsc, iant, msolo, fw, iant CC=golang-dev https://golang.org/cl/4711045
2011-07-29 10:44:06 -06:00
TEXT runtime·xchg(SB), 7, $0
MOVQ 8(SP), BX
MOVL 16(SP), AX
XCHGL AX, 0(BX)
RET
TEXT runtime·xchg64(SB), 7, $0
MOVQ 8(SP), BX
MOVQ 16(SP), AX
XCHGQ AX, 0(BX)
RET
runtime: improve Linux mutex The implementation is hybrid active/passive spin/blocking mutex. The design minimizes amount of context switches and futex calls. The idea is that all critical sections in runtime are intentially small, so pure blocking mutex behaves badly causing a lot of context switches, thread parking/unparking and kernel calls. Note that some synthetic benchmarks become somewhat slower, that's due to increased contention on other data structures, it should not affect programs that do any real work. On 2 x Intel E5620, 8 HT cores, 2.4GHz benchmark old ns/op new ns/op delta BenchmarkSelectContended 521.00 503.00 -3.45% BenchmarkSelectContended-2 661.00 320.00 -51.59% BenchmarkSelectContended-4 1139.00 629.00 -44.78% BenchmarkSelectContended-8 2870.00 878.00 -69.41% BenchmarkSelectContended-16 5276.00 818.00 -84.50% BenchmarkChanContended 112.00 103.00 -8.04% BenchmarkChanContended-2 631.00 174.00 -72.42% BenchmarkChanContended-4 682.00 272.00 -60.12% BenchmarkChanContended-8 1601.00 520.00 -67.52% BenchmarkChanContended-16 3100.00 372.00 -88.00% BenchmarkChanSync 253.00 239.00 -5.53% BenchmarkChanSync-2 5030.00 4648.00 -7.59% BenchmarkChanSync-4 4826.00 4694.00 -2.74% BenchmarkChanSync-8 4778.00 4713.00 -1.36% BenchmarkChanSync-16 5289.00 4710.00 -10.95% BenchmarkChanProdCons0 273.00 254.00 -6.96% BenchmarkChanProdCons0-2 599.00 400.00 -33.22% BenchmarkChanProdCons0-4 1168.00 659.00 -43.58% BenchmarkChanProdCons0-8 2831.00 1057.00 -62.66% BenchmarkChanProdCons0-16 4197.00 1037.00 -75.29% BenchmarkChanProdCons10 150.00 140.00 -6.67% BenchmarkChanProdCons10-2 607.00 268.00 -55.85% BenchmarkChanProdCons10-4 1137.00 404.00 -64.47% BenchmarkChanProdCons10-8 2115.00 828.00 -60.85% BenchmarkChanProdCons10-16 4283.00 855.00 -80.04% BenchmarkChanProdCons100 117.00 110.00 -5.98% BenchmarkChanProdCons100-2 558.00 218.00 -60.93% BenchmarkChanProdCons100-4 722.00 287.00 -60.25% BenchmarkChanProdCons100-8 1840.00 431.00 -76.58% BenchmarkChanProdCons100-16 3394.00 448.00 -86.80% BenchmarkChanProdConsWork0 2014.00 1996.00 -0.89% BenchmarkChanProdConsWork0-2 1207.00 1127.00 -6.63% BenchmarkChanProdConsWork0-4 1913.00 611.00 -68.06% BenchmarkChanProdConsWork0-8 3016.00 949.00 -68.53% BenchmarkChanProdConsWork0-16 4320.00 1154.00 -73.29% BenchmarkChanProdConsWork10 1906.00 1897.00 -0.47% BenchmarkChanProdConsWork10-2 1123.00 1033.00 -8.01% BenchmarkChanProdConsWork10-4 1076.00 571.00 -46.93% BenchmarkChanProdConsWork10-8 2748.00 1096.00 -60.12% BenchmarkChanProdConsWork10-16 4600.00 1105.00 -75.98% BenchmarkChanProdConsWork100 1884.00 1852.00 -1.70% BenchmarkChanProdConsWork100-2 1235.00 1146.00 -7.21% BenchmarkChanProdConsWork100-4 1217.00 619.00 -49.14% BenchmarkChanProdConsWork100-8 1534.00 509.00 -66.82% BenchmarkChanProdConsWork100-16 4126.00 918.00 -77.75% BenchmarkSyscall 34.40 33.30 -3.20% BenchmarkSyscall-2 160.00 121.00 -24.38% BenchmarkSyscall-4 131.00 136.00 +3.82% BenchmarkSyscall-8 139.00 131.00 -5.76% BenchmarkSyscall-16 161.00 168.00 +4.35% BenchmarkSyscallWork 950.00 950.00 +0.00% BenchmarkSyscallWork-2 481.00 480.00 -0.21% BenchmarkSyscallWork-4 268.00 270.00 +0.75% BenchmarkSyscallWork-8 156.00 169.00 +8.33% BenchmarkSyscallWork-16 188.00 184.00 -2.13% BenchmarkSemaSyntNonblock 36.40 35.60 -2.20% BenchmarkSemaSyntNonblock-2 81.40 45.10 -44.59% BenchmarkSemaSyntNonblock-4 126.00 108.00 -14.29% BenchmarkSemaSyntNonblock-8 112.00 112.00 +0.00% BenchmarkSemaSyntNonblock-16 110.00 112.00 +1.82% BenchmarkSemaSyntBlock 35.30 35.30 +0.00% BenchmarkSemaSyntBlock-2 118.00 124.00 +5.08% BenchmarkSemaSyntBlock-4 105.00 108.00 +2.86% BenchmarkSemaSyntBlock-8 101.00 111.00 +9.90% BenchmarkSemaSyntBlock-16 112.00 118.00 +5.36% BenchmarkSemaWorkNonblock 810.00 811.00 +0.12% BenchmarkSemaWorkNonblock-2 476.00 414.00 -13.03% BenchmarkSemaWorkNonblock-4 238.00 228.00 -4.20% BenchmarkSemaWorkNonblock-8 140.00 126.00 -10.00% BenchmarkSemaWorkNonblock-16 117.00 116.00 -0.85% BenchmarkSemaWorkBlock 810.00 811.00 +0.12% BenchmarkSemaWorkBlock-2 454.00 466.00 +2.64% BenchmarkSemaWorkBlock-4 243.00 241.00 -0.82% BenchmarkSemaWorkBlock-8 145.00 137.00 -5.52% BenchmarkSemaWorkBlock-16 132.00 123.00 -6.82% BenchmarkContendedSemaphore 123.00 102.00 -17.07% BenchmarkContendedSemaphore-2 34.80 34.90 +0.29% BenchmarkContendedSemaphore-4 34.70 34.80 +0.29% BenchmarkContendedSemaphore-8 34.70 34.70 +0.00% BenchmarkContendedSemaphore-16 34.80 34.70 -0.29% BenchmarkMutex 26.80 26.00 -2.99% BenchmarkMutex-2 108.00 45.20 -58.15% BenchmarkMutex-4 103.00 127.00 +23.30% BenchmarkMutex-8 109.00 147.00 +34.86% BenchmarkMutex-16 102.00 152.00 +49.02% BenchmarkMutexSlack 27.00 26.90 -0.37% BenchmarkMutexSlack-2 149.00 165.00 +10.74% BenchmarkMutexSlack-4 121.00 209.00 +72.73% BenchmarkMutexSlack-8 101.00 158.00 +56.44% BenchmarkMutexSlack-16 97.00 129.00 +32.99% BenchmarkMutexWork 792.00 794.00 +0.25% BenchmarkMutexWork-2 407.00 409.00 +0.49% BenchmarkMutexWork-4 220.00 209.00 -5.00% BenchmarkMutexWork-8 267.00 160.00 -40.07% BenchmarkMutexWork-16 315.00 300.00 -4.76% BenchmarkMutexWorkSlack 792.00 793.00 +0.13% BenchmarkMutexWorkSlack-2 406.00 404.00 -0.49% BenchmarkMutexWorkSlack-4 225.00 212.00 -5.78% BenchmarkMutexWorkSlack-8 268.00 136.00 -49.25% BenchmarkMutexWorkSlack-16 300.00 300.00 +0.00% BenchmarkRWMutexWrite100 27.10 27.00 -0.37% BenchmarkRWMutexWrite100-2 33.10 40.80 +23.26% BenchmarkRWMutexWrite100-4 113.00 88.10 -22.04% BenchmarkRWMutexWrite100-8 119.00 95.30 -19.92% BenchmarkRWMutexWrite100-16 148.00 109.00 -26.35% BenchmarkRWMutexWrite10 29.60 29.40 -0.68% BenchmarkRWMutexWrite10-2 111.00 61.40 -44.68% BenchmarkRWMutexWrite10-4 270.00 208.00 -22.96% BenchmarkRWMutexWrite10-8 204.00 185.00 -9.31% BenchmarkRWMutexWrite10-16 261.00 190.00 -27.20% BenchmarkRWMutexWorkWrite100 1040.00 1036.00 -0.38% BenchmarkRWMutexWorkWrite100-2 593.00 580.00 -2.19% BenchmarkRWMutexWorkWrite100-4 470.00 365.00 -22.34% BenchmarkRWMutexWorkWrite100-8 468.00 289.00 -38.25% BenchmarkRWMutexWorkWrite100-16 604.00 374.00 -38.08% BenchmarkRWMutexWorkWrite10 951.00 951.00 +0.00% BenchmarkRWMutexWorkWrite10-2 1001.00 928.00 -7.29% BenchmarkRWMutexWorkWrite10-4 1555.00 1006.00 -35.31% BenchmarkRWMutexWorkWrite10-8 2085.00 1171.00 -43.84% BenchmarkRWMutexWorkWrite10-16 2082.00 1614.00 -22.48% R=rsc, iant, msolo, fw, iant CC=golang-dev https://golang.org/cl/4711045
2011-07-29 10:44:06 -06:00
TEXT runtime·procyield(SB),7,$0
MOVL 8(SP), AX
again:
PAUSE
SUBL $1, AX
JNZ again
RET
TEXT runtime·atomicstorep(SB), 7, $0
MOVQ 8(SP), BX
MOVQ 16(SP), AX
XCHGQ AX, 0(BX)
RET
TEXT runtime·atomicstore(SB), 7, $0
MOVQ 8(SP), BX
MOVL 16(SP), AX
XCHGL AX, 0(BX)
RET
TEXT runtime·atomicstore64(SB), 7, $0
MOVQ 8(SP), BX
MOVQ 16(SP), AX
XCHGQ AX, 0(BX)
RET
// void jmpdefer(fn, sp);
// called from deferreturn.
2009-01-27 13:03:53 -07:00
// 1. pop the caller
// 2. sub 5 bytes from the callers return
// 3. jmp to the argument
TEXT runtime·jmpdefer(SB), 7, $0
MOVQ 8(SP), DX // fn
MOVQ 16(SP), BX // caller sp
LEAQ -8(BX), SP // caller sp after CALL
SUBQ $5, (SP) // return to CALL again
MOVQ 0(DX), BX
JMP BX // but first run the deferred function
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// Dummy function to use in saved gobuf.PC,
// to match SP pointing at a return address.
// The gobuf.PC is unused by the contortions here
// but setting it to return will make the traceback code work.
TEXT return<>(SB),7,$0
RET
// asmcgocall(void(*fn)(void*), void *arg)
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// See cgocall.c for more details.
TEXT runtime·asmcgocall(SB),7,$0
MOVQ fn+0(FP), AX
MOVQ arg+8(FP), BX
MOVQ SP, DX
// Figure out if we need to switch to m->g0 stack.
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// We get called to create new OS threads too, and those
// come in on the m->g0 stack already.
get_tls(CX)
MOVQ m(CX), BP
MOVQ m_g0(BP), SI
MOVQ g(CX), DI
CMPQ SI, DI
JEQ 6(PC)
MOVQ SP, (g_sched+gobuf_sp)(DI)
MOVQ $return<>(SB), (g_sched+gobuf_pc)(DI)
MOVQ DI, (g_sched+gobuf_g)(DI)
MOVQ SI, g(CX)
MOVQ (g_sched+gobuf_sp)(SI), SP
// Now on a scheduling stack (a pthread-created stack).
// Make sure we have enough room for 4 stack-backed fast-call
// registers as per windows amd64 calling convention.
SUBQ $64, SP
ANDQ $~15, SP // alignment for gcc ABI
MOVQ DI, 48(SP) // save g
MOVQ DX, 40(SP) // save SP
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
MOVQ BX, DI // DI = first argument in AMD64 ABI
MOVQ BX, CX // CX = first argument in Win64
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
CALL AX
// Restore registers, g, stack pointer.
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
get_tls(CX)
MOVQ 48(SP), DI
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
MOVQ DI, g(CX)
MOVQ 40(SP), SP
RET
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
TEXT runtime·cgocallback(SB),7,$24
LEAQ fn+0(FP), AX
MOVQ AX, 0(SP)
MOVQ frame+8(FP), AX
MOVQ AX, 8(SP)
MOVQ framesize+16(FP), AX
MOVQ AX, 16(SP)
MOVQ $runtime·cgocallback_gofunc(SB), AX
CALL AX
RET
// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize)
// See cgocall.c for more details.
TEXT runtime·cgocallback_gofunc(SB),7,$24
// If m is nil, Go did not create the current thread.
// Call needm to obtain one for temporary use.
// In this case, we're running on the thread stack, so there's
// lots of space, but the linker doesn't know. Hide the call from
// the linker analysis by using an indirect call through AX.
get_tls(CX)
#ifdef GOOS_windows
CMPQ CX, $0
JNE 3(PC)
PUSHQ $0
JMP needm
#endif
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
MOVQ m(CX), BP
PUSHQ BP
CMPQ BP, $0
JNE havem
needm:
MOVQ $runtime·needm(SB), AX
CALL AX
get_tls(CX)
MOVQ m(CX), BP
havem:
// Now there's a valid m, and we're running on its m->g0.
// Save current m->g0->sched.sp on stack and then set it to SP.
// Save current sp in m->g0->sched.sp in preparation for
// switch back to m->curg stack.
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
MOVQ m_g0(BP), SI
PUSHQ (g_sched+gobuf_sp)(SI)
MOVQ SP, (g_sched+gobuf_sp)(SI)
// Switch to m->curg stack and call runtime.cgocallbackg
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// with the three arguments. Because we are taking over
// the execution of m->curg but *not* resuming what had
// been running, we need to save that information (m->curg->gobuf)
// so that we can restore it when we're done.
// We can restore m->curg->gobuf.sp easily, because calling
// runtime.cgocallbackg leaves SP unchanged upon return.
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// To save m->curg->gobuf.pc, we push it onto the stack.
// This has the added benefit that it looks to the traceback
// routine like cgocallbackg is going to return to that
// PC (because we defined cgocallbackg to have
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// a frame size of 24, the same amount that we use below),
// so that the traceback will seamlessly trace back into
// the earlier calls.
MOVQ fn+0(FP), AX
MOVQ frame+8(FP), BX
MOVQ framesize+16(FP), DX
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
MOVQ m_curg(BP), SI
MOVQ SI, g(CX)
MOVQ (g_sched+gobuf_sp)(SI), DI // prepare stack as DI
// Push gobuf.pc
MOVQ (g_sched+gobuf_pc)(SI), BP
SUBQ $8, DI
MOVQ BP, 0(DI)
// Push arguments to cgocallbackg.
// Frame size here must match the frame size above
// to trick traceback routines into doing the right thing.
SUBQ $24, DI
MOVQ AX, 0(DI)
MOVQ BX, 8(DI)
MOVQ DX, 16(DI)
// Switch stack and make the call.
MOVQ DI, SP
CALL runtime·cgocallbackg(SB)
// Restore g->gobuf (== m->curg->gobuf) from saved values.
get_tls(CX)
MOVQ g(CX), SI
MOVQ 24(SP), BP
MOVQ BP, (g_sched+gobuf_pc)(SI)
LEAQ (24+8)(SP), DI
MOVQ DI, (g_sched+gobuf_sp)(SI)
// Switch back to m->g0's stack and restore m->g0->sched.sp.
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
// so we do not have to restore it.)
MOVQ m(CX), BP
MOVQ m_g0(BP), SI
MOVQ SI, g(CX)
MOVQ (g_sched+gobuf_sp)(SI), SP
POPQ (g_sched+gobuf_sp)(SI)
// If the m on entry was nil, we called needm above to borrow an m
// for the duration of the call. Since the call is over, return it with dropm.
POPQ BP
CMPQ BP, $0
JNE 3(PC)
MOVQ $runtime·dropm(SB), AX
CALL AX
runtime: scheduler, cgo reorganization * Change use of m->g0 stack (aka scheduler stack). * Provide runtime.mcall(f) to invoke f() on m->g0 stack. * Replace scheduler loop entry with runtime.mcall(schedule). Runtime.mcall eliminates the need for fake scheduler states that exist just to run a bit of code on the m->g0 stack (Grecovery, Gstackalloc). The elimination of the scheduler as a loop that stops and starts using gosave and gogo fixes a bad interaction with the way cgo uses the m->g0 stack. Cgo runs external (gcc-compiled) C functions on that stack, and then when calling back into Go, it sets m->g0->sched.sp below the added call frames, so that other uses of m->g0's stack will not interfere with those frames. Unfortunately, gogo (longjmp) back to the scheduler loop at this point would end up running scheduler with the lower sp, which no longer points at a valid stack frame for a call to scheduler. If scheduler then wrote any function call arguments or local variables to where it expected the stack frame to be, it would overwrite other data on the stack. I realized this possibility while debugging a problem with calling complex Go code in a Go -> C -> Go cgo callback. This wasn't the bug I was looking for, it turns out, but I believe it is a real bug nonetheless. Switching to runtime.mcall, which only adds new frames to the stack and never jumps into functions running in existing ones, fixes this bug. * Move cgo-related code out of proc.c into cgocall.c. * Add very large comment describing cgo call sequences. * Simpilify, regularize cgo function implementations and names. * Add test suite as misc/cgo/test. Now the Go -> C path calls cgocall, which calls asmcgocall, and the C -> Go path calls cgocallback, which calls cgocallbackg. The shuffling, which affects mainly the callback case, moves most of the callback implementation to cgocallback running on the m->curg stack (not the m->g0 scheduler stack) and only while accounted for with $GOMAXPROCS (between calls to exitsyscall and entersyscall). The previous callback code did not block in startcgocallback's approximation to exitsyscall, so if, say, the garbage collector were running, it would still barge in and start doing things like call malloc. Similarly endcgocallback's approximation of entersyscall did not call matchmg to kick off new OS threads when necessary, which caused the bug in issue 1560. Fixes #1560. R=iant CC=golang-dev https://golang.org/cl/4253054
2011-03-07 08:37:42 -07:00
// Done!
RET
// void setmg(M*, G*); set m and g. for use by needm.
TEXT runtime·setmg(SB), 7, $0
MOVQ mm+0(FP), AX
#ifdef GOOS_windows
CMPQ AX, $0
JNE settls
MOVQ $0, 0x28(GS)
RET
settls:
LEAQ m_tls(AX), AX
MOVQ AX, 0x28(GS)
#endif
get_tls(CX)
MOVQ mm+0(FP), AX
MOVQ AX, m(CX)
MOVQ gg+8(FP), BX
MOVQ BX, g(CX)
RET
// void setmg_gcc(M*, G*); set m and g called from gcc.
TEXT setmg_gcc<>(SB),7,$0
get_tls(AX)
MOVQ DI, m(AX)
MOVQ SI, g(AX)
RET
// check that SP is in range [g->stackbase, g->stackguard)
TEXT runtime·stackcheck(SB), 7, $0
get_tls(CX)
MOVQ g(CX), AX
CMPQ g_stackbase(AX), SP
JHI 2(PC)
INT $3
CMPQ SP, g_stackguard(AX)
JHI 2(PC)
INT $3
RET
TEXT runtime·memclr(SB),7,$0
MOVQ 8(SP), DI // arg 1 addr
MOVQ 16(SP), CX // arg 2 count
MOVQ CX, BX
ANDQ $7, BX
SHRQ $3, CX
MOVQ $0, AX
CLD
REP
STOSQ
MOVQ BX, CX
REP
STOSB
RET
TEXT runtime·getcallerpc(SB),7,$0
MOVQ x+0(FP),AX // addr of first arg
MOVQ -8(AX),AX // get calling pc
RET
TEXT runtime·setcallerpc(SB),7,$0
MOVQ x+0(FP),AX // addr of first arg
MOVQ x+8(FP), BX
MOVQ BX, -8(AX) // set calling pc
RET
TEXT runtime·getcallersp(SB),7,$0
MOVQ sp+0(FP), AX
RET
// int64 runtime·cputicks(void)
TEXT runtime·cputicks(SB),7,$0
RDTSC
SHLQ $32, DX
ADDQ DX, AX
RET
TEXT runtime·stackguard(SB),7,$0
MOVQ SP, DX
MOVQ DX, sp+0(FP)
get_tls(CX)
MOVQ g(CX), BX
MOVQ g_stackguard(BX), DX
MOVQ DX, limit+8(FP)
RET
GLOBL runtime·tls0(SB), $64
// hash function using AES hardware instructions
TEXT runtime·aeshash(SB),7,$0
MOVQ 8(SP), DX // ptr to hash value
MOVQ 16(SP), CX // size
MOVQ 24(SP), AX // ptr to data
JMP runtime·aeshashbody(SB)
TEXT runtime·aeshashstr(SB),7,$0
MOVQ 8(SP), DX // ptr to hash value
MOVQ 24(SP), AX // ptr to string struct
MOVQ 8(AX), CX // length of string
MOVQ (AX), AX // string data
JMP runtime·aeshashbody(SB)
// AX: data
// CX: length
// DX: ptr to seed input / hash output
TEXT runtime·aeshashbody(SB),7,$0
MOVQ (DX), X0 // seed to low 64 bits of xmm0
PINSRQ $1, CX, X0 // size to high 64 bits of xmm0
MOVO runtime·aeskeysched+0(SB), X2
MOVO runtime·aeskeysched+16(SB), X3
aesloop:
CMPQ CX, $16
JB aesloopend
MOVOU (AX), X1
AESENC X2, X0
AESENC X1, X0
SUBQ $16, CX
ADDQ $16, AX
JMP aesloop
aesloopend:
TESTQ CX, CX
JE finalize // no partial block
TESTQ $16, AX
JNE highpartial
// address ends in 0xxxx. 16 bytes loaded
// at this address won't cross a page boundary, so
// we can load it directly.
MOVOU (AX), X1
ADDQ CX, CX
PAND masks(SB)(CX*8), X1
JMP partial
highpartial:
// address ends in 1xxxx. Might be up against
// a page boundary, so load ending at last byte.
// Then shift bytes down using pshufb.
MOVOU -16(AX)(CX*1), X1
ADDQ CX, CX
PSHUFB shifts(SB)(CX*8), X1
partial:
// incorporate partial block into hash
AESENC X3, X0
AESENC X1, X0
finalize:
// finalize hash
AESENC X2, X0
AESENC X3, X0
AESENC X2, X0
MOVQ X0, (DX)
RET
TEXT runtime·aeshash32(SB),7,$0
MOVQ 8(SP), DX // ptr to hash value
MOVQ 24(SP), AX // ptr to data
MOVQ (DX), X0 // seed
PINSRD $2, (AX), X0 // data
AESENC runtime·aeskeysched+0(SB), X0
AESENC runtime·aeskeysched+16(SB), X0
AESENC runtime·aeskeysched+0(SB), X0
MOVQ X0, (DX)
RET
TEXT runtime·aeshash64(SB),7,$0
MOVQ 8(SP), DX // ptr to hash value
MOVQ 24(SP), AX // ptr to data
MOVQ (DX), X0 // seed
PINSRQ $1, (AX), X0 // data
AESENC runtime·aeskeysched+0(SB), X0
AESENC runtime·aeskeysched+16(SB), X0
AESENC runtime·aeskeysched+0(SB), X0
MOVQ X0, (DX)
RET
// simple mask to get rid of data in the high part of the register.
TEXT masks(SB),7,$0
QUAD $0x0000000000000000
QUAD $0x0000000000000000
QUAD $0x00000000000000ff
QUAD $0x0000000000000000
QUAD $0x000000000000ffff
QUAD $0x0000000000000000
QUAD $0x0000000000ffffff
QUAD $0x0000000000000000
QUAD $0x00000000ffffffff
QUAD $0x0000000000000000
QUAD $0x000000ffffffffff
QUAD $0x0000000000000000
QUAD $0x0000ffffffffffff
QUAD $0x0000000000000000
QUAD $0x00ffffffffffffff
QUAD $0x0000000000000000
QUAD $0xffffffffffffffff
QUAD $0x0000000000000000
QUAD $0xffffffffffffffff
QUAD $0x00000000000000ff
QUAD $0xffffffffffffffff
QUAD $0x000000000000ffff
QUAD $0xffffffffffffffff
QUAD $0x0000000000ffffff
QUAD $0xffffffffffffffff
QUAD $0x00000000ffffffff
QUAD $0xffffffffffffffff
QUAD $0x000000ffffffffff
QUAD $0xffffffffffffffff
QUAD $0x0000ffffffffffff
QUAD $0xffffffffffffffff
QUAD $0x00ffffffffffffff
// these are arguments to pshufb. They move data down from
// the high bytes of the register to the low bytes of the register.
// index is how many bytes to move.
TEXT shifts(SB),7,$0
QUAD $0x0000000000000000
QUAD $0x0000000000000000
QUAD $0xffffffffffffff0f
QUAD $0xffffffffffffffff
QUAD $0xffffffffffff0f0e
QUAD $0xffffffffffffffff
QUAD $0xffffffffff0f0e0d
QUAD $0xffffffffffffffff
QUAD $0xffffffff0f0e0d0c
QUAD $0xffffffffffffffff
QUAD $0xffffff0f0e0d0c0b
QUAD $0xffffffffffffffff
QUAD $0xffff0f0e0d0c0b0a
QUAD $0xffffffffffffffff
QUAD $0xff0f0e0d0c0b0a09
QUAD $0xffffffffffffffff
QUAD $0x0f0e0d0c0b0a0908
QUAD $0xffffffffffffffff
QUAD $0x0e0d0c0b0a090807
QUAD $0xffffffffffffff0f
QUAD $0x0d0c0b0a09080706
QUAD $0xffffffffffff0f0e
QUAD $0x0c0b0a0908070605
QUAD $0xffffffffff0f0e0d
QUAD $0x0b0a090807060504
QUAD $0xffffffff0f0e0d0c
QUAD $0x0a09080706050403
QUAD $0xffffff0f0e0d0c0b
QUAD $0x0908070605040302
QUAD $0xffff0f0e0d0c0b0a
QUAD $0x0807060504030201
QUAD $0xff0f0e0d0c0b0a09
TEXT runtime·memeq(SB),7,$0
MOVQ a+0(FP), SI
MOVQ b+8(FP), DI
MOVQ count+16(FP), BX
JMP runtime·memeqbody(SB)
TEXT bytes·Equal(SB),7,$0
MOVQ a_len+8(FP), BX
MOVQ b_len+32(FP), CX
XORQ AX, AX
CMPQ BX, CX
JNE eqret
MOVQ a+0(FP), SI
MOVQ b+24(FP), DI
CALL runtime·memeqbody(SB)
eqret:
MOVB AX, ret+48(FP)
RET
// a in SI
// b in DI
// count in BX
TEXT runtime·memeqbody(SB),7,$0
XORQ AX, AX
CMPQ BX, $8
JB small
// 64 bytes at a time using xmm registers
hugeloop:
CMPQ BX, $64
JB bigloop
MOVOU (SI), X0
MOVOU (DI), X1
MOVOU 16(SI), X2
MOVOU 16(DI), X3
MOVOU 32(SI), X4
MOVOU 32(DI), X5
MOVOU 48(SI), X6
MOVOU 48(DI), X7
PCMPEQB X1, X0
PCMPEQB X3, X2
PCMPEQB X5, X4
PCMPEQB X7, X6
PAND X2, X0
PAND X6, X4
PAND X4, X0
PMOVMSKB X0, DX
ADDQ $64, SI
ADDQ $64, DI
SUBQ $64, BX
CMPL DX, $0xffff
JEQ hugeloop
RET
// 8 bytes at a time using 64-bit register
bigloop:
CMPQ BX, $8
JBE leftover
MOVQ (SI), CX
MOVQ (DI), DX
ADDQ $8, SI
ADDQ $8, DI
SUBQ $8, BX
CMPQ CX, DX
JEQ bigloop
RET
// remaining 0-8 bytes
leftover:
MOVQ -8(SI)(BX*1), CX
MOVQ -8(DI)(BX*1), DX
CMPQ CX, DX
SETEQ AX
RET
small:
CMPQ BX, $0
JEQ equal
LEAQ 0(BX*8), CX
NEGQ CX
CMPB SI, $0xf8
JA si_high
// load at SI won't cross a page boundary.
MOVQ (SI), SI
JMP si_finish
si_high:
// address ends in 11111xxx. Load up to bytes we want, move to correct position.
MOVQ -8(SI)(BX*1), SI
SHRQ CX, SI
si_finish:
// same for DI.
CMPB DI, $0xf8
JA di_high
MOVQ (DI), DI
JMP di_finish
di_high:
MOVQ -8(DI)(BX*1), DI
SHRQ CX, DI
di_finish:
SUBQ SI, DI
SHLQ CX, DI
equal:
SETEQ AX
RET
TEXT runtime·cmpstring(SB),7,$0
MOVQ s1+0(FP), SI
MOVQ s1+8(FP), BX
MOVQ s2+16(FP), DI
MOVQ s2+24(FP), DX
CALL runtime·cmpbody(SB)
MOVQ AX, res+32(FP)
RET
TEXT bytes·Compare(SB),7,$0
MOVQ s1+0(FP), SI
MOVQ s1+8(FP), BX
MOVQ s2+24(FP), DI
MOVQ s2+32(FP), DX
CALL runtime·cmpbody(SB)
MOVQ AX, res+48(FP)
RET
// input:
// SI = a
// DI = b
// BX = alen
// DX = blen
// output:
// AX = 1/0/-1
TEXT runtime·cmpbody(SB),7,$0
CMPQ SI, DI
JEQ cmp_allsame
CMPQ BX, DX
MOVQ DX, BP
CMOVQLT BX, BP // BP = min(alen, blen) = # of bytes to compare
CMPQ BP, $8
JB cmp_small
cmp_loop:
CMPQ BP, $16
JBE cmp_0through16
MOVOU (SI), X0
MOVOU (DI), X1
PCMPEQB X0, X1
PMOVMSKB X1, AX
XORQ $0xffff, AX // convert EQ to NE
JNE cmp_diff16 // branch if at least one byte is not equal
ADDQ $16, SI
ADDQ $16, DI
SUBQ $16, BP
JMP cmp_loop
// AX = bit mask of differences
cmp_diff16:
BSFQ AX, BX // index of first byte that differs
XORQ AX, AX
MOVB (SI)(BX*1), CX
CMPB CX, (DI)(BX*1)
SETHI AX
LEAQ -1(AX*2), AX // convert 1/0 to +1/-1
RET
// 0 through 16 bytes left, alen>=8, blen>=8
cmp_0through16:
CMPQ BP, $8
JBE cmp_0through8
MOVQ (SI), AX
MOVQ (DI), CX
CMPQ AX, CX
JNE cmp_diff8
cmp_0through8:
MOVQ -8(SI)(BP*1), AX
MOVQ -8(DI)(BP*1), CX
CMPQ AX, CX
JEQ cmp_allsame
// AX and CX contain parts of a and b that differ.
cmp_diff8:
BSWAPQ AX // reverse order of bytes
BSWAPQ CX
XORQ AX, CX
BSRQ CX, CX // index of highest bit difference
SHRQ CX, AX // move a's bit to bottom
ANDQ $1, AX // mask bit
LEAQ -1(AX*2), AX // 1/0 => +1/-1
RET
// 0-7 bytes in common
cmp_small:
LEAQ (BP*8), CX // bytes left -> bits left
NEGQ CX // - bits lift (== 64 - bits left mod 64)
JEQ cmp_allsame
// load bytes of a into high bytes of AX
CMPB SI, $0xf8
JA cmp_si_high
MOVQ (SI), SI
JMP cmp_si_finish
cmp_si_high:
MOVQ -8(SI)(BP*1), SI
SHRQ CX, SI
cmp_si_finish:
SHLQ CX, SI
// load bytes of b in to high bytes of BX
CMPB DI, $0xf8
JA cmp_di_high
MOVQ (DI), DI
JMP cmp_di_finish
cmp_di_high:
MOVQ -8(DI)(BP*1), DI
SHRQ CX, DI
cmp_di_finish:
SHLQ CX, DI
BSWAPQ SI // reverse order of bytes
BSWAPQ DI
XORQ SI, DI // find bit differences
JEQ cmp_allsame
BSRQ DI, CX // index of highest bit difference
SHRQ CX, SI // move a's bit to bottom
ANDQ $1, SI // mask bit
LEAQ -1(SI*2), AX // 1/0 => +1/-1
RET
cmp_allsame:
XORQ AX, AX
XORQ CX, CX
CMPQ BX, DX
SETGT AX // 1 if alen > blen
SETEQ CX // 1 if alen == blen
LEAQ -1(CX)(AX*2), AX // 1,0,-1 result
RET