2014-11-11 15:05:19 -07:00
|
|
|
// Copyright 2009 The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
package runtime
|
|
|
|
|
2015-11-02 12:09:24 -07:00
|
|
|
import (
|
|
|
|
"runtime/internal/atomic"
|
2015-11-11 10:39:30 -07:00
|
|
|
"runtime/internal/sys"
|
2015-11-02 12:09:24 -07:00
|
|
|
"unsafe"
|
|
|
|
)
|
2014-11-11 15:05:19 -07:00
|
|
|
|
2016-04-13 03:16:21 -06:00
|
|
|
// defined constants
|
2014-11-11 15:05:19 -07:00
|
|
|
const (
|
|
|
|
// G status
|
|
|
|
//
|
2016-02-27 16:44:25 -07:00
|
|
|
// Beyond indicating the general state of a G, the G status
|
|
|
|
// acts like a lock on the goroutine's stack (and hence its
|
|
|
|
// ability to execute user code).
|
|
|
|
//
|
2014-11-11 15:05:19 -07:00
|
|
|
// If you add to this list, add to the list
|
|
|
|
// of "okay during garbage collection" status
|
2015-03-11 13:58:47 -06:00
|
|
|
// in mgcmark.go too.
|
2016-02-27 16:44:25 -07:00
|
|
|
|
|
|
|
// _Gidle means this goroutine was just allocated and has not
|
|
|
|
// yet been initialized.
|
|
|
|
_Gidle = iota // 0
|
|
|
|
|
|
|
|
// _Grunnable means this goroutine is on a run queue. It is
|
|
|
|
// not currently executing user code. The stack is not owned.
|
|
|
|
_Grunnable // 1
|
|
|
|
|
|
|
|
// _Grunning means this goroutine may execute user code. The
|
|
|
|
// stack is owned by this goroutine. It is not on a run queue.
|
|
|
|
// It is assigned an M and a P.
|
|
|
|
_Grunning // 2
|
|
|
|
|
|
|
|
// _Gsyscall means this goroutine is executing a system call.
|
|
|
|
// It is not executing user code. The stack is owned by this
|
|
|
|
// goroutine. It is not on a run queue. It is assigned an M.
|
|
|
|
_Gsyscall // 3
|
|
|
|
|
|
|
|
// _Gwaiting means this goroutine is blocked in the runtime.
|
|
|
|
// It is not executing user code. It is not on a run queue,
|
|
|
|
// but should be recorded somewhere (e.g., a channel wait
|
|
|
|
// queue) so it can be ready()d when necessary. The stack is
|
|
|
|
// not owned *except* that a channel operation may read or
|
|
|
|
// write parts of the stack under the appropriate channel
|
|
|
|
// lock. Otherwise, it is not safe to access the stack after a
|
|
|
|
// goroutine enters _Gwaiting (e.g., it may get moved).
|
|
|
|
_Gwaiting // 4
|
|
|
|
|
|
|
|
// _Gmoribund_unused is currently unused, but hardcoded in gdb
|
|
|
|
// scripts.
|
|
|
|
_Gmoribund_unused // 5
|
|
|
|
|
|
|
|
// _Gdead means this goroutine is currently unused. It may be
|
|
|
|
// just exited, on a free list, or just being initialized. It
|
|
|
|
// is not executing user code. It may or may not have a stack
|
|
|
|
// allocated. The G and its stack (if any) are owned by the M
|
|
|
|
// that is exiting the G or that obtained the G from the free
|
|
|
|
// list.
|
|
|
|
_Gdead // 6
|
|
|
|
|
|
|
|
// _Genqueue_unused is currently unused.
|
|
|
|
_Genqueue_unused // 7
|
|
|
|
|
|
|
|
// _Gcopystack means this goroutine's stack is being moved. It
|
|
|
|
// is not executing user code and is not on a run queue. The
|
|
|
|
// stack is owned by the goroutine that put it in _Gcopystack.
|
|
|
|
_Gcopystack // 8
|
|
|
|
|
|
|
|
// _Gscan combined with one of the above states other than
|
|
|
|
// _Grunning indicates that GC is scanning the stack. The
|
|
|
|
// goroutine is not executing user code and the stack is owned
|
|
|
|
// by the goroutine that set the _Gscan bit.
|
|
|
|
//
|
|
|
|
// _Gscanrunning is different: it is used to briefly block
|
|
|
|
// state transitions while GC signals the G to scan its own
|
|
|
|
// stack. This is otherwise like _Grunning.
|
|
|
|
//
|
|
|
|
// atomicstatus&~Gscan gives the state the goroutine will
|
|
|
|
// return to when the scan completes.
|
|
|
|
_Gscan = 0x1000
|
|
|
|
_Gscanrunnable = _Gscan + _Grunnable // 0x1001
|
|
|
|
_Gscanrunning = _Gscan + _Grunning // 0x1002
|
|
|
|
_Gscansyscall = _Gscan + _Gsyscall // 0x1003
|
|
|
|
_Gscanwaiting = _Gscan + _Gwaiting // 0x1004
|
2014-11-11 15:05:19 -07:00
|
|
|
)
|
|
|
|
|
|
|
|
const (
|
|
|
|
// P status
|
2015-03-27 14:49:12 -06:00
|
|
|
_Pidle = iota
|
|
|
|
_Prunning // Only this P is allowed to change from _Prunning.
|
2014-11-11 15:05:19 -07:00
|
|
|
_Psyscall
|
|
|
|
_Pgcstop
|
|
|
|
_Pdead
|
|
|
|
)
|
|
|
|
|
2016-04-13 03:16:21 -06:00
|
|
|
// Mutual exclusion locks. In the uncontended case,
|
|
|
|
// as fast as spin locks (just a few user-level instructions),
|
|
|
|
// but on the contention path they sleep in the kernel.
|
|
|
|
// A zeroed Mutex is unlocked (no need to initialize each lock).
|
2014-11-11 15:05:19 -07:00
|
|
|
type mutex struct {
|
|
|
|
// Futex-based impl treats it as uint32 key,
|
|
|
|
// while sema-based impl as M* waitm.
|
|
|
|
// Used to be a union, but unions break precise GC.
|
|
|
|
key uintptr
|
|
|
|
}
|
|
|
|
|
2016-04-13 03:16:21 -06:00
|
|
|
// sleep and wakeup on one-time events.
|
|
|
|
// before any calls to notesleep or notewakeup,
|
|
|
|
// must call noteclear to initialize the Note.
|
|
|
|
// then, exactly one thread can call notesleep
|
|
|
|
// and exactly one thread can call notewakeup (once).
|
|
|
|
// once notewakeup has been called, the notesleep
|
|
|
|
// will return. future notesleep will return immediately.
|
|
|
|
// subsequent noteclear must be called only after
|
|
|
|
// previous notesleep has returned, e.g. it's disallowed
|
|
|
|
// to call noteclear straight after notewakeup.
|
|
|
|
//
|
|
|
|
// notetsleep is like notesleep but wakes up after
|
|
|
|
// a given number of nanoseconds even if the event
|
|
|
|
// has not yet happened. if a goroutine uses notetsleep to
|
|
|
|
// wake up early, it must wait to call noteclear until it
|
|
|
|
// can be sure that no other goroutine is calling
|
|
|
|
// notewakeup.
|
|
|
|
//
|
|
|
|
// notesleep/notetsleep are generally called on g0,
|
|
|
|
// notetsleepg is similar to notetsleep but is called on user g.
|
2014-11-11 15:05:19 -07:00
|
|
|
type note struct {
|
|
|
|
// Futex-based impl treats it as uint32 key,
|
|
|
|
// while sema-based impl as M* waitm.
|
|
|
|
// Used to be a union, but unions break precise GC.
|
|
|
|
key uintptr
|
|
|
|
}
|
|
|
|
|
|
|
|
type funcval struct {
|
|
|
|
fn uintptr
|
|
|
|
// variable-size, fn-specific data here
|
|
|
|
}
|
|
|
|
|
|
|
|
type iface struct {
|
|
|
|
tab *itab
|
|
|
|
data unsafe.Pointer
|
|
|
|
}
|
|
|
|
|
|
|
|
type eface struct {
|
|
|
|
_type *_type
|
|
|
|
data unsafe.Pointer
|
|
|
|
}
|
|
|
|
|
2015-10-21 13:12:25 -06:00
|
|
|
func efaceOf(ep *interface{}) *eface {
|
|
|
|
return (*eface)(unsafe.Pointer(ep))
|
|
|
|
}
|
|
|
|
|
2015-04-16 22:21:30 -06:00
|
|
|
// The guintptr, muintptr, and puintptr are all used to bypass write barriers.
|
|
|
|
// It is particularly important to avoid write barriers when the current P has
|
|
|
|
// been released, because the GC thinks the world is stopped, and an
|
|
|
|
// unexpected write barrier would not be synchronized with the GC,
|
|
|
|
// which can lead to a half-executed write barrier that has marked the object
|
|
|
|
// but not queued it. If the GC skips the object and completes before the
|
|
|
|
// queuing can occur, it will incorrectly free the object.
|
|
|
|
//
|
|
|
|
// We tried using special assignment functions invoked only when not
|
|
|
|
// holding a running P, but then some updates to a particular memory
|
|
|
|
// word went through write barriers and some did not. This breaks the
|
|
|
|
// write barrier shadow checking mode, and it is also scary: better to have
|
|
|
|
// a word that is completely ignored by the GC than to have one for which
|
|
|
|
// only a few updates are ignored.
|
|
|
|
//
|
runtime: make it possible to exit Go-created threads
Currently, threads created by the runtime exist until the whole
program exits. For #14592 and #20395, we want to be able to exit and
clean up threads created by the runtime. This commit implements that
mechanism.
The main difficulty is how to clean up the g0 stack. In cgo mode and
on Solaris and Windows where the OS manages thread stacks, we simply
arrange to return from mstart and let the system clean up the thread.
If the runtime allocated the g0 stack, then we use a new exitThread
syscall wrapper that arranges to clear a flag in the M once the stack
can safely be reaped and call the thread termination syscall.
exitThread is based on the existing exit1 wrapper, which was always
meant to terminate the calling thread. However, exit1 has never been
used since it was introduced 9 years ago, so it was broken on several
platforms. exitThread also has the additional complication of having
to flag that the stack is unused, which requires some tricks on
platforms that use the stack for syscalls.
This still leaves the problem of how to reap the unused g0 stacks. For
this, we move the M from allm to a new freem list as part of the M
exiting. Later, allocm scans the freem list, finds Ms that are marked
as done with their stack, removes these from the list and frees their
g0 stacks. This also allows these Ms to be garbage collected.
This CL does not yet use any of this functionality. Follow-up CLs
will. Likewise, there are no new tests in this CL because we'll need
follow-up functionality to test it.
Change-Id: Ic851ee74227b6d39c6fc1219fc71b45d3004bc63
Reviewed-on: https://go-review.googlesource.com/46037
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-06-16 13:54:21 -06:00
|
|
|
// Gs and Ps are always reachable via true pointers in the
|
|
|
|
// allgs and allp lists or (during allocation before they reach those lists)
|
2015-04-16 22:21:30 -06:00
|
|
|
// from stack variables.
|
runtime: make it possible to exit Go-created threads
Currently, threads created by the runtime exist until the whole
program exits. For #14592 and #20395, we want to be able to exit and
clean up threads created by the runtime. This commit implements that
mechanism.
The main difficulty is how to clean up the g0 stack. In cgo mode and
on Solaris and Windows where the OS manages thread stacks, we simply
arrange to return from mstart and let the system clean up the thread.
If the runtime allocated the g0 stack, then we use a new exitThread
syscall wrapper that arranges to clear a flag in the M once the stack
can safely be reaped and call the thread termination syscall.
exitThread is based on the existing exit1 wrapper, which was always
meant to terminate the calling thread. However, exit1 has never been
used since it was introduced 9 years ago, so it was broken on several
platforms. exitThread also has the additional complication of having
to flag that the stack is unused, which requires some tricks on
platforms that use the stack for syscalls.
This still leaves the problem of how to reap the unused g0 stacks. For
this, we move the M from allm to a new freem list as part of the M
exiting. Later, allocm scans the freem list, finds Ms that are marked
as done with their stack, removes these from the list and frees their
g0 stacks. This also allows these Ms to be garbage collected.
This CL does not yet use any of this functionality. Follow-up CLs
will. Likewise, there are no new tests in this CL because we'll need
follow-up functionality to test it.
Change-Id: Ic851ee74227b6d39c6fc1219fc71b45d3004bc63
Reviewed-on: https://go-review.googlesource.com/46037
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-06-16 13:54:21 -06:00
|
|
|
//
|
|
|
|
// Ms are always reachable via true pointers either from allm or
|
|
|
|
// freem. Unlike Gs and Ps we do free Ms, so it's important that
|
|
|
|
// nothing ever hold an muintptr across a safe point.
|
2015-04-16 22:21:30 -06:00
|
|
|
|
2014-12-22 20:43:49 -07:00
|
|
|
// A guintptr holds a goroutine pointer, but typed as a uintptr
|
2015-04-16 22:21:30 -06:00
|
|
|
// to bypass write barriers. It is used in the Gobuf goroutine state
|
|
|
|
// and in scheduling lists that are manipulated without a P.
|
2014-12-22 20:43:49 -07:00
|
|
|
//
|
|
|
|
// The Gobuf.g goroutine pointer is almost always updated by assembly code.
|
|
|
|
// In one of the few places it is updated by Go code - func save - it must be
|
|
|
|
// treated as a uintptr to avoid a write barrier being emitted at a bad time.
|
|
|
|
// Instead of figuring out how to emit the write barriers missing in the
|
|
|
|
// assembly manipulation, we change the type of the field to uintptr,
|
|
|
|
// so that it does not require write barriers at all.
|
|
|
|
//
|
|
|
|
// Goroutine structs are published in the allg list and never freed.
|
|
|
|
// That will keep the goroutine structs from being collected.
|
|
|
|
// There is never a time that Gobuf.g's contain the only references
|
|
|
|
// to a goroutine: the publishing of the goroutine in allg comes first.
|
|
|
|
// Goroutine pointers are also kept in non-GC-visible places like TLS,
|
|
|
|
// so I can't see them ever moving. If we did want to start moving data
|
|
|
|
// in the GC, we'd need to allocate the goroutine structs from an
|
|
|
|
// alternate arena. Using guintptr doesn't make that problem any worse.
|
|
|
|
type guintptr uintptr
|
|
|
|
|
2015-11-23 13:15:36 -07:00
|
|
|
//go:nosplit
|
|
|
|
func (gp guintptr) ptr() *g { return (*g)(unsafe.Pointer(gp)) }
|
|
|
|
|
|
|
|
//go:nosplit
|
2015-04-16 22:21:30 -06:00
|
|
|
func (gp *guintptr) set(g *g) { *gp = guintptr(unsafe.Pointer(g)) }
|
2015-11-23 13:15:36 -07:00
|
|
|
|
|
|
|
//go:nosplit
|
runtime: yield time slice to most recently readied G
Currently, when the runtime ready()s a G, it adds it to the end of the
current P's run queue and continues running. If there are many other
things in the run queue, this can result in a significant delay before
the ready()d G actually runs and can hurt fairness when other Gs in
the run queue are CPU hogs. For example, if there are three Gs sharing
a P, one of which is a CPU hog that never voluntarily gives up the P
and the other two of which are doing small amounts of work and
communicating back and forth on an unbuffered channel, the two
communicating Gs will get very little CPU time.
Change this so that when G1 ready()s G2 and then blocks, the scheduler
immediately hands off the remainder of G1's time slice to G2. In the
above example, the two communicating Gs will now act as a unit and
together get half of the CPU time, while the CPU hog gets the other
half of the CPU time.
This fixes the problem demonstrated by the ping-pong benchmark added
in the previous commit:
benchmark old ns/op new ns/op delta
BenchmarkPingPongHog 684287 825 -99.88%
On the x/benchmarks suite, this change improves the performance of
garbage by ~6% (for GOMAXPROCS=1 and 4), and json by 28% and 36% for
GOMAXPROCS=1 and 4. It has negligible effect on heap size.
This has no effect on the go1 benchmark suite since those benchmarks
are mostly single-threaded.
Change-Id: I858a08eaa78f702ea98a5fac99d28a4ac91d339f
Reviewed-on: https://go-review.googlesource.com/9289
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
2015-04-22 12:42:26 -06:00
|
|
|
func (gp *guintptr) cas(old, new guintptr) bool {
|
2015-11-02 12:09:24 -07:00
|
|
|
return atomic.Casuintptr((*uintptr)(unsafe.Pointer(gp)), uintptr(old), uintptr(new))
|
runtime: yield time slice to most recently readied G
Currently, when the runtime ready()s a G, it adds it to the end of the
current P's run queue and continues running. If there are many other
things in the run queue, this can result in a significant delay before
the ready()d G actually runs and can hurt fairness when other Gs in
the run queue are CPU hogs. For example, if there are three Gs sharing
a P, one of which is a CPU hog that never voluntarily gives up the P
and the other two of which are doing small amounts of work and
communicating back and forth on an unbuffered channel, the two
communicating Gs will get very little CPU time.
Change this so that when G1 ready()s G2 and then blocks, the scheduler
immediately hands off the remainder of G1's time slice to G2. In the
above example, the two communicating Gs will now act as a unit and
together get half of the CPU time, while the CPU hog gets the other
half of the CPU time.
This fixes the problem demonstrated by the ping-pong benchmark added
in the previous commit:
benchmark old ns/op new ns/op delta
BenchmarkPingPongHog 684287 825 -99.88%
On the x/benchmarks suite, this change improves the performance of
garbage by ~6% (for GOMAXPROCS=1 and 4), and json by 28% and 36% for
GOMAXPROCS=1 and 4. It has negligible effect on heap size.
This has no effect on the go1 benchmark suite since those benchmarks
are mostly single-threaded.
Change-Id: I858a08eaa78f702ea98a5fac99d28a4ac91d339f
Reviewed-on: https://go-review.googlesource.com/9289
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
2015-04-22 12:42:26 -06:00
|
|
|
}
|
2014-12-22 20:43:49 -07:00
|
|
|
|
2016-10-19 14:00:07 -06:00
|
|
|
// setGNoWB performs *gp = new without a write barrier.
|
|
|
|
// For times when it's impractical to use a guintptr.
|
|
|
|
//go:nosplit
|
|
|
|
//go:nowritebarrier
|
|
|
|
func setGNoWB(gp **g, new *g) {
|
|
|
|
(*guintptr)(unsafe.Pointer(gp)).set(new)
|
|
|
|
}
|
|
|
|
|
2015-04-16 22:21:30 -06:00
|
|
|
type puintptr uintptr
|
runtime: Remove write barriers during STW.
The GC assumes that there will be no asynchronous write barriers when
the world is stopped. This keeps the synchronization between write
barriers and the GC simple. However, currently, there are a few places
in runtime code where this assumption does not hold.
The GC stops the world by collecting all Ps, which stops all user Go
code, but small parts of the runtime can run without a P. For example,
the code that releases a P must still deschedule its G onto a runnable
queue before stopping. Similarly, when a G returns from a long-running
syscall, it must run code to reacquire a P.
Currently, this code can contain write barriers. This can lead to the
GC collecting reachable objects if something like the following
sequence of events happens:
1. GC stops the world by collecting all Ps.
2. G #1 returns from a syscall (for example), tries to install a
pointer to object X, and calls greyobject on X.
3. greyobject on G #1 marks X, but does not yet add it to a write
buffer. At this point, X is effectively black, not grey, even though
it may point to white objects.
4. GC reaches X through some other path and calls greyobject on X, but
greyobject does nothing because X is already marked.
5. GC completes.
6. greyobject on G #1 adds X to a work buffer, but it's too late.
7. Objects that were reachable only through X are incorrectly collected.
To fix this, we check the invariant that no asynchronous write
barriers happen when the world is stopped by checking that write
barriers always have a P, and modify all currently known sources of
these writes to disable the write barrier. In all modified cases this
is safe because the object in question will always be reachable via
some other path.
Some of the trace code was turned off, in particular the
code that traces returning from a syscall. The GC assumes
that as far as the heap is concerned the thread is stopped
when it is in a syscall. Upon returning the trace code
must not do any heap writes for the same reasons discussed
above.
Fixes #10098
Fixes #9953
Fixes #9951
Fixes #9884
May relate to #9610 #9771
Change-Id: Ic2e70b7caffa053e56156838eb8d89503e3c0c8a
Reviewed-on: https://go-review.googlesource.com/7504
Reviewed-by: Austin Clements <austin@google.com>
2015-03-12 12:19:21 -06:00
|
|
|
|
2015-11-23 13:15:36 -07:00
|
|
|
//go:nosplit
|
|
|
|
func (pp puintptr) ptr() *p { return (*p)(unsafe.Pointer(pp)) }
|
|
|
|
|
|
|
|
//go:nosplit
|
2015-04-16 22:21:30 -06:00
|
|
|
func (pp *puintptr) set(p *p) { *pp = puintptr(unsafe.Pointer(p)) }
|
runtime: Remove write barriers during STW.
The GC assumes that there will be no asynchronous write barriers when
the world is stopped. This keeps the synchronization between write
barriers and the GC simple. However, currently, there are a few places
in runtime code where this assumption does not hold.
The GC stops the world by collecting all Ps, which stops all user Go
code, but small parts of the runtime can run without a P. For example,
the code that releases a P must still deschedule its G onto a runnable
queue before stopping. Similarly, when a G returns from a long-running
syscall, it must run code to reacquire a P.
Currently, this code can contain write barriers. This can lead to the
GC collecting reachable objects if something like the following
sequence of events happens:
1. GC stops the world by collecting all Ps.
2. G #1 returns from a syscall (for example), tries to install a
pointer to object X, and calls greyobject on X.
3. greyobject on G #1 marks X, but does not yet add it to a write
buffer. At this point, X is effectively black, not grey, even though
it may point to white objects.
4. GC reaches X through some other path and calls greyobject on X, but
greyobject does nothing because X is already marked.
5. GC completes.
6. greyobject on G #1 adds X to a work buffer, but it's too late.
7. Objects that were reachable only through X are incorrectly collected.
To fix this, we check the invariant that no asynchronous write
barriers happen when the world is stopped by checking that write
barriers always have a P, and modify all currently known sources of
these writes to disable the write barrier. In all modified cases this
is safe because the object in question will always be reachable via
some other path.
Some of the trace code was turned off, in particular the
code that traces returning from a syscall. The GC assumes
that as far as the heap is concerned the thread is stopped
when it is in a syscall. Upon returning the trace code
must not do any heap writes for the same reasons discussed
above.
Fixes #10098
Fixes #9953
Fixes #9951
Fixes #9884
May relate to #9610 #9771
Change-Id: Ic2e70b7caffa053e56156838eb8d89503e3c0c8a
Reviewed-on: https://go-review.googlesource.com/7504
Reviewed-by: Austin Clements <austin@google.com>
2015-03-12 12:19:21 -06:00
|
|
|
|
runtime: make it possible to exit Go-created threads
Currently, threads created by the runtime exist until the whole
program exits. For #14592 and #20395, we want to be able to exit and
clean up threads created by the runtime. This commit implements that
mechanism.
The main difficulty is how to clean up the g0 stack. In cgo mode and
on Solaris and Windows where the OS manages thread stacks, we simply
arrange to return from mstart and let the system clean up the thread.
If the runtime allocated the g0 stack, then we use a new exitThread
syscall wrapper that arranges to clear a flag in the M once the stack
can safely be reaped and call the thread termination syscall.
exitThread is based on the existing exit1 wrapper, which was always
meant to terminate the calling thread. However, exit1 has never been
used since it was introduced 9 years ago, so it was broken on several
platforms. exitThread also has the additional complication of having
to flag that the stack is unused, which requires some tricks on
platforms that use the stack for syscalls.
This still leaves the problem of how to reap the unused g0 stacks. For
this, we move the M from allm to a new freem list as part of the M
exiting. Later, allocm scans the freem list, finds Ms that are marked
as done with their stack, removes these from the list and frees their
g0 stacks. This also allows these Ms to be garbage collected.
This CL does not yet use any of this functionality. Follow-up CLs
will. Likewise, there are no new tests in this CL because we'll need
follow-up functionality to test it.
Change-Id: Ic851ee74227b6d39c6fc1219fc71b45d3004bc63
Reviewed-on: https://go-review.googlesource.com/46037
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-06-16 13:54:21 -06:00
|
|
|
// muintptr is a *m that is not tracked by the garbage collector.
|
|
|
|
//
|
|
|
|
// Because we do free Ms, there are some additional constrains on
|
|
|
|
// muintptrs:
|
|
|
|
//
|
|
|
|
// 1. Never hold an muintptr locally across a safe point.
|
|
|
|
//
|
|
|
|
// 2. Any muintptr in the heap must be owned by the M itself so it can
|
|
|
|
// ensure it is not in use when the last true *m is released.
|
2015-04-16 22:21:30 -06:00
|
|
|
type muintptr uintptr
|
runtime: Remove write barriers during STW.
The GC assumes that there will be no asynchronous write barriers when
the world is stopped. This keeps the synchronization between write
barriers and the GC simple. However, currently, there are a few places
in runtime code where this assumption does not hold.
The GC stops the world by collecting all Ps, which stops all user Go
code, but small parts of the runtime can run without a P. For example,
the code that releases a P must still deschedule its G onto a runnable
queue before stopping. Similarly, when a G returns from a long-running
syscall, it must run code to reacquire a P.
Currently, this code can contain write barriers. This can lead to the
GC collecting reachable objects if something like the following
sequence of events happens:
1. GC stops the world by collecting all Ps.
2. G #1 returns from a syscall (for example), tries to install a
pointer to object X, and calls greyobject on X.
3. greyobject on G #1 marks X, but does not yet add it to a write
buffer. At this point, X is effectively black, not grey, even though
it may point to white objects.
4. GC reaches X through some other path and calls greyobject on X, but
greyobject does nothing because X is already marked.
5. GC completes.
6. greyobject on G #1 adds X to a work buffer, but it's too late.
7. Objects that were reachable only through X are incorrectly collected.
To fix this, we check the invariant that no asynchronous write
barriers happen when the world is stopped by checking that write
barriers always have a P, and modify all currently known sources of
these writes to disable the write barrier. In all modified cases this
is safe because the object in question will always be reachable via
some other path.
Some of the trace code was turned off, in particular the
code that traces returning from a syscall. The GC assumes
that as far as the heap is concerned the thread is stopped
when it is in a syscall. Upon returning the trace code
must not do any heap writes for the same reasons discussed
above.
Fixes #10098
Fixes #9953
Fixes #9951
Fixes #9884
May relate to #9610 #9771
Change-Id: Ic2e70b7caffa053e56156838eb8d89503e3c0c8a
Reviewed-on: https://go-review.googlesource.com/7504
Reviewed-by: Austin Clements <austin@google.com>
2015-03-12 12:19:21 -06:00
|
|
|
|
2015-11-23 13:15:36 -07:00
|
|
|
//go:nosplit
|
|
|
|
func (mp muintptr) ptr() *m { return (*m)(unsafe.Pointer(mp)) }
|
|
|
|
|
|
|
|
//go:nosplit
|
2015-04-16 22:21:30 -06:00
|
|
|
func (mp *muintptr) set(m *m) { *mp = muintptr(unsafe.Pointer(m)) }
|
runtime: Remove write barriers during STW.
The GC assumes that there will be no asynchronous write barriers when
the world is stopped. This keeps the synchronization between write
barriers and the GC simple. However, currently, there are a few places
in runtime code where this assumption does not hold.
The GC stops the world by collecting all Ps, which stops all user Go
code, but small parts of the runtime can run without a P. For example,
the code that releases a P must still deschedule its G onto a runnable
queue before stopping. Similarly, when a G returns from a long-running
syscall, it must run code to reacquire a P.
Currently, this code can contain write barriers. This can lead to the
GC collecting reachable objects if something like the following
sequence of events happens:
1. GC stops the world by collecting all Ps.
2. G #1 returns from a syscall (for example), tries to install a
pointer to object X, and calls greyobject on X.
3. greyobject on G #1 marks X, but does not yet add it to a write
buffer. At this point, X is effectively black, not grey, even though
it may point to white objects.
4. GC reaches X through some other path and calls greyobject on X, but
greyobject does nothing because X is already marked.
5. GC completes.
6. greyobject on G #1 adds X to a work buffer, but it's too late.
7. Objects that were reachable only through X are incorrectly collected.
To fix this, we check the invariant that no asynchronous write
barriers happen when the world is stopped by checking that write
barriers always have a P, and modify all currently known sources of
these writes to disable the write barrier. In all modified cases this
is safe because the object in question will always be reachable via
some other path.
Some of the trace code was turned off, in particular the
code that traces returning from a syscall. The GC assumes
that as far as the heap is concerned the thread is stopped
when it is in a syscall. Upon returning the trace code
must not do any heap writes for the same reasons discussed
above.
Fixes #10098
Fixes #9953
Fixes #9951
Fixes #9884
May relate to #9610 #9771
Change-Id: Ic2e70b7caffa053e56156838eb8d89503e3c0c8a
Reviewed-on: https://go-review.googlesource.com/7504
Reviewed-by: Austin Clements <austin@google.com>
2015-03-12 12:19:21 -06:00
|
|
|
|
2016-10-19 14:00:07 -06:00
|
|
|
// setMNoWB performs *mp = new without a write barrier.
|
|
|
|
// For times when it's impractical to use an muintptr.
|
|
|
|
//go:nosplit
|
|
|
|
//go:nowritebarrier
|
|
|
|
func setMNoWB(mp **m, new *m) {
|
|
|
|
(*muintptr)(unsafe.Pointer(mp)).set(new)
|
|
|
|
}
|
|
|
|
|
2014-11-11 15:05:19 -07:00
|
|
|
type gobuf struct {
|
|
|
|
// The offsets of sp, pc, and g are known to (hard-coded in) libmach.
|
2016-10-19 13:49:31 -06:00
|
|
|
//
|
|
|
|
// ctxt is unusual with respect to GC: it may be a
|
runtime: remove write barriers from newstack, gogo
Currently, newstack and gogo have write barriers for maintaining the
context register saved in g.sched.ctxt. This is troublesome, because
newstack can be called from go:nowritebarrierrec places that can't
allow write barriers. It happens to be benign because g.sched.ctxt
will always be nil on entry to newstack *and* it so happens the
incoming ctxt will also always be nil in these contexts (I
think/hope), but this is playing with fire. It's also desirable to
mark newstack go:nowritebarrierrec to prevent any other, non-benign
write barriers from creeping in, but we can't do that right now
because of this one write barrier.
Fix all of this by observing that g.sched.ctxt is really just a saved
live pointer register. Hence, we can shade it when we scan g's stack
and otherwise move it back and forth between the actual context
register and g.sched.ctxt without write barriers. This means we can
save it in morestack along with all of the other g.sched, eliminate
the save from newstack along with its troublesome write barrier, and
eliminate the shenanigans in gogo to invoke the write barrier when
restoring it.
Once we've done all of this, we can mark newstack
go:nowritebarrierrec.
Fixes #22385.
For #22460.
Change-Id: I43c24958e3f6785b53c1350e1e83c2844e0d1522
Reviewed-on: https://go-review.googlesource.com/72553
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
2017-10-22 19:37:05 -06:00
|
|
|
// heap-allocated funcval, so GC needs to track it, but it
|
|
|
|
// needs to be set and cleared from assembly, where it's
|
|
|
|
// difficult to have write barriers. However, ctxt is really a
|
|
|
|
// saved, live register, and we only ever exchange it between
|
|
|
|
// the real register and the gobuf. Hence, we treat it as a
|
|
|
|
// root during stack scanning, which means assembly that saves
|
|
|
|
// and restores it doesn't need write barriers. It's still
|
|
|
|
// typed as a pointer so that any other writes from Go get
|
|
|
|
// write barriers.
|
2014-11-11 15:05:19 -07:00
|
|
|
sp uintptr
|
|
|
|
pc uintptr
|
2014-12-22 20:43:49 -07:00
|
|
|
g guintptr
|
runtime: remove write barriers from newstack, gogo
Currently, newstack and gogo have write barriers for maintaining the
context register saved in g.sched.ctxt. This is troublesome, because
newstack can be called from go:nowritebarrierrec places that can't
allow write barriers. It happens to be benign because g.sched.ctxt
will always be nil on entry to newstack *and* it so happens the
incoming ctxt will also always be nil in these contexts (I
think/hope), but this is playing with fire. It's also desirable to
mark newstack go:nowritebarrierrec to prevent any other, non-benign
write barriers from creeping in, but we can't do that right now
because of this one write barrier.
Fix all of this by observing that g.sched.ctxt is really just a saved
live pointer register. Hence, we can shade it when we scan g's stack
and otherwise move it back and forth between the actual context
register and g.sched.ctxt without write barriers. This means we can
save it in morestack along with all of the other g.sched, eliminate
the save from newstack along with its troublesome write barrier, and
eliminate the shenanigans in gogo to invoke the write barrier when
restoring it.
Once we've done all of this, we can mark newstack
go:nowritebarrierrec.
Fixes #22385.
For #22460.
Change-Id: I43c24958e3f6785b53c1350e1e83c2844e0d1522
Reviewed-on: https://go-review.googlesource.com/72553
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
2017-10-22 19:37:05 -06:00
|
|
|
ctxt unsafe.Pointer
|
2015-11-11 10:39:30 -07:00
|
|
|
ret sys.Uintreg
|
2014-11-11 15:05:19 -07:00
|
|
|
lr uintptr
|
2015-01-14 09:09:50 -07:00
|
|
|
bp uintptr // for GOEXPERIMENT=framepointer
|
2014-11-11 15:05:19 -07:00
|
|
|
}
|
|
|
|
|
2016-03-17 12:08:32 -06:00
|
|
|
// sudog represents a g in a wait list, such as for sending/receiving
|
|
|
|
// on a channel.
|
|
|
|
//
|
|
|
|
// sudog is necessary because the g ↔ synchronization object relation
|
|
|
|
// is many-to-many. A g can be on many wait lists, so there may be
|
|
|
|
// many sudogs for one g; and many gs may be waiting on the same
|
|
|
|
// synchronization object, so there may be many sudogs for one object.
|
|
|
|
//
|
|
|
|
// sudogs are allocated from a special pool. Use acquireSudog and
|
|
|
|
// releaseSudog to allocate and free them.
|
2014-11-11 15:05:19 -07:00
|
|
|
type sudog struct {
|
2016-02-18 07:34:43 -07:00
|
|
|
// The following fields are protected by the hchan.lock of the
|
2016-02-15 15:38:06 -07:00
|
|
|
// channel this sudog is blocking on. shrinkstack depends on
|
2017-02-10 12:45:41 -07:00
|
|
|
// this for sudogs involved in channel ops.
|
2016-02-18 07:34:43 -07:00
|
|
|
|
2017-08-02 12:01:17 -06:00
|
|
|
g *g
|
|
|
|
|
|
|
|
// isSelect indicates g is participating in a select, so
|
|
|
|
// g.selectDone must be CAS'd to win the wake-up race.
|
|
|
|
isSelect bool
|
|
|
|
next *sudog
|
|
|
|
prev *sudog
|
|
|
|
elem unsafe.Pointer // data element (may point to stack)
|
2016-02-18 07:34:43 -07:00
|
|
|
|
|
|
|
// The following fields are never accessed concurrently.
|
2017-02-10 12:45:41 -07:00
|
|
|
// For channels, waitlink is only accessed by g.
|
|
|
|
// For semaphores, all fields (including the ones above)
|
|
|
|
// are only accessed when holding a semaRoot lock.
|
2016-02-18 07:34:43 -07:00
|
|
|
|
2016-09-22 07:48:30 -06:00
|
|
|
acquiretime int64
|
2014-11-11 15:05:19 -07:00
|
|
|
releasetime int64
|
2016-01-24 11:23:48 -07:00
|
|
|
ticket uint32
|
2017-02-12 11:19:02 -07:00
|
|
|
parent *sudog // semaRoot binary tree
|
2017-02-10 12:45:41 -07:00
|
|
|
waitlink *sudog // g.waiting list or semaRoot
|
|
|
|
waittail *sudog // semaRoot
|
2016-02-15 15:37:04 -07:00
|
|
|
c *hchan // channel
|
2014-11-11 15:05:19 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
type libcall struct {
|
|
|
|
fn uintptr
|
|
|
|
n uintptr // number of parameters
|
|
|
|
args uintptr // parameters
|
|
|
|
r1 uintptr // return values
|
|
|
|
r2 uintptr
|
|
|
|
err uintptr // error number
|
|
|
|
}
|
|
|
|
|
|
|
|
// describes how to handle callback
|
|
|
|
type wincallbackcontext struct {
|
|
|
|
gobody unsafe.Pointer // go function to call
|
|
|
|
argsize uintptr // callback arguments size (in bytes)
|
|
|
|
restorestack uintptr // adjust stack on return by (in bytes) (386 only)
|
|
|
|
cleanstack bool
|
|
|
|
}
|
|
|
|
|
|
|
|
// Stack describes a Go execution stack.
|
|
|
|
// The bounds of the stack are exactly [lo, hi),
|
|
|
|
// with no implicit data structures on either side.
|
|
|
|
type stack struct {
|
|
|
|
lo uintptr
|
|
|
|
hi uintptr
|
|
|
|
}
|
|
|
|
|
|
|
|
type g struct {
|
|
|
|
// Stack parameters.
|
|
|
|
// stack describes the actual stack memory: [stack.lo, stack.hi).
|
2015-01-05 09:29:21 -07:00
|
|
|
// stackguard0 is the stack pointer compared in the Go stack growth prologue.
|
2014-11-11 15:05:19 -07:00
|
|
|
// It is stack.lo+StackGuard normally, but can be StackPreempt to trigger a preemption.
|
2015-01-05 09:29:21 -07:00
|
|
|
// stackguard1 is the stack pointer compared in the C stack growth prologue.
|
|
|
|
// It is stack.lo+StackGuard on g0 and gsignal stacks.
|
|
|
|
// It is ~0 on other goroutine stacks, to trigger a call to morestackc (and crash).
|
|
|
|
stack stack // offset known to runtime/cgo
|
|
|
|
stackguard0 uintptr // offset known to liblink
|
|
|
|
stackguard1 uintptr // offset known to liblink
|
2014-11-11 15:05:19 -07:00
|
|
|
|
2015-04-20 06:57:52 -06:00
|
|
|
_panic *_panic // innermost panic - offset known to liblink
|
|
|
|
_defer *_defer // innermost defer
|
2015-07-30 08:45:01 -06:00
|
|
|
m *m // current m; offset known to arm liblink
|
2015-04-20 06:57:52 -06:00
|
|
|
sched gobuf
|
|
|
|
syscallsp uintptr // if status==Gsyscall, syscallsp = sched.sp to use during gc
|
|
|
|
syscallpc uintptr // if status==Gsyscall, syscallpc = sched.pc to use during gc
|
2015-08-26 09:39:10 -06:00
|
|
|
stktopsp uintptr // expected sp at top of stack, to check in traceback
|
2015-04-20 06:57:52 -06:00
|
|
|
param unsafe.Pointer // passed parameter on wakeup
|
|
|
|
atomicstatus uint32
|
2015-07-28 12:33:39 -06:00
|
|
|
stackLock uint32 // sigprof/scang lock; TODO: fold in to atomicstatus
|
2015-04-20 06:57:52 -06:00
|
|
|
goid int64
|
2018-03-13 09:20:33 -06:00
|
|
|
waitsince int64 // approx time when the g become blocked
|
|
|
|
waitreason string // if status==Gwaiting
|
2015-04-20 06:57:52 -06:00
|
|
|
schedlink guintptr
|
2018-03-13 09:20:33 -06:00
|
|
|
preempt bool // preemption signal, duplicates stackguard0 = stackpreempt
|
|
|
|
paniconfault bool // panic (instead of crash) on unexpected fault address
|
|
|
|
preemptscan bool // preempted g does scan for gc
|
|
|
|
gcscandone bool // g has scanned stack; protected by _Gscan bit in status
|
|
|
|
gcscanvalid bool // false at start of gc cycle, true if G has not run since last scan; TODO: remove?
|
|
|
|
throwsplit bool // must not split stack
|
|
|
|
raceignore int8 // ignore race detection events
|
|
|
|
sysblocktraced bool // StartTrace has emitted EvGoInSyscall about this goroutine
|
|
|
|
sysexitticks int64 // cputicks when syscall has returned (for tracing)
|
|
|
|
traceseq uint64 // trace event sequencer
|
|
|
|
tracelastp puintptr // last P emitted an event for this goroutine
|
2017-09-13 11:14:02 -06:00
|
|
|
lockedm muintptr
|
2015-04-20 06:57:52 -06:00
|
|
|
sig uint32
|
|
|
|
writebuf []byte
|
|
|
|
sigcode0 uintptr
|
|
|
|
sigcode1 uintptr
|
|
|
|
sigpc uintptr
|
2018-04-03 19:35:46 -06:00
|
|
|
gopc uintptr // pc of go statement that created this goroutine
|
|
|
|
ancestors *[]ancestorInfo // ancestor information goroutine(s) that created this goroutine (only used if debug.tracebackancestors)
|
|
|
|
startpc uintptr // pc of goroutine function
|
2015-04-20 06:57:52 -06:00
|
|
|
racectx uintptr
|
2017-02-09 11:58:48 -07:00
|
|
|
waiting *sudog // sudog structures this g is waiting on (that have a valid elem ptr); in lock order
|
|
|
|
cgoCtxt []uintptr // cgo traceback context
|
|
|
|
labels unsafe.Pointer // profiler labels
|
2017-02-17 08:17:42 -07:00
|
|
|
timer *timer // cached timer for time.Sleep
|
2017-08-02 12:01:17 -06:00
|
|
|
selectDone uint32 // are we participating in a select and did someone win the race?
|
2016-12-09 14:00:02 -07:00
|
|
|
|
2016-03-04 09:58:26 -07:00
|
|
|
// Per-G GC state
|
|
|
|
|
runtime: directly track GC assist balance
Currently we track the per-G GC assist balance as two monotonically
increasing values: the bytes allocated by the G this cycle (gcalloc)
and the scan work performed by the G this cycle (gcscanwork). The
assist balance is hence assistRatio*gcalloc - gcscanwork.
This works, but has two important downsides:
1) It requires floating-point math to figure out if a G is in debt or
not. This makes it inappropriate to check for assist debt in the
hot path of mallocgc, so we only do this when a G allocates a new
span. As a result, Gs can operate "in the red", leading to
under-assist and extended GC cycle length.
2) Revising the assist ratio during a GC cycle can lead to an "assist
burst". If you think of plotting the scan work performed versus
heaps size, the assist ratio controls the slope of this line.
However, in the current system, the target line always passes
through 0 at the heap size that triggered GC, so if the runtime
increases the assist ratio, there has to be a potentially large
assist to jump from the current amount of scan work up to the new
target scan work for the current heap size.
This commit replaces this approach with directly tracking the GC
assist balance in terms of allocation credit bytes. Allocating N bytes
simply decreases this by N and assisting raises it by the amount of
scan work performed divided by the assist ratio (to get back to
bytes).
This will make it cheap to figure out if a G is in debt, which will
let us efficiently check if an assist is necessary *before* performing
an allocation and hence keep Gs "in the black".
This also fixes assist bursts because the assist ratio is now in terms
of *remaining* work, rather than work from the beginning of the GC
cycle. Hence, the plot of scan work versus heap size becomes
continuous: we can revise the slope, but this slope always starts from
where we are right now, rather than where we were at the beginning of
the cycle.
Change-Id: Ia821c5f07f8a433e8da7f195b52adfedd58bdf2c
Reviewed-on: https://go-review.googlesource.com/15408
Reviewed-by: Rick Hudson <rlh@golang.org>
2015-10-04 21:16:57 -06:00
|
|
|
// gcAssistBytes is this G's GC assist credit in terms of
|
|
|
|
// bytes allocated. If this is positive, then the G has credit
|
|
|
|
// to allocate gcAssistBytes bytes without assisting. If this
|
|
|
|
// is negative, then the G must correct this by performing
|
|
|
|
// scan work. We track this in bytes to make it fast to update
|
|
|
|
// and check for debt in the malloc hot path. The assist ratio
|
|
|
|
// determines how this corresponds to scan work debt.
|
|
|
|
gcAssistBytes int64
|
2014-11-11 15:05:19 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
type m struct {
|
2015-07-30 08:45:01 -06:00
|
|
|
g0 *g // goroutine with scheduling stack
|
|
|
|
morebuf gobuf // gobuf arg to morestack
|
|
|
|
divmod uint32 // div/mod denominator for arm - known to liblink
|
2014-11-11 15:05:19 -07:00
|
|
|
|
|
|
|
// Fields not known to debuggers.
|
runtime: restore the Go-allocated signal stack in unminit
Currently, when we minit on a thread that already has an alternate
signal stack (e.g., because the M was an extram being used for a cgo
callback, or to handle a signal on a C thread, or because the
platform's libc always allocates a signal stack like on Android), we
simply drop the Go-allocated gsignal stack on the floor.
This is a problem for Ms on the extram list because those Ms may later
be reused for a different thread that may not have its own alternate
signal stack. On tip, this manifests as a crash in sigaltstack because
we clear the gsignal stack bounds in unminit and later try to use
those cleared bounds when we re-minit that M. On 1.9 and earlier, we
didn't clear the bounds, so this manifests as running more than one
signal handler on the same signal stack, which could lead to arbitrary
memory corruption.
This CL fixes this problem by saving the Go-allocated gsignal stack in
a new field in the m struct when overwriting it with a system-provided
signal stack, and then restoring the original gsignal stack in
unminit.
This CL is designed to be easy to back-port to 1.9. It won't quite
cherry-pick cleanly, but it should be sufficient to simply ignore the
change in mexit (which didn't exist in 1.9).
Now that we always have a place to stash the original signal stack in
the m struct, there are some simplifications we can make to the signal
stack handling. We'll do those in a later CL.
Fixes #22930.
Change-Id: I55c5a6dd9d97532f131146afdef0b216e1433054
Reviewed-on: https://go-review.googlesource.com/81476
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2017-11-30 20:09:35 -07:00
|
|
|
procid uint64 // for debuggers, but offset not hard-coded
|
|
|
|
gsignal *g // signal-handling g
|
|
|
|
goSigStack gsignalStack // Go-allocated signal handling stack
|
|
|
|
sigmask sigset // storage for saved signal mask
|
|
|
|
tls [6]uintptr // thread-local storage (for x86 extern register)
|
2015-04-16 22:21:30 -06:00
|
|
|
mstartfn func()
|
|
|
|
curg *g // current running goroutine
|
|
|
|
caughtsig guintptr // goroutine running during fatal signal
|
|
|
|
p puintptr // attached p for executing go code (nil if not executing go code)
|
|
|
|
nextp puintptr
|
2017-10-05 19:28:01 -06:00
|
|
|
id int64
|
2014-11-11 15:05:19 -07:00
|
|
|
mallocing int32
|
|
|
|
throwing int32
|
2015-01-30 13:30:41 -07:00
|
|
|
preemptoff string // if != "", keep curg running on this m
|
2014-11-11 15:05:19 -07:00
|
|
|
locks int32
|
|
|
|
dying int32
|
|
|
|
profilehz int32
|
|
|
|
helpgc int32
|
|
|
|
spinning bool // m is out of work and is actively looking for work
|
|
|
|
blocked bool // m is blocked on a note
|
2014-11-15 06:00:38 -07:00
|
|
|
inwb bool // m is executing a write barrier
|
2015-12-23 19:38:18 -07:00
|
|
|
newSigstack bool // minit on C thread called sigaltstack
|
2014-11-15 06:00:38 -07:00
|
|
|
printlock int8
|
runtime: make it possible to exit Go-created threads
Currently, threads created by the runtime exist until the whole
program exits. For #14592 and #20395, we want to be able to exit and
clean up threads created by the runtime. This commit implements that
mechanism.
The main difficulty is how to clean up the g0 stack. In cgo mode and
on Solaris and Windows where the OS manages thread stacks, we simply
arrange to return from mstart and let the system clean up the thread.
If the runtime allocated the g0 stack, then we use a new exitThread
syscall wrapper that arranges to clear a flag in the M once the stack
can safely be reaped and call the thread termination syscall.
exitThread is based on the existing exit1 wrapper, which was always
meant to terminate the calling thread. However, exit1 has never been
used since it was introduced 9 years ago, so it was broken on several
platforms. exitThread also has the additional complication of having
to flag that the stack is unused, which requires some tricks on
platforms that use the stack for syscalls.
This still leaves the problem of how to reap the unused g0 stacks. For
this, we move the M from allm to a new freem list as part of the M
exiting. Later, allocm scans the freem list, finds Ms that are marked
as done with their stack, removes these from the list and frees their
g0 stacks. This also allows these Ms to be garbage collected.
This CL does not yet use any of this functionality. Follow-up CLs
will. Likewise, there are no new tests in this CL because we'll need
follow-up functionality to test it.
Change-Id: Ic851ee74227b6d39c6fc1219fc71b45d3004bc63
Reviewed-on: https://go-review.googlesource.com/46037
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-06-16 13:54:21 -06:00
|
|
|
incgo bool // m is executing a cgo call
|
|
|
|
freeWait uint32 // if == 0, safe to free g0 and delete m (atomic)
|
2017-09-09 06:59:06 -06:00
|
|
|
fastrand [2]uint32
|
|
|
|
needextram bool
|
|
|
|
traceback uint8
|
2015-12-11 18:16:48 -07:00
|
|
|
ncgocall uint64 // number of cgo calls in total
|
|
|
|
ncgo int32 // number of cgo calls currently in progress
|
|
|
|
cgoCallersUse uint32 // if non-zero, cgoCallers in use temporarily
|
|
|
|
cgoCallers *cgoCallers // cgo traceback if crashing in cgo call
|
2014-11-11 15:05:19 -07:00
|
|
|
park note
|
|
|
|
alllink *m // on allm
|
2015-04-16 22:21:30 -06:00
|
|
|
schedlink muintptr
|
2014-11-11 15:05:19 -07:00
|
|
|
mcache *mcache
|
2017-09-13 11:14:02 -06:00
|
|
|
lockedg guintptr
|
2017-09-09 06:59:06 -06:00
|
|
|
createstack [32]uintptr // stack that created this thread.
|
2017-06-14 09:46:35 -06:00
|
|
|
lockedExt uint32 // tracking for external LockOSThread
|
|
|
|
lockedInt uint32 // tracking for internal lockOSThread
|
2017-06-15 10:23:09 -06:00
|
|
|
nextwaitm muintptr // next m waiting for lock
|
2014-11-11 15:05:19 -07:00
|
|
|
waitunlockf unsafe.Pointer // todo go func(*g, unsafe.pointer) bool
|
|
|
|
waitlock unsafe.Pointer
|
2014-12-12 10:41:57 -07:00
|
|
|
waittraceev byte
|
2015-02-21 11:01:40 -07:00
|
|
|
waittraceskip int
|
2015-04-20 06:57:52 -06:00
|
|
|
startingtrace bool
|
2014-12-12 10:41:57 -07:00
|
|
|
syscalltick uint32
|
2016-04-13 03:16:21 -06:00
|
|
|
thread uintptr // thread handle
|
runtime: make it possible to exit Go-created threads
Currently, threads created by the runtime exist until the whole
program exits. For #14592 and #20395, we want to be able to exit and
clean up threads created by the runtime. This commit implements that
mechanism.
The main difficulty is how to clean up the g0 stack. In cgo mode and
on Solaris and Windows where the OS manages thread stacks, we simply
arrange to return from mstart and let the system clean up the thread.
If the runtime allocated the g0 stack, then we use a new exitThread
syscall wrapper that arranges to clear a flag in the M once the stack
can safely be reaped and call the thread termination syscall.
exitThread is based on the existing exit1 wrapper, which was always
meant to terminate the calling thread. However, exit1 has never been
used since it was introduced 9 years ago, so it was broken on several
platforms. exitThread also has the additional complication of having
to flag that the stack is unused, which requires some tricks on
platforms that use the stack for syscalls.
This still leaves the problem of how to reap the unused g0 stacks. For
this, we move the M from allm to a new freem list as part of the M
exiting. Later, allocm scans the freem list, finds Ms that are marked
as done with their stack, removes these from the list and frees their
g0 stacks. This also allows these Ms to be garbage collected.
This CL does not yet use any of this functionality. Follow-up CLs
will. Likewise, there are no new tests in this CL because we'll need
follow-up functionality to test it.
Change-Id: Ic851ee74227b6d39c6fc1219fc71b45d3004bc63
Reviewed-on: https://go-review.googlesource.com/46037
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-06-16 13:54:21 -06:00
|
|
|
freelink *m // on sched.freem
|
2016-04-13 03:16:21 -06:00
|
|
|
|
2014-11-11 15:05:19 -07:00
|
|
|
// these are here because they are too large to be on the stack
|
|
|
|
// of low-level NOSPLIT functions.
|
|
|
|
libcall libcall
|
|
|
|
libcallpc uintptr // for cpu profiler
|
|
|
|
libcallsp uintptr
|
2015-04-16 22:21:30 -06:00
|
|
|
libcallg guintptr
|
2015-05-21 18:58:57 -06:00
|
|
|
syscall libcall // stores syscall parameters on windows
|
2016-04-13 03:16:21 -06:00
|
|
|
|
2018-02-26 15:03:47 -07:00
|
|
|
vdsoSP uintptr // SP for traceback while in VDSO call (0 if not in call)
|
|
|
|
vdsoPC uintptr // PC for traceback while in VDSO call
|
|
|
|
|
2015-10-21 13:48:53 -06:00
|
|
|
mOS
|
2014-11-11 15:05:19 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
type p struct {
|
|
|
|
lock mutex
|
|
|
|
|
|
|
|
id int32
|
|
|
|
status uint32 // one of pidle/prunning/...
|
2015-04-16 22:21:30 -06:00
|
|
|
link puintptr
|
2017-06-13 09:14:43 -06:00
|
|
|
schedtick uint32 // incremented on every scheduler call
|
|
|
|
syscalltick uint32 // incremented on every system call
|
|
|
|
sysmontick sysmontick // last tick observed by sysmon
|
|
|
|
m muintptr // back-link to associated m (nil if idle)
|
2014-11-11 15:05:19 -07:00
|
|
|
mcache *mcache
|
2016-02-26 13:57:16 -07:00
|
|
|
racectx uintptr
|
2015-02-05 06:35:41 -07:00
|
|
|
|
2015-03-11 13:58:47 -06:00
|
|
|
deferpool [5][]*_defer // pool of available defer structs of different sizes (see panic.go)
|
2015-02-05 06:35:41 -07:00
|
|
|
deferpoolbuf [5][32]*_defer
|
2014-11-11 15:05:19 -07:00
|
|
|
|
|
|
|
// Cache of goroutine ids, amortizes accesses to runtime·sched.goidgen.
|
|
|
|
goidcache uint64
|
|
|
|
goidcacheend uint64
|
|
|
|
|
runtime: yield time slice to most recently readied G
Currently, when the runtime ready()s a G, it adds it to the end of the
current P's run queue and continues running. If there are many other
things in the run queue, this can result in a significant delay before
the ready()d G actually runs and can hurt fairness when other Gs in
the run queue are CPU hogs. For example, if there are three Gs sharing
a P, one of which is a CPU hog that never voluntarily gives up the P
and the other two of which are doing small amounts of work and
communicating back and forth on an unbuffered channel, the two
communicating Gs will get very little CPU time.
Change this so that when G1 ready()s G2 and then blocks, the scheduler
immediately hands off the remainder of G1's time slice to G2. In the
above example, the two communicating Gs will now act as a unit and
together get half of the CPU time, while the CPU hog gets the other
half of the CPU time.
This fixes the problem demonstrated by the ping-pong benchmark added
in the previous commit:
benchmark old ns/op new ns/op delta
BenchmarkPingPongHog 684287 825 -99.88%
On the x/benchmarks suite, this change improves the performance of
garbage by ~6% (for GOMAXPROCS=1 and 4), and json by 28% and 36% for
GOMAXPROCS=1 and 4. It has negligible effect on heap size.
This has no effect on the go1 benchmark suite since those benchmarks
are mostly single-threaded.
Change-Id: I858a08eaa78f702ea98a5fac99d28a4ac91d339f
Reviewed-on: https://go-review.googlesource.com/9289
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
2015-04-22 12:42:26 -06:00
|
|
|
// Queue of runnable goroutines. Accessed without lock.
|
2015-05-13 15:08:16 -06:00
|
|
|
runqhead uint32
|
|
|
|
runqtail uint32
|
2015-11-02 14:59:39 -07:00
|
|
|
runq [256]guintptr
|
runtime: yield time slice to most recently readied G
Currently, when the runtime ready()s a G, it adds it to the end of the
current P's run queue and continues running. If there are many other
things in the run queue, this can result in a significant delay before
the ready()d G actually runs and can hurt fairness when other Gs in
the run queue are CPU hogs. For example, if there are three Gs sharing
a P, one of which is a CPU hog that never voluntarily gives up the P
and the other two of which are doing small amounts of work and
communicating back and forth on an unbuffered channel, the two
communicating Gs will get very little CPU time.
Change this so that when G1 ready()s G2 and then blocks, the scheduler
immediately hands off the remainder of G1's time slice to G2. In the
above example, the two communicating Gs will now act as a unit and
together get half of the CPU time, while the CPU hog gets the other
half of the CPU time.
This fixes the problem demonstrated by the ping-pong benchmark added
in the previous commit:
benchmark old ns/op new ns/op delta
BenchmarkPingPongHog 684287 825 -99.88%
On the x/benchmarks suite, this change improves the performance of
garbage by ~6% (for GOMAXPROCS=1 and 4), and json by 28% and 36% for
GOMAXPROCS=1 and 4. It has negligible effect on heap size.
This has no effect on the go1 benchmark suite since those benchmarks
are mostly single-threaded.
Change-Id: I858a08eaa78f702ea98a5fac99d28a4ac91d339f
Reviewed-on: https://go-review.googlesource.com/9289
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
2015-04-22 12:42:26 -06:00
|
|
|
// runnext, if non-nil, is a runnable G that was ready'd by
|
|
|
|
// the current G and should be run next instead of what's in
|
|
|
|
// runq if there's time remaining in the running G's time
|
|
|
|
// slice. It will inherit the time left in the current time
|
|
|
|
// slice. If a set of goroutines is locked in a
|
|
|
|
// communicate-and-wait pattern, this schedules that set as a
|
|
|
|
// unit and eliminates the (potentially large) scheduling
|
|
|
|
// latency that otherwise arises from adding the ready'd
|
|
|
|
// goroutines to the end of the run queue.
|
|
|
|
runnext guintptr
|
2014-11-11 15:05:19 -07:00
|
|
|
|
|
|
|
// Available G's (status == Gdead)
|
|
|
|
gfree *g
|
|
|
|
gfreecnt int32
|
|
|
|
|
2015-02-02 14:33:02 -07:00
|
|
|
sudogcache []*sudog
|
|
|
|
sudogbuf [128]*sudog
|
|
|
|
|
2015-11-10 12:37:52 -07:00
|
|
|
tracebuf traceBufPtr
|
2014-12-12 10:11:27 -07:00
|
|
|
|
2017-04-14 12:44:22 -06:00
|
|
|
// traceSweep indicates the sweep events should be traced.
|
|
|
|
// This is used to defer the sweep start event until a span
|
|
|
|
// has actually been swept.
|
2017-04-14 11:52:27 -06:00
|
|
|
traceSweep bool
|
2017-04-14 12:44:22 -06:00
|
|
|
// traceSwept and traceReclaimed track the number of bytes
|
|
|
|
// swept and reclaimed by sweeping in the current sweep loop.
|
|
|
|
traceSwept, traceReclaimed uintptr
|
2017-04-14 11:52:27 -06:00
|
|
|
|
2015-03-08 18:56:15 -06:00
|
|
|
palloc persistentAlloc // per-P to avoid mutex
|
|
|
|
|
2015-03-17 10:17:47 -06:00
|
|
|
// Per-P GC state
|
2017-10-05 10:16:45 -06:00
|
|
|
gcAssistTime int64 // Nanoseconds in assistAlloc
|
|
|
|
gcFractionalMarkTime int64 // Nanoseconds in fractional mark worker
|
|
|
|
gcBgMarkWorker guintptr
|
|
|
|
gcMarkWorkerMode gcMarkWorkerMode
|
2015-03-17 10:17:47 -06:00
|
|
|
|
2017-10-04 14:15:35 -06:00
|
|
|
// gcMarkWorkerStartTime is the nanotime() at which this mark
|
|
|
|
// worker started.
|
|
|
|
gcMarkWorkerStartTime int64
|
|
|
|
|
runtime: replace per-M workbuf cache with per-P gcWork cache
Currently, each M has a cache of the most recently used *workbuf. This
is used primarily by the write barrier so it doesn't have to access
the global workbuf lists on every write barrier. It's also used by
stack scanning because it's convenient.
This cache is important for write barrier performance, but this
particular approach has several downsides. It's faster than no cache,
but far from optimal (as the benchmarks below show). It's complex:
access to the cache is sprinkled through most of the workbuf list
operations and it requires special care to transform into and back out
of the gcWork cache that's actually used for scanning and marking. It
requires atomic exchanges to take ownership of the cached workbuf and
to return it to the M's cache even though it's almost always used by
only the current M. Since it's per-M, flushing these caches is O(# of
Ms), which may be high. And it has some significant subtleties: for
example, in general the cache shouldn't be used after the
harvestwbufs() in mark termination because it could hide work from
mark termination, but stack scanning can happen after this and *will*
use the cache (but it turns out this is okay because it will always be
followed by a getfull(), which drains the cache).
This change replaces this cache with a per-P gcWork object. This
gcWork cache can be used directly by scanning and marking (as long as
preemption is disabled, which is a general requirement of gcWork).
Since it's per-P, it doesn't require synchronization, which simplifies
things and means the only atomic operations in the write barrier are
occasionally fetching new work buffers and setting a mark bit if the
object isn't already marked. This cache can be flushed in O(# of Ps),
which is generally small. It follows a simple flushing rule: the cache
can be used during any phase, but during mark termination it must be
flushed before allowing preemption. This also makes the dispose during
mutator assist no longer necessary, which eliminates the vast majority
of gcWork dispose calls and reduces contention on the global workbuf
lists. And it's a lot faster on some benchmarks:
benchmark old ns/op new ns/op delta
BenchmarkBinaryTree17 11963668673 11206112763 -6.33%
BenchmarkFannkuch11 2643217136 2649182499 +0.23%
BenchmarkFmtFprintfEmpty 70.4 70.2 -0.28%
BenchmarkFmtFprintfString 364 307 -15.66%
BenchmarkFmtFprintfInt 317 282 -11.04%
BenchmarkFmtFprintfIntInt 512 483 -5.66%
BenchmarkFmtFprintfPrefixedInt 404 380 -5.94%
BenchmarkFmtFprintfFloat 521 479 -8.06%
BenchmarkFmtManyArgs 2164 1894 -12.48%
BenchmarkGobDecode 30366146 22429593 -26.14%
BenchmarkGobEncode 29867472 26663152 -10.73%
BenchmarkGzip 391236616 396779490 +1.42%
BenchmarkGunzip 96639491 96297024 -0.35%
BenchmarkHTTPClientServer 100110 70763 -29.31%
BenchmarkJSONEncode 51866051 52511382 +1.24%
BenchmarkJSONDecode 103813138 86094963 -17.07%
BenchmarkMandelbrot200 4121834 4120886 -0.02%
BenchmarkGoParse 16472789 5879949 -64.31%
BenchmarkRegexpMatchEasy0_32 140 140 +0.00%
BenchmarkRegexpMatchEasy0_1K 394 394 +0.00%
BenchmarkRegexpMatchEasy1_32 120 120 +0.00%
BenchmarkRegexpMatchEasy1_1K 621 614 -1.13%
BenchmarkRegexpMatchMedium_32 209 202 -3.35%
BenchmarkRegexpMatchMedium_1K 54889 55175 +0.52%
BenchmarkRegexpMatchHard_32 2682 2675 -0.26%
BenchmarkRegexpMatchHard_1K 79383 79524 +0.18%
BenchmarkRevcomp 584116718 584595320 +0.08%
BenchmarkTemplate 125400565 109620196 -12.58%
BenchmarkTimeParse 386 387 +0.26%
BenchmarkTimeFormat 580 447 -22.93%
(Best out of 10 runs. The delta of averages is similar.)
This also puts us in a good position to flush these caches when
nearing the end of concurrent marking, which will let us increase the
size of the work buffers while still controlling mark termination
pause time.
Change-Id: I2dd94c8517a19297a98ec280203cccaa58792522
Reviewed-on: https://go-review.googlesource.com/9178
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
2015-04-19 13:22:20 -06:00
|
|
|
// gcw is this P's GC work buffer cache. The work buffer is
|
|
|
|
// filled by write barriers, drained by mutator assists, and
|
|
|
|
// disposed on certain GC state transitions.
|
|
|
|
gcw gcWork
|
|
|
|
|
runtime: buffered write barrier implementation
This implements runtime support for buffered write barriers on amd64.
The buffered write barrier has a fast path that simply enqueues
pointers in a per-P buffer. Unlike the current write barrier, this
fast path is *not* a normal Go call and does not require the compiler
to spill general-purpose registers or put arguments on the stack. When
the buffer fills up, the write barrier takes the slow path, which
spills all general purpose registers and flushes the buffer. We don't
allow safe-points or stack splits while this frame is active, so it
doesn't matter that we have no type information for the spilled
registers in this frame.
One minor complication is cgocheck=2 mode, which uses the write
barrier to detect Go pointers being written to non-Go memory. We
obviously can't buffer this, so instead we set the buffer to its
minimum size, forcing the write barrier into the slow path on every
call. For this specific case, we pass additional information as
arguments to the flush function. This also requires enabling the cgo
write barrier slightly later during runtime initialization, after Ps
(and the per-P write barrier buffers) have been initialized.
The code in this CL is not yet active. The next CL will modify the
compiler to generate calls to the new write barrier.
This reduces the average cost of the write barrier by roughly a factor
of 4, which will pay for the cost of having it enabled more of the
time after we make the GC pacer less aggressive. (Benchmarks will be
in the next CL.)
Updates #14951.
Updates #22460.
Change-Id: I396b5b0e2c5e5c4acfd761a3235fd15abadc6cb1
Reviewed-on: https://go-review.googlesource.com/73711
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
2017-10-26 10:21:16 -06:00
|
|
|
// wbBuf is this P's GC write barrier buffer.
|
|
|
|
//
|
|
|
|
// TODO: Consider caching this in the running G.
|
|
|
|
wbBuf wbBuf
|
|
|
|
|
2015-03-27 14:49:12 -06:00
|
|
|
runSafePointFn uint32 // if 1, run sched.safePointFn at next safe point
|
|
|
|
|
2016-07-29 11:02:26 -06:00
|
|
|
pad [sys.CacheLineSize]byte
|
2014-11-11 15:05:19 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
type schedt struct {
|
2016-01-06 19:16:01 -07:00
|
|
|
// accessed atomically. keep at top to ensure alignment on 32-bit systems.
|
|
|
|
goidgen uint64
|
|
|
|
lastpoll uint64
|
2014-11-11 15:05:19 -07:00
|
|
|
|
2016-01-06 19:16:01 -07:00
|
|
|
lock mutex
|
2014-11-11 15:05:19 -07:00
|
|
|
|
runtime: make it possible to exit Go-created threads
Currently, threads created by the runtime exist until the whole
program exits. For #14592 and #20395, we want to be able to exit and
clean up threads created by the runtime. This commit implements that
mechanism.
The main difficulty is how to clean up the g0 stack. In cgo mode and
on Solaris and Windows where the OS manages thread stacks, we simply
arrange to return from mstart and let the system clean up the thread.
If the runtime allocated the g0 stack, then we use a new exitThread
syscall wrapper that arranges to clear a flag in the M once the stack
can safely be reaped and call the thread termination syscall.
exitThread is based on the existing exit1 wrapper, which was always
meant to terminate the calling thread. However, exit1 has never been
used since it was introduced 9 years ago, so it was broken on several
platforms. exitThread also has the additional complication of having
to flag that the stack is unused, which requires some tricks on
platforms that use the stack for syscalls.
This still leaves the problem of how to reap the unused g0 stacks. For
this, we move the M from allm to a new freem list as part of the M
exiting. Later, allocm scans the freem list, finds Ms that are marked
as done with their stack, removes these from the list and frees their
g0 stacks. This also allows these Ms to be garbage collected.
This CL does not yet use any of this functionality. Follow-up CLs
will. Likewise, there are no new tests in this CL because we'll need
follow-up functionality to test it.
Change-Id: Ic851ee74227b6d39c6fc1219fc71b45d3004bc63
Reviewed-on: https://go-review.googlesource.com/46037
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-06-16 13:54:21 -06:00
|
|
|
// When increasing nmidle, nmidlelocked, nmsys, or nmfreed, be
|
|
|
|
// sure to call checkdead().
|
|
|
|
|
2015-04-16 22:21:30 -06:00
|
|
|
midle muintptr // idle m's waiting for work
|
|
|
|
nmidle int32 // number of idle m's waiting for work
|
|
|
|
nmidlelocked int32 // number of locked m's waiting for work
|
2017-10-05 19:28:01 -06:00
|
|
|
mnext int64 // number of m's that have been created and next M ID
|
2015-04-16 22:21:30 -06:00
|
|
|
maxmcount int32 // maximum number of m's allowed (or die)
|
2017-06-15 08:51:15 -06:00
|
|
|
nmsys int32 // number of system m's not counted for deadlock
|
runtime: make it possible to exit Go-created threads
Currently, threads created by the runtime exist until the whole
program exits. For #14592 and #20395, we want to be able to exit and
clean up threads created by the runtime. This commit implements that
mechanism.
The main difficulty is how to clean up the g0 stack. In cgo mode and
on Solaris and Windows where the OS manages thread stacks, we simply
arrange to return from mstart and let the system clean up the thread.
If the runtime allocated the g0 stack, then we use a new exitThread
syscall wrapper that arranges to clear a flag in the M once the stack
can safely be reaped and call the thread termination syscall.
exitThread is based on the existing exit1 wrapper, which was always
meant to terminate the calling thread. However, exit1 has never been
used since it was introduced 9 years ago, so it was broken on several
platforms. exitThread also has the additional complication of having
to flag that the stack is unused, which requires some tricks on
platforms that use the stack for syscalls.
This still leaves the problem of how to reap the unused g0 stacks. For
this, we move the M from allm to a new freem list as part of the M
exiting. Later, allocm scans the freem list, finds Ms that are marked
as done with their stack, removes these from the list and frees their
g0 stacks. This also allows these Ms to be garbage collected.
This CL does not yet use any of this functionality. Follow-up CLs
will. Likewise, there are no new tests in this CL because we'll need
follow-up functionality to test it.
Change-Id: Ic851ee74227b6d39c6fc1219fc71b45d3004bc63
Reviewed-on: https://go-review.googlesource.com/46037
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-06-16 13:54:21 -06:00
|
|
|
nmfreed int64 // cumulative number of freed m's
|
2014-11-11 15:05:19 -07:00
|
|
|
|
2016-01-06 19:16:01 -07:00
|
|
|
ngsys uint32 // number of system goroutines; updated atomically
|
|
|
|
|
2015-04-16 22:21:30 -06:00
|
|
|
pidle puintptr // idle p's
|
2014-11-11 15:05:19 -07:00
|
|
|
npidle uint32
|
2015-12-08 07:11:27 -07:00
|
|
|
nmspinning uint32 // See "Worker thread parking/unparking" comment in proc.go.
|
2014-11-11 15:05:19 -07:00
|
|
|
|
|
|
|
// Global runnable queue.
|
2015-04-16 22:21:30 -06:00
|
|
|
runqhead guintptr
|
|
|
|
runqtail guintptr
|
2014-11-11 15:05:19 -07:00
|
|
|
runqsize int32
|
|
|
|
|
|
|
|
// Global cache of dead G's.
|
2016-03-11 14:27:51 -07:00
|
|
|
gflock mutex
|
|
|
|
gfreeStack *g
|
|
|
|
gfreeNoStack *g
|
|
|
|
ngfree int32
|
2014-11-11 15:05:19 -07:00
|
|
|
|
2015-02-02 14:33:02 -07:00
|
|
|
// Central cache of sudog structs.
|
|
|
|
sudoglock mutex
|
|
|
|
sudogcache *sudog
|
|
|
|
|
2015-02-05 06:35:41 -07:00
|
|
|
// Central pool of available defer structs of different sizes.
|
|
|
|
deferlock mutex
|
|
|
|
deferpool [5]*_defer
|
|
|
|
|
runtime: make it possible to exit Go-created threads
Currently, threads created by the runtime exist until the whole
program exits. For #14592 and #20395, we want to be able to exit and
clean up threads created by the runtime. This commit implements that
mechanism.
The main difficulty is how to clean up the g0 stack. In cgo mode and
on Solaris and Windows where the OS manages thread stacks, we simply
arrange to return from mstart and let the system clean up the thread.
If the runtime allocated the g0 stack, then we use a new exitThread
syscall wrapper that arranges to clear a flag in the M once the stack
can safely be reaped and call the thread termination syscall.
exitThread is based on the existing exit1 wrapper, which was always
meant to terminate the calling thread. However, exit1 has never been
used since it was introduced 9 years ago, so it was broken on several
platforms. exitThread also has the additional complication of having
to flag that the stack is unused, which requires some tricks on
platforms that use the stack for syscalls.
This still leaves the problem of how to reap the unused g0 stacks. For
this, we move the M from allm to a new freem list as part of the M
exiting. Later, allocm scans the freem list, finds Ms that are marked
as done with their stack, removes these from the list and frees their
g0 stacks. This also allows these Ms to be garbage collected.
This CL does not yet use any of this functionality. Follow-up CLs
will. Likewise, there are no new tests in this CL because we'll need
follow-up functionality to test it.
Change-Id: Ic851ee74227b6d39c6fc1219fc71b45d3004bc63
Reviewed-on: https://go-review.googlesource.com/46037
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-06-16 13:54:21 -06:00
|
|
|
// freem is the list of m's waiting to be freed when their
|
|
|
|
// m.exited is set. Linked through m.freelink.
|
|
|
|
freem *m
|
|
|
|
|
2014-11-11 15:05:19 -07:00
|
|
|
gcwaiting uint32 // gc is waiting to run
|
|
|
|
stopwait int32
|
|
|
|
stopnote note
|
|
|
|
sysmonwait uint32
|
|
|
|
sysmonnote note
|
|
|
|
|
2015-03-27 14:49:12 -06:00
|
|
|
// safepointFn should be called on each P at the next GC
|
|
|
|
// safepoint if p.runSafePointFn is set.
|
runtime: use separate count and note for forEachP
Currently, forEachP reuses the stopwait and stopnote fields from
stopTheWorld to track how many Ps have not responded to the safe-point
request and to sleep until all Ps have responded.
It was assumed this was safe because both stopTheWorld and forEachP
must occur under the worlsema and hence stopwait and stopnote cannot
be used for both purposes simultaneously and callers could always
determine the appropriate use based on sched.gcwaiting (which is only
set by stopTheWorld). However, this is not the case, since it's
possible for there to be a window between when an M observes that
gcwaiting is set and when it checks stopwait during which stopwait
could have changed meanings. When this happens, the M decrements
stopwait and may wakeup stopnote, but does not otherwise participate
in the forEachP protocol. As a result, stopwait is decremented too
many times, so it may reach zero before all Ps have run the safe-point
function, causing forEachP to wake up early. It will then either
observe that some P has not run the safe-point function and panic with
"P did not run fn", or the remaining P (or Ps) will run the safe-point
function before it wakes up and it will observe that stopwait is
negative and panic with "not stopped".
Fix this problem by giving forEachP its own safePointWait and
safePointNote fields.
One known sequence of events that can cause this race is as
follows. It involves three actors:
G1 is running on M1 on P1. P1 has an empty run queue.
G2/M2 is in a blocked syscall and has lost its P. (The details of this
don't matter, it just needs to be in a position where it needs to grab
an idle P.)
GC just started on G3/M3/P3. (These aren't very involved, they just
have to be separate from the other G's, M's, and P's.)
1. GC calls stopTheWorld(), which sets sched.gcwaiting to 1.
Now G1/M1 begins to enter a syscall:
2. G1/M1 invokes reentersyscall, which sets the P1's status to
_Psyscall.
3. G1/M1's reentersyscall observes gcwaiting != 0 and calls
entersyscall_gcwait.
4. G1/M1's entersyscall_gcwait blocks acquiring sched.lock.
Back on GC:
5. stopTheWorld cas's P1's status to _Pgcstop, does other stuff, and
returns.
6. GC does stuff and then calls startTheWorld().
7. startTheWorld() calls procresize(), which sets P1's status to
_Pidle and puts P1 on the idle list.
Now G2/M2 returns from its syscall and takes over P1:
8. G2/M2 returns from its blocked syscall and gets P1 from the idle
list.
9. G2/M2 acquires P1, which sets P1's status to _Prunning.
10. G2/M2 starts a new syscall and invokes reentersyscall, which sets
P1's status to _Psyscall.
Back on G1/M1:
11. G1/M1 finally acquires sched.lock in entersyscall_gcwait.
At this point, G1/M1 still thinks it's running on P1. P1's status is
_Psyscall, which is consistent with what G1/M1 is doing, but it's
_Psyscall because *G2/M2* put it in to _Psyscall, not G1/M1. This is
basically an ABA race on P1's status.
Because forEachP currently shares stopwait with stopTheWorld. G1/M1's
entersyscall_gcwait observes the non-zero stopwait set by forEachP,
but mistakes it for a stopTheWorld. It cas's P1's status from
_Psyscall (set by G2/M2) to _Pgcstop and proceeds to decrement
stopwait one more time than forEachP was expecting.
Fixes #10618. (See the issue for details on why the above race is safe
when forEachP is not involved.)
Prior to this commit, the command
stress ./runtime.test -test.run TestFutexsleep\|TestGoroutineProfile
would reliably fail after a few hundred runs. With this commit, it
ran for over 2 million runs and never crashed.
Change-Id: I9a91ea20035b34b6e5f07ef135b144115f281f30
Reviewed-on: https://go-review.googlesource.com/10157
Reviewed-by: Russ Cox <rsc@golang.org>
2015-05-15 14:31:17 -06:00
|
|
|
safePointFn func(*p)
|
|
|
|
safePointWait int32
|
|
|
|
safePointNote note
|
2015-03-27 14:49:12 -06:00
|
|
|
|
2014-11-11 15:05:19 -07:00
|
|
|
profilehz int32 // cpu profiling rate
|
2015-04-01 11:47:35 -06:00
|
|
|
|
|
|
|
procresizetime int64 // nanotime() of last change to gomaxprocs
|
|
|
|
totaltime int64 // ∫gomaxprocs dt up to procresizetime
|
2014-11-11 15:05:19 -07:00
|
|
|
}
|
|
|
|
|
2017-08-25 14:18:30 -06:00
|
|
|
// Values for the flags field of a sigTabT.
|
2014-11-11 15:05:19 -07:00
|
|
|
const (
|
runtime: don't always unblock all signals
Ian proposed an improved way of handling signals masks in Go, motivated
by a problem where the Android java runtime expects certain signals to
be blocked for all JVM threads. Discussion here
https://groups.google.com/forum/#!topic/golang-dev/_TSCkQHJt6g
Ian's text is used in the following:
A Go program always needs to have the synchronous signals enabled.
These are the signals for which _SigPanic is set in sigtable, namely
SIGSEGV, SIGBUS, SIGFPE.
A Go program that uses the os/signal package, and calls signal.Notify,
needs to have at least one thread which is not blocking that signal,
but it doesn't matter much which one.
Unix programs do not change signal mask across execve. They inherit
signal masks across fork. The shell uses this fact to some extent;
for example, the job control signals (SIGTTIN, SIGTTOU, SIGTSTP) are
blocked for commands run due to backquote quoting or $().
Our current position on signal masks was not thought out. We wandered
into step by step, e.g., http://golang.org/cl/7323067 .
This CL does the following:
Introduce a new platform hook, msigsave, that saves the signal mask of
the current thread to m.sigsave.
Call msigsave from needm and newm.
In minit grab set up the signal mask from m.sigsave and unblock the
essential synchronous signals, and SIGILL, SIGTRAP, SIGPROF, SIGSTKFLT
(for systems that have it).
In unminit, restore the signal mask from m.sigsave.
The first time that os/signal.Notify is called, start a new thread whose
only purpose is to update its signal mask to make sure signals for
signal.Notify are unblocked on at least one thread.
The effect on Go programs will be that if they are invoked with some
non-synchronous signals blocked, those signals will normally be
ignored. Previously, those signals would mostly be ignored. A change
in behaviour will occur for programs started with any of these signals
blocked, if they receive the signal: SIGHUP, SIGINT, SIGQUIT, SIGABRT,
SIGTERM. Previously those signals would always cause a crash (unless
using the os/signal package); with this change, they will be ignored
if the program is started with the signal blocked (and does not use
the os/signal package).
./all.bash completes successfully on linux/amd64.
OpenBSD is missing the implementation.
Change-Id: I188098ba7eb85eae4c14861269cc466f2aa40e8c
Reviewed-on: https://go-review.googlesource.com/10173
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-05-18 03:00:24 -06:00
|
|
|
_SigNotify = 1 << iota // let signal.Notify have signal, even if from kernel
|
|
|
|
_SigKill // if signal.Notify doesn't take it, exit quietly
|
|
|
|
_SigThrow // if signal.Notify doesn't take it, exit loudly
|
|
|
|
_SigPanic // if the signal is from the kernel, panic
|
|
|
|
_SigDefault // if the signal isn't explicitly requested, don't monitor it
|
|
|
|
_SigGoExit // cause all runtime procs to exit (only used on Plan 9).
|
|
|
|
_SigSetStack // add SA_ONSTACK to libc handler
|
2017-11-22 20:12:12 -07:00
|
|
|
_SigUnblock // always unblock; see blockableSig
|
2017-08-19 08:59:19 -06:00
|
|
|
_SigIgn // _SIG_DFL action is to ignore the signal
|
2014-11-11 15:05:19 -07:00
|
|
|
)
|
|
|
|
|
|
|
|
// Layout of in-memory per-function information prepared by linker
|
2015-07-10 17:17:11 -06:00
|
|
|
// See https://golang.org/s/go12symtab.
|
2016-12-14 11:24:21 -07:00
|
|
|
// Keep in sync with linker (../cmd/link/internal/ld/pcln.go:/pclntab)
|
2014-11-11 15:05:19 -07:00
|
|
|
// and with package debug/gosym and with symtab.go in package runtime.
|
|
|
|
type _func struct {
|
|
|
|
entry uintptr // start pc
|
|
|
|
nameoff int32 // function name
|
|
|
|
|
2018-03-14 16:21:37 -06:00
|
|
|
args int32 // in/out args size
|
|
|
|
funcID funcID // set for certain special runtime functions
|
2014-11-11 15:05:19 -07:00
|
|
|
|
|
|
|
pcsp int32
|
|
|
|
pcfile int32
|
|
|
|
pcln int32
|
|
|
|
npcdata int32
|
|
|
|
nfuncdata int32
|
|
|
|
}
|
|
|
|
|
|
|
|
// layout of Itab known to compilers
|
|
|
|
// allocated in non-garbage-collected memory
|
2016-03-17 07:18:13 -06:00
|
|
|
// Needs to be in sync with
|
|
|
|
// ../cmd/compile/internal/gc/reflect.go:/^func.dumptypestructs.
|
2014-11-11 15:05:19 -07:00
|
|
|
type itab struct {
|
2017-05-31 09:45:10 -06:00
|
|
|
inter *interfacetype
|
|
|
|
_type *_type
|
|
|
|
hash uint32 // copy of _type.hash. Used for type switches.
|
2017-05-31 10:02:40 -06:00
|
|
|
_ [4]byte
|
|
|
|
fun [1]uintptr // variable sized. fun[0]==0 means _type does not implement inter.
|
2014-11-11 15:05:19 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
// Lock-free stack node.
|
2014-11-15 06:00:38 -07:00
|
|
|
// // Also known to export_test.go.
|
2014-11-11 15:05:19 -07:00
|
|
|
type lfnode struct {
|
2014-11-15 06:00:38 -07:00
|
|
|
next uint64
|
2014-11-11 15:05:19 -07:00
|
|
|
pushcnt uintptr
|
|
|
|
}
|
|
|
|
|
|
|
|
type forcegcstate struct {
|
|
|
|
lock mutex
|
|
|
|
g *g
|
|
|
|
idle uint32
|
|
|
|
}
|
|
|
|
|
2016-03-01 16:21:55 -07:00
|
|
|
// startup_random_data holds random bytes initialized at startup. These come from
|
2014-12-09 15:40:40 -07:00
|
|
|
// the ELF AT_RANDOM auxiliary vector (vdso_linux_amd64.go or os_linux_386.go).
|
|
|
|
var startupRandomData []byte
|
|
|
|
|
|
|
|
// extendRandom extends the random numbers in r[:n] to the whole slice r.
|
|
|
|
// Treats n<0 as n==0.
|
|
|
|
func extendRandom(r []byte, n int) {
|
|
|
|
if n < 0 {
|
|
|
|
n = 0
|
|
|
|
}
|
|
|
|
for n < len(r) {
|
|
|
|
// Extend random bits using hash function & time seed
|
|
|
|
w := n
|
|
|
|
if w > 16 {
|
|
|
|
w = 16
|
|
|
|
}
|
2015-01-06 17:42:48 -07:00
|
|
|
h := memhash(unsafe.Pointer(&r[n-w]), uintptr(nanotime()), uintptr(w))
|
2015-11-11 10:39:30 -07:00
|
|
|
for i := 0; i < sys.PtrSize && n < len(r); i++ {
|
2014-12-09 15:40:40 -07:00
|
|
|
r[n] = byte(h)
|
|
|
|
n++
|
|
|
|
h >>= 8
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2014-11-11 15:05:19 -07:00
|
|
|
|
2017-09-13 16:53:47 -06:00
|
|
|
// A _defer holds an entry on the list of deferred calls.
|
|
|
|
// If you add a field here, add code to clear it in freedefer.
|
2014-11-11 15:05:19 -07:00
|
|
|
type _defer struct {
|
|
|
|
siz int32
|
|
|
|
started bool
|
2014-12-08 15:18:58 -07:00
|
|
|
sp uintptr // sp at time of defer
|
2014-11-11 15:05:19 -07:00
|
|
|
pc uintptr
|
|
|
|
fn *funcval
|
|
|
|
_panic *_panic // panic that is running defer
|
|
|
|
link *_defer
|
|
|
|
}
|
|
|
|
|
2018-03-08 15:48:22 -07:00
|
|
|
// A _panic holds information about an active panic.
|
|
|
|
//
|
|
|
|
// This is marked go:notinheap because _panic values must only ever
|
|
|
|
// live on the stack.
|
|
|
|
//
|
|
|
|
// The argp and link fields are stack pointers, but don't need special
|
|
|
|
// handling during stack growth: because they are pointer-typed and
|
|
|
|
// _panic values only live on the stack, regular stack pointer
|
|
|
|
// adjustment takes care of them.
|
|
|
|
//
|
|
|
|
//go:notinheap
|
2014-11-11 15:05:19 -07:00
|
|
|
type _panic struct {
|
|
|
|
argp unsafe.Pointer // pointer to arguments of deferred call run during panic; cannot move - known to liblink
|
|
|
|
arg interface{} // argument to panic
|
|
|
|
link *_panic // link to earlier panic
|
|
|
|
recovered bool // whether this panic is over
|
|
|
|
aborted bool // the panic was aborted
|
|
|
|
}
|
|
|
|
|
2016-04-13 03:16:21 -06:00
|
|
|
// stack traces
|
2014-11-11 15:05:19 -07:00
|
|
|
type stkframe struct {
|
2017-02-20 20:37:07 -07:00
|
|
|
fn funcInfo // function being run
|
2014-11-11 15:05:19 -07:00
|
|
|
pc uintptr // program counter within fn
|
|
|
|
continpc uintptr // program counter where execution can continue, or 0 if not
|
|
|
|
lr uintptr // program counter at caller aka link register
|
|
|
|
sp uintptr // stack pointer at pc
|
|
|
|
fp uintptr // stack pointer at caller aka frame pointer
|
|
|
|
varp uintptr // top of local variables
|
|
|
|
argp uintptr // pointer to function arguments
|
|
|
|
arglen uintptr // number of bytes at argp
|
|
|
|
argmap *bitvector // force use of this argmap
|
|
|
|
}
|
|
|
|
|
2018-04-03 19:35:46 -06:00
|
|
|
// ancestorInfo records details of where a goroutine was started.
|
|
|
|
type ancestorInfo struct {
|
|
|
|
pcs []uintptr // pcs from the stack of this goroutine
|
|
|
|
goid int64 // goroutine id of this goroutine; original goroutine possibly dead
|
|
|
|
gopc uintptr // pc of go statement that created this goroutine
|
|
|
|
}
|
|
|
|
|
2014-11-11 15:05:19 -07:00
|
|
|
const (
|
2015-04-30 08:32:54 -06:00
|
|
|
_TraceRuntimeFrames = 1 << iota // include frames for internal runtime functions.
|
|
|
|
_TraceTrap // the initial PC, SP are from a trap, not a return PC from a call
|
|
|
|
_TraceJumpStack // if traceback is on a systemstack, resume trace at g that called into it
|
2014-11-11 15:05:19 -07:00
|
|
|
)
|
|
|
|
|
2016-04-13 03:16:21 -06:00
|
|
|
// The maximum number of frames we print for a traceback
|
|
|
|
const _TracebackMaxFrames = 100
|
2014-11-11 15:05:19 -07:00
|
|
|
|
|
|
|
var (
|
2017-08-14 10:56:51 -06:00
|
|
|
allglen uintptr
|
|
|
|
allm *m
|
2017-06-13 09:32:17 -06:00
|
|
|
allp []*p // len(allp) == gomaxprocs; may change at safe points, otherwise immutable
|
|
|
|
allpLock mutex // Protects P-less reads of allp and all writes
|
2017-08-14 10:56:51 -06:00
|
|
|
gomaxprocs int32
|
|
|
|
ncpu int32
|
|
|
|
forcegc forcegcstate
|
|
|
|
sched schedt
|
|
|
|
newprocs int32
|
2015-02-17 04:25:49 -07:00
|
|
|
|
|
|
|
// Information about what cpu features are available.
|
2017-04-24 08:59:33 -06:00
|
|
|
// Set on startup in asm_{386,amd64,amd64p32}.s.
|
2017-04-27 00:30:27 -06:00
|
|
|
// Packages outside the runtime should not use these
|
|
|
|
// as they are not an external api.
|
2018-03-03 11:28:58 -07:00
|
|
|
// TODO: deprecate these; use internal/cpu directly.
|
2017-04-27 00:30:27 -06:00
|
|
|
processorVersionInfo uint32
|
|
|
|
isIntel bool
|
|
|
|
lfenceBeforeRdtsc bool
|
|
|
|
support_erms bool
|
|
|
|
support_osxsave bool
|
|
|
|
support_popcnt bool
|
|
|
|
support_sse2 bool
|
|
|
|
support_sse41 bool
|
2018-04-03 23:15:22 -06:00
|
|
|
|
2016-05-25 12:37:43 -06:00
|
|
|
goarm uint8 // set by cmd/link on arm systems
|
|
|
|
framepointer_enabled bool // set by cmd/link
|
2015-04-09 13:09:52 -06:00
|
|
|
)
|
2015-03-25 18:50:35 -06:00
|
|
|
|
2015-04-09 13:09:52 -06:00
|
|
|
// Set by the linker so the runtime can determine the buildmode.
|
|
|
|
var (
|
|
|
|
islibrary bool // -buildmode=c-shared
|
|
|
|
isarchive bool // -buildmode=c-archive
|
2014-11-11 15:05:19 -07:00
|
|
|
)
|