1
0
mirror of https://github.com/golang/go synced 2024-10-02 08:28:36 -06:00
go/src/runtime/os1_darwin.go

477 lines
11 KiB
Go
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
//extern SigTabTT runtime·sigtab[];
var sigset_all = ^uint32(0)
func unimplemented(name string) {
println(name, "not implemented")
*(*int)(unsafe.Pointer(uintptr(1231))) = 1231
}
//go:nosplit
func semawakeup(mp *m) {
mach_semrelease(uint32(mp.waitsema))
}
//go:nosplit
func semacreate() uintptr {
var x uintptr
[dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack Scalararg and ptrarg are not "signal safe". Go code filling them out can be interrupted by a signal, and then the signal handler runs, and if it also ends up in Go code that uses scalararg or ptrarg, now the old values have been smashed. For the pieces of code that do need to run in a signal handler, we introduced onM_signalok, which is really just onM except that the _signalok is meant to convey that the caller asserts that scalarg and ptrarg will be restored to their old values after the call (instead of the usual behavior, zeroing them). Scalararg and ptrarg are also untyped and therefore error-prone. Go code can always pass a closure instead of using scalararg and ptrarg; they were only really necessary for C code. And there's no more C code. For all these reasons, delete scalararg and ptrarg, converting the few remaining references to use closures. Once those are gone, there is no need for a distinction between onM and onM_signalok, so replace both with a single function equivalent to the current onM_signalok (that is, it can be called on any of the curg, g0, and gsignal stacks). The name onM and the phrase 'm stack' are misnomers, because on most system an M has two system stacks: the main thread stack and the signal handling stack. Correct the misnomer by naming the replacement function systemstack. Fix a few references to "M stack" in code. The main motivation for this change is to eliminate scalararg/ptrarg. Rick and I have already seen them cause problems because the calling sequence m.ptrarg[0] = p is a heap pointer assignment, so it gets a write barrier. The write barrier also uses onM, so it has all the same problems as if it were being invoked by a signal handler. We worked around this by saving and restoring the old values and by calling onM_signalok, but there's no point in keeping this nice home for bugs around any longer. This CL also changes funcline to return the file name as a result instead of filling in a passed-in *string. (The *string signature is left over from when the code was written in and called from C.) That's arguably an unrelated change, except that once I had done the ptrarg/scalararg/onM cleanup I started getting false positives about the *string argument escaping (not allowed in package runtime). The compiler is wrong, but the easiest fix is to write the code like Go code instead of like C code. I am a bit worried that the compiler is wrong because of some use of uninitialized memory in the escape analysis. If that's the reason, it will go away when we convert the compiler to Go. (And if not, we'll debug it the next time.) LGTM=khr R=r, khr CC=austin, golang-codereviews, iant, rlh https://golang.org/cl/174950043
2014-11-12 12:54:31 -07:00
systemstack(func() {
x = uintptr(mach_semcreate())
})
return x
}
// BSD interface for threading.
func osinit() {
// bsdthread_register delayed until end of goenvs so that we
// can look at the environment first.
// Use sysctl to fetch hw.ncpu.
mib := [2]uint32{6, 3}
out := uint32(0)
nout := unsafe.Sizeof(out)
ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0)
if ret >= 0 {
ncpu = int32(out)
}
}
var urandom_dev = []byte("/dev/urandom\x00")
//go:nosplit
func getRandomData(r []byte) {
fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
n := read(fd, unsafe.Pointer(&r[0]), int32(len(r)))
closefd(fd)
extendRandom(r, int(n))
}
func goenvs() {
goenvs_unix()
// Register our thread-creation callback (see sys_darwin_{amd64,386}.s)
// but only if we're not using cgo. If we are using cgo we need
// to let the C pthread library install its own thread-creation callback.
if !iscgo {
if bsdthread_register() != 0 {
if gogetenv("DYLD_INSERT_LIBRARIES") != "" {
throw("runtime: bsdthread_register error (unset DYLD_INSERT_LIBRARIES)")
}
throw("runtime: bsdthread_register error")
}
}
}
// May run with m.p==nil, so write barriers are not allowed.
//go:nowritebarrier
func newosproc(mp *m, stk unsafe.Pointer) {
mp.tls[0] = uintptr(mp.id) // so 386 asm can find it
if false {
print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " id=", mp.id, "/", int(mp.tls[0]), " ostk=", &mp, "\n")
}
var oset uint32
sigprocmask(_SIG_SETMASK, &sigset_all, &oset)
errno := bsdthread_create(stk, unsafe.Pointer(mp), funcPC(mstart))
sigprocmask(_SIG_SETMASK, &oset, nil)
if errno < 0 {
print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -errno, ")\n")
throw("runtime.newosproc")
}
}
// newosproc0 is a version of newosproc that can be called before the runtime
// is initialized.
//
// As Go uses bsdthread_register when running without cgo, this function is
// not safe to use after initialization as it does not pass an M as fnarg.
//
//go:nosplit
func newosproc0(stacksize uintptr, fn unsafe.Pointer, fnarg uintptr) {
stack := sysAlloc(stacksize, &memstats.stacks_sys)
if stack == nil {
write(2, unsafe.Pointer(&failallocatestack[0]), int32(len(failallocatestack)))
exit(1)
}
stk := unsafe.Pointer(uintptr(stack) + stacksize)
var oset uint32
sigprocmask(_SIG_SETMASK, &sigset_all, &oset)
errno := bsdthread_create(stk, fn, fnarg)
sigprocmask(_SIG_SETMASK, &oset, nil)
if errno < 0 {
write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate)))
exit(1)
}
}
var failallocatestack = []byte("runtime: failed to allocate stack for the new OS thread\n")
var failthreadcreate = []byte("runtime: failed to create new OS thread\n")
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
func mpreinit(mp *m) {
mp.gsignal = malg(32 * 1024) // OS X wants >= 8K
mp.gsignal.m = mp
}
runtime: don't always unblock all signals Ian proposed an improved way of handling signals masks in Go, motivated by a problem where the Android java runtime expects certain signals to be blocked for all JVM threads. Discussion here https://groups.google.com/forum/#!topic/golang-dev/_TSCkQHJt6g Ian's text is used in the following: A Go program always needs to have the synchronous signals enabled. These are the signals for which _SigPanic is set in sigtable, namely SIGSEGV, SIGBUS, SIGFPE. A Go program that uses the os/signal package, and calls signal.Notify, needs to have at least one thread which is not blocking that signal, but it doesn't matter much which one. Unix programs do not change signal mask across execve. They inherit signal masks across fork. The shell uses this fact to some extent; for example, the job control signals (SIGTTIN, SIGTTOU, SIGTSTP) are blocked for commands run due to backquote quoting or $(). Our current position on signal masks was not thought out. We wandered into step by step, e.g., http://golang.org/cl/7323067 . This CL does the following: Introduce a new platform hook, msigsave, that saves the signal mask of the current thread to m.sigsave. Call msigsave from needm and newm. In minit grab set up the signal mask from m.sigsave and unblock the essential synchronous signals, and SIGILL, SIGTRAP, SIGPROF, SIGSTKFLT (for systems that have it). In unminit, restore the signal mask from m.sigsave. The first time that os/signal.Notify is called, start a new thread whose only purpose is to update its signal mask to make sure signals for signal.Notify are unblocked on at least one thread. The effect on Go programs will be that if they are invoked with some non-synchronous signals blocked, those signals will normally be ignored. Previously, those signals would mostly be ignored. A change in behaviour will occur for programs started with any of these signals blocked, if they receive the signal: SIGHUP, SIGINT, SIGQUIT, SIGABRT, SIGTERM. Previously those signals would always cause a crash (unless using the os/signal package); with this change, they will be ignored if the program is started with the signal blocked (and does not use the os/signal package). ./all.bash completes successfully on linux/amd64. OpenBSD is missing the implementation. Change-Id: I188098ba7eb85eae4c14861269cc466f2aa40e8c Reviewed-on: https://go-review.googlesource.com/10173 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-05-18 03:00:24 -06:00
func msigsave(mp *m) {
smask := (*uint32)(unsafe.Pointer(&mp.sigmask))
if unsafe.Sizeof(*smask) > unsafe.Sizeof(mp.sigmask) {
throw("insufficient storage for signal mask")
}
sigprocmask(_SIG_SETMASK, nil, smask)
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
func minit() {
// Initialize signal handling.
_g_ := getg()
signalstack(&_g_.m.gsignal.stack)
runtime: don't always unblock all signals Ian proposed an improved way of handling signals masks in Go, motivated by a problem where the Android java runtime expects certain signals to be blocked for all JVM threads. Discussion here https://groups.google.com/forum/#!topic/golang-dev/_TSCkQHJt6g Ian's text is used in the following: A Go program always needs to have the synchronous signals enabled. These are the signals for which _SigPanic is set in sigtable, namely SIGSEGV, SIGBUS, SIGFPE. A Go program that uses the os/signal package, and calls signal.Notify, needs to have at least one thread which is not blocking that signal, but it doesn't matter much which one. Unix programs do not change signal mask across execve. They inherit signal masks across fork. The shell uses this fact to some extent; for example, the job control signals (SIGTTIN, SIGTTOU, SIGTSTP) are blocked for commands run due to backquote quoting or $(). Our current position on signal masks was not thought out. We wandered into step by step, e.g., http://golang.org/cl/7323067 . This CL does the following: Introduce a new platform hook, msigsave, that saves the signal mask of the current thread to m.sigsave. Call msigsave from needm and newm. In minit grab set up the signal mask from m.sigsave and unblock the essential synchronous signals, and SIGILL, SIGTRAP, SIGPROF, SIGSTKFLT (for systems that have it). In unminit, restore the signal mask from m.sigsave. The first time that os/signal.Notify is called, start a new thread whose only purpose is to update its signal mask to make sure signals for signal.Notify are unblocked on at least one thread. The effect on Go programs will be that if they are invoked with some non-synchronous signals blocked, those signals will normally be ignored. Previously, those signals would mostly be ignored. A change in behaviour will occur for programs started with any of these signals blocked, if they receive the signal: SIGHUP, SIGINT, SIGQUIT, SIGABRT, SIGTERM. Previously those signals would always cause a crash (unless using the os/signal package); with this change, they will be ignored if the program is started with the signal blocked (and does not use the os/signal package). ./all.bash completes successfully on linux/amd64. OpenBSD is missing the implementation. Change-Id: I188098ba7eb85eae4c14861269cc466f2aa40e8c Reviewed-on: https://go-review.googlesource.com/10173 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-05-18 03:00:24 -06:00
// restore signal mask from m.sigmask and unblock essential signals
nmask := *(*uint32)(unsafe.Pointer(&_g_.m.sigmask))
for i := range sigtable {
if sigtable[i].flags&_SigUnblock != 0 {
nmask &^= 1 << (uint32(i) - 1)
}
}
sigprocmask(_SIG_SETMASK, &nmask, nil)
}
// Called from dropm to undo the effect of an minit.
func unminit() {
runtime: don't always unblock all signals Ian proposed an improved way of handling signals masks in Go, motivated by a problem where the Android java runtime expects certain signals to be blocked for all JVM threads. Discussion here https://groups.google.com/forum/#!topic/golang-dev/_TSCkQHJt6g Ian's text is used in the following: A Go program always needs to have the synchronous signals enabled. These are the signals for which _SigPanic is set in sigtable, namely SIGSEGV, SIGBUS, SIGFPE. A Go program that uses the os/signal package, and calls signal.Notify, needs to have at least one thread which is not blocking that signal, but it doesn't matter much which one. Unix programs do not change signal mask across execve. They inherit signal masks across fork. The shell uses this fact to some extent; for example, the job control signals (SIGTTIN, SIGTTOU, SIGTSTP) are blocked for commands run due to backquote quoting or $(). Our current position on signal masks was not thought out. We wandered into step by step, e.g., http://golang.org/cl/7323067 . This CL does the following: Introduce a new platform hook, msigsave, that saves the signal mask of the current thread to m.sigsave. Call msigsave from needm and newm. In minit grab set up the signal mask from m.sigsave and unblock the essential synchronous signals, and SIGILL, SIGTRAP, SIGPROF, SIGSTKFLT (for systems that have it). In unminit, restore the signal mask from m.sigsave. The first time that os/signal.Notify is called, start a new thread whose only purpose is to update its signal mask to make sure signals for signal.Notify are unblocked on at least one thread. The effect on Go programs will be that if they are invoked with some non-synchronous signals blocked, those signals will normally be ignored. Previously, those signals would mostly be ignored. A change in behaviour will occur for programs started with any of these signals blocked, if they receive the signal: SIGHUP, SIGINT, SIGQUIT, SIGABRT, SIGTERM. Previously those signals would always cause a crash (unless using the os/signal package); with this change, they will be ignored if the program is started with the signal blocked (and does not use the os/signal package). ./all.bash completes successfully on linux/amd64. OpenBSD is missing the implementation. Change-Id: I188098ba7eb85eae4c14861269cc466f2aa40e8c Reviewed-on: https://go-review.googlesource.com/10173 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-05-18 03:00:24 -06:00
_g_ := getg()
smask := (*uint32)(unsafe.Pointer(&_g_.m.sigmask))
sigprocmask(_SIG_SETMASK, smask, nil)
signalstack(nil)
}
// Mach IPC, to get at semaphores
// Definitions are in /usr/include/mach on a Mac.
func macherror(r int32, fn string) {
print("mach error ", fn, ": ", r, "\n")
throw("mach error")
}
const _DebugMach = false
var zerondr machndr
func mach_msgh_bits(a, b uint32) uint32 {
return a | b<<8
}
func mach_msg(h *machheader, op int32, send_size, rcv_size, rcv_name, timeout, notify uint32) int32 {
// TODO: Loop on interrupt.
return mach_msg_trap(unsafe.Pointer(h), op, send_size, rcv_size, rcv_name, timeout, notify)
}
// Mach RPC (MIG)
const (
_MinMachMsg = 48
_MachReply = 100
)
type codemsg struct {
h machheader
ndr machndr
code int32
}
func machcall(h *machheader, maxsize int32, rxsize int32) int32 {
_g_ := getg()
port := _g_.m.machport
if port == 0 {
port = mach_reply_port()
_g_.m.machport = port
}
h.msgh_bits |= mach_msgh_bits(_MACH_MSG_TYPE_COPY_SEND, _MACH_MSG_TYPE_MAKE_SEND_ONCE)
h.msgh_local_port = port
h.msgh_reserved = 0
id := h.msgh_id
if _DebugMach {
p := (*[10000]unsafe.Pointer)(unsafe.Pointer(h))
print("send:\t")
var i uint32
for i = 0; i < h.msgh_size/uint32(unsafe.Sizeof(p[0])); i++ {
print(" ", p[i])
if i%8 == 7 {
print("\n\t")
}
}
if i%8 != 0 {
print("\n")
}
}
ret := mach_msg(h, _MACH_SEND_MSG|_MACH_RCV_MSG, h.msgh_size, uint32(maxsize), port, 0, 0)
if ret != 0 {
if _DebugMach {
print("mach_msg error ", ret, "\n")
}
return ret
}
if _DebugMach {
p := (*[10000]unsafe.Pointer)(unsafe.Pointer(h))
var i uint32
for i = 0; i < h.msgh_size/uint32(unsafe.Sizeof(p[0])); i++ {
print(" ", p[i])
if i%8 == 7 {
print("\n\t")
}
}
if i%8 != 0 {
print("\n")
}
}
if h.msgh_id != id+_MachReply {
if _DebugMach {
print("mach_msg _MachReply id mismatch ", h.msgh_id, " != ", id+_MachReply, "\n")
}
return -303 // MIG_REPLY_MISMATCH
}
// Look for a response giving the return value.
// Any call can send this back with an error,
// and some calls only have return values so they
// send it back on success too. I don't quite see how
// you know it's one of these and not the full response
// format, so just look if the message is right.
c := (*codemsg)(unsafe.Pointer(h))
if uintptr(h.msgh_size) == unsafe.Sizeof(*c) && h.msgh_bits&_MACH_MSGH_BITS_COMPLEX == 0 {
if _DebugMach {
print("mig result ", c.code, "\n")
}
return c.code
}
if h.msgh_size != uint32(rxsize) {
if _DebugMach {
print("mach_msg _MachReply size mismatch ", h.msgh_size, " != ", rxsize, "\n")
}
return -307 // MIG_ARRAY_TOO_LARGE
}
return 0
}
// Semaphores!
const (
tmach_semcreate = 3418
rmach_semcreate = tmach_semcreate + _MachReply
tmach_semdestroy = 3419
rmach_semdestroy = tmach_semdestroy + _MachReply
_KERN_ABORTED = 14
_KERN_OPERATION_TIMED_OUT = 49
)
type tmach_semcreatemsg struct {
h machheader
ndr machndr
policy int32
value int32
}
type rmach_semcreatemsg struct {
h machheader
body machbody
semaphore machport
}
type tmach_semdestroymsg struct {
h machheader
body machbody
semaphore machport
}
func mach_semcreate() uint32 {
var m [256]uint8
tx := (*tmach_semcreatemsg)(unsafe.Pointer(&m))
rx := (*rmach_semcreatemsg)(unsafe.Pointer(&m))
tx.h.msgh_bits = 0
tx.h.msgh_size = uint32(unsafe.Sizeof(*tx))
tx.h.msgh_remote_port = mach_task_self()
tx.h.msgh_id = tmach_semcreate
tx.ndr = zerondr
tx.policy = 0 // 0 = SYNC_POLICY_FIFO
tx.value = 0
for {
r := machcall(&tx.h, int32(unsafe.Sizeof(m)), int32(unsafe.Sizeof(*rx)))
if r == 0 {
break
}
if r == _KERN_ABORTED { // interrupted
continue
}
macherror(r, "semaphore_create")
}
if rx.body.msgh_descriptor_count != 1 {
unimplemented("mach_semcreate desc count")
}
return rx.semaphore.name
}
func mach_semdestroy(sem uint32) {
var m [256]uint8
tx := (*tmach_semdestroymsg)(unsafe.Pointer(&m))
tx.h.msgh_bits = _MACH_MSGH_BITS_COMPLEX
tx.h.msgh_size = uint32(unsafe.Sizeof(*tx))
tx.h.msgh_remote_port = mach_task_self()
tx.h.msgh_id = tmach_semdestroy
tx.body.msgh_descriptor_count = 1
tx.semaphore.name = sem
tx.semaphore.disposition = _MACH_MSG_TYPE_MOVE_SEND
tx.semaphore._type = 0
for {
r := machcall(&tx.h, int32(unsafe.Sizeof(m)), 0)
if r == 0 {
break
}
if r == _KERN_ABORTED { // interrupted
continue
}
macherror(r, "semaphore_destroy")
}
}
// The other calls have simple system call traps in sys_darwin_{amd64,386}.s
func mach_semaphore_wait(sema uint32) int32
func mach_semaphore_timedwait(sema, sec, nsec uint32) int32
func mach_semaphore_signal(sema uint32) int32
func mach_semaphore_signal_all(sema uint32) int32
func semasleep1(ns int64) int32 {
_g_ := getg()
if ns >= 0 {
var nsecs int32
secs := timediv(ns, 1000000000, &nsecs)
r := mach_semaphore_timedwait(uint32(_g_.m.waitsema), uint32(secs), uint32(nsecs))
if r == _KERN_ABORTED || r == _KERN_OPERATION_TIMED_OUT {
return -1
}
if r != 0 {
macherror(r, "semaphore_wait")
}
return 0
}
for {
r := mach_semaphore_wait(uint32(_g_.m.waitsema))
if r == 0 {
break
}
if r == _KERN_ABORTED { // interrupted
continue
}
macherror(r, "semaphore_wait")
}
return 0
}
//go:nosplit
func semasleep(ns int64) int32 {
var r int32
[dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack Scalararg and ptrarg are not "signal safe". Go code filling them out can be interrupted by a signal, and then the signal handler runs, and if it also ends up in Go code that uses scalararg or ptrarg, now the old values have been smashed. For the pieces of code that do need to run in a signal handler, we introduced onM_signalok, which is really just onM except that the _signalok is meant to convey that the caller asserts that scalarg and ptrarg will be restored to their old values after the call (instead of the usual behavior, zeroing them). Scalararg and ptrarg are also untyped and therefore error-prone. Go code can always pass a closure instead of using scalararg and ptrarg; they were only really necessary for C code. And there's no more C code. For all these reasons, delete scalararg and ptrarg, converting the few remaining references to use closures. Once those are gone, there is no need for a distinction between onM and onM_signalok, so replace both with a single function equivalent to the current onM_signalok (that is, it can be called on any of the curg, g0, and gsignal stacks). The name onM and the phrase 'm stack' are misnomers, because on most system an M has two system stacks: the main thread stack and the signal handling stack. Correct the misnomer by naming the replacement function systemstack. Fix a few references to "M stack" in code. The main motivation for this change is to eliminate scalararg/ptrarg. Rick and I have already seen them cause problems because the calling sequence m.ptrarg[0] = p is a heap pointer assignment, so it gets a write barrier. The write barrier also uses onM, so it has all the same problems as if it were being invoked by a signal handler. We worked around this by saving and restoring the old values and by calling onM_signalok, but there's no point in keeping this nice home for bugs around any longer. This CL also changes funcline to return the file name as a result instead of filling in a passed-in *string. (The *string signature is left over from when the code was written in and called from C.) That's arguably an unrelated change, except that once I had done the ptrarg/scalararg/onM cleanup I started getting false positives about the *string argument escaping (not allowed in package runtime). The compiler is wrong, but the easiest fix is to write the code like Go code instead of like C code. I am a bit worried that the compiler is wrong because of some use of uninitialized memory in the escape analysis. If that's the reason, it will go away when we convert the compiler to Go. (And if not, we'll debug it the next time.) LGTM=khr R=r, khr CC=austin, golang-codereviews, iant, rlh https://golang.org/cl/174950043
2014-11-12 12:54:31 -07:00
systemstack(func() {
r = semasleep1(ns)
})
return r
}
//go:nosplit
func mach_semrelease(sem uint32) {
for {
r := mach_semaphore_signal(sem)
if r == 0 {
break
}
if r == _KERN_ABORTED { // interrupted
continue
}
// mach_semrelease must be completely nosplit,
// because it is called from Go code.
[dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack Scalararg and ptrarg are not "signal safe". Go code filling them out can be interrupted by a signal, and then the signal handler runs, and if it also ends up in Go code that uses scalararg or ptrarg, now the old values have been smashed. For the pieces of code that do need to run in a signal handler, we introduced onM_signalok, which is really just onM except that the _signalok is meant to convey that the caller asserts that scalarg and ptrarg will be restored to their old values after the call (instead of the usual behavior, zeroing them). Scalararg and ptrarg are also untyped and therefore error-prone. Go code can always pass a closure instead of using scalararg and ptrarg; they were only really necessary for C code. And there's no more C code. For all these reasons, delete scalararg and ptrarg, converting the few remaining references to use closures. Once those are gone, there is no need for a distinction between onM and onM_signalok, so replace both with a single function equivalent to the current onM_signalok (that is, it can be called on any of the curg, g0, and gsignal stacks). The name onM and the phrase 'm stack' are misnomers, because on most system an M has two system stacks: the main thread stack and the signal handling stack. Correct the misnomer by naming the replacement function systemstack. Fix a few references to "M stack" in code. The main motivation for this change is to eliminate scalararg/ptrarg. Rick and I have already seen them cause problems because the calling sequence m.ptrarg[0] = p is a heap pointer assignment, so it gets a write barrier. The write barrier also uses onM, so it has all the same problems as if it were being invoked by a signal handler. We worked around this by saving and restoring the old values and by calling onM_signalok, but there's no point in keeping this nice home for bugs around any longer. This CL also changes funcline to return the file name as a result instead of filling in a passed-in *string. (The *string signature is left over from when the code was written in and called from C.) That's arguably an unrelated change, except that once I had done the ptrarg/scalararg/onM cleanup I started getting false positives about the *string argument escaping (not allowed in package runtime). The compiler is wrong, but the easiest fix is to write the code like Go code instead of like C code. I am a bit worried that the compiler is wrong because of some use of uninitialized memory in the escape analysis. If that's the reason, it will go away when we convert the compiler to Go. (And if not, we'll debug it the next time.) LGTM=khr R=r, khr CC=austin, golang-codereviews, iant, rlh https://golang.org/cl/174950043
2014-11-12 12:54:31 -07:00
// If we're going to die, start that process on the system stack
// to avoid a Go stack split.
[dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack Scalararg and ptrarg are not "signal safe". Go code filling them out can be interrupted by a signal, and then the signal handler runs, and if it also ends up in Go code that uses scalararg or ptrarg, now the old values have been smashed. For the pieces of code that do need to run in a signal handler, we introduced onM_signalok, which is really just onM except that the _signalok is meant to convey that the caller asserts that scalarg and ptrarg will be restored to their old values after the call (instead of the usual behavior, zeroing them). Scalararg and ptrarg are also untyped and therefore error-prone. Go code can always pass a closure instead of using scalararg and ptrarg; they were only really necessary for C code. And there's no more C code. For all these reasons, delete scalararg and ptrarg, converting the few remaining references to use closures. Once those are gone, there is no need for a distinction between onM and onM_signalok, so replace both with a single function equivalent to the current onM_signalok (that is, it can be called on any of the curg, g0, and gsignal stacks). The name onM and the phrase 'm stack' are misnomers, because on most system an M has two system stacks: the main thread stack and the signal handling stack. Correct the misnomer by naming the replacement function systemstack. Fix a few references to "M stack" in code. The main motivation for this change is to eliminate scalararg/ptrarg. Rick and I have already seen them cause problems because the calling sequence m.ptrarg[0] = p is a heap pointer assignment, so it gets a write barrier. The write barrier also uses onM, so it has all the same problems as if it were being invoked by a signal handler. We worked around this by saving and restoring the old values and by calling onM_signalok, but there's no point in keeping this nice home for bugs around any longer. This CL also changes funcline to return the file name as a result instead of filling in a passed-in *string. (The *string signature is left over from when the code was written in and called from C.) That's arguably an unrelated change, except that once I had done the ptrarg/scalararg/onM cleanup I started getting false positives about the *string argument escaping (not allowed in package runtime). The compiler is wrong, but the easiest fix is to write the code like Go code instead of like C code. I am a bit worried that the compiler is wrong because of some use of uninitialized memory in the escape analysis. If that's the reason, it will go away when we convert the compiler to Go. (And if not, we'll debug it the next time.) LGTM=khr R=r, khr CC=austin, golang-codereviews, iant, rlh https://golang.org/cl/174950043
2014-11-12 12:54:31 -07:00
systemstack(func() { macherror(r, "semaphore_signal") })
}
}
//go:nosplit
func osyield() {
usleep(1)
}
func memlimit() uintptr {
// NOTE(rsc): Could use getrlimit here,
// like on FreeBSD or Linux, but Darwin doesn't enforce
// ulimit -v, so it's unclear why we'd try to stay within
// the limit.
return 0
}
func setsig(i int32, fn uintptr, restart bool) {
var sa sigactiont
memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK
if restart {
sa.sa_flags |= _SA_RESTART
}
sa.sa_mask = ^uint32(0)
sa.sa_tramp = unsafe.Pointer(funcPC(sigtramp)) // runtime·sigtramp's job is to call into real handler
*(*uintptr)(unsafe.Pointer(&sa.__sigaction_u)) = fn
sigaction(uint32(i), &sa, nil)
}
func setsigstack(i int32) {
throw("setsigstack")
}
func getsig(i int32) uintptr {
var sa sigactiont
memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
sigaction(uint32(i), nil, &sa)
return *(*uintptr)(unsafe.Pointer(&sa.__sigaction_u))
}
func signalstack(s *stack) {
var st stackt
if s == nil {
st.ss_flags = _SS_DISABLE
} else {
st.ss_sp = (*byte)(unsafe.Pointer(s.lo))
st.ss_size = s.hi - s.lo
st.ss_flags = 0
}
sigaltstack(&st, nil)
}
runtime: don't always unblock all signals Ian proposed an improved way of handling signals masks in Go, motivated by a problem where the Android java runtime expects certain signals to be blocked for all JVM threads. Discussion here https://groups.google.com/forum/#!topic/golang-dev/_TSCkQHJt6g Ian's text is used in the following: A Go program always needs to have the synchronous signals enabled. These are the signals for which _SigPanic is set in sigtable, namely SIGSEGV, SIGBUS, SIGFPE. A Go program that uses the os/signal package, and calls signal.Notify, needs to have at least one thread which is not blocking that signal, but it doesn't matter much which one. Unix programs do not change signal mask across execve. They inherit signal masks across fork. The shell uses this fact to some extent; for example, the job control signals (SIGTTIN, SIGTTOU, SIGTSTP) are blocked for commands run due to backquote quoting or $(). Our current position on signal masks was not thought out. We wandered into step by step, e.g., http://golang.org/cl/7323067 . This CL does the following: Introduce a new platform hook, msigsave, that saves the signal mask of the current thread to m.sigsave. Call msigsave from needm and newm. In minit grab set up the signal mask from m.sigsave and unblock the essential synchronous signals, and SIGILL, SIGTRAP, SIGPROF, SIGSTKFLT (for systems that have it). In unminit, restore the signal mask from m.sigsave. The first time that os/signal.Notify is called, start a new thread whose only purpose is to update its signal mask to make sure signals for signal.Notify are unblocked on at least one thread. The effect on Go programs will be that if they are invoked with some non-synchronous signals blocked, those signals will normally be ignored. Previously, those signals would mostly be ignored. A change in behaviour will occur for programs started with any of these signals blocked, if they receive the signal: SIGHUP, SIGINT, SIGQUIT, SIGABRT, SIGTERM. Previously those signals would always cause a crash (unless using the os/signal package); with this change, they will be ignored if the program is started with the signal blocked (and does not use the os/signal package). ./all.bash completes successfully on linux/amd64. OpenBSD is missing the implementation. Change-Id: I188098ba7eb85eae4c14861269cc466f2aa40e8c Reviewed-on: https://go-review.googlesource.com/10173 Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-05-18 03:00:24 -06:00
func updatesigmask(m sigmask) {
sigprocmask(_SIG_SETMASK, &m[0], nil)
}
func unblocksig(sig int32) {
mask := uint32(1) << (uint32(sig) - 1)
sigprocmask(_SIG_UNBLOCK, &mask, nil)
}