xenocara/xserver/include/inputstr.h

599 lines
20 KiB
C

/************************************************************
Copyright 1987, 1998 The Open Group
Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that
the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting
documentation.
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of The Open Group shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from The Open Group.
Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Digital not be
used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.
********************************************************/
#ifndef INPUTSTRUCT_H
#define INPUTSTRUCT_H
#include "input.h"
#include "window.h"
#include "dixstruct.h"
#include "cursorstr.h"
#include "geext.h"
#include "privates.h"
#define BitIsOn(ptr, bit) (((BYTE *) (ptr))[(bit)>>3] & (1 << ((bit) & 7)))
#define SetBit(ptr, bit) (((BYTE *) (ptr))[(bit)>>3] |= (1 << ((bit) & 7)))
#define ClearBit(ptr, bit) (((BYTE *)(ptr))[(bit)>>3] &= ~(1 << ((bit) & 7)))
#define SameClient(obj,client) \
(CLIENT_BITS((obj)->resource) == (client)->clientAsMask)
#define EMASKSIZE MAXDEVICES + 2
/* This is the last XI2 event supported by the server. If you add
* events to the protocol, the server will not support these events until
* this number here is bumped.
*/
#define XI2LASTEVENT 17 /* XI_RawMotion */
#define XI2MASKSIZE ((XI2LASTEVENT + 7)/8) /* no of bits for masks */
/**
* This struct stores the core event mask for each client except the client
* that created the window.
*
* Each window that has events selected from other clients has at least one of
* these masks. If multiple clients selected for events on the same window,
* these masks are in a linked list.
*
* The event mask for the client that created the window is stored in
* win->eventMask instead.
*
* The resource id is simply a fake client ID to associate this mask with a
* client.
*
* Kludge: OtherClients and InputClients must be compatible, see code.
*/
typedef struct _OtherClients {
OtherClientsPtr next; /**< Pointer to the next mask */
XID resource; /**< id for putting into resource manager */
Mask mask; /**< Core event mask */
} OtherClients;
/**
* This struct stores the XI event mask for each client.
*
* Each window that has events selected has at least one of these masks. If
* multiple client selected for events on the same window, these masks are in
* a linked list.
*/
typedef struct _InputClients {
InputClientsPtr next; /**< Pointer to the next mask */
XID resource; /**< id for putting into resource manager */
Mask mask[EMASKSIZE]; /**< Actual XI event mask, deviceid is index */
/** XI2 event masks. One per device, each bit is a mask of (1 << type) */
unsigned char xi2mask[EMASKSIZE][XI2MASKSIZE];
} InputClients;
/**
* Combined XI event masks from all devices.
*
* This is the XI equivalent of the deliverableEvents, eventMask and
* dontPropagate mask of the WindowRec (or WindowOptRec).
*
* A window that has an XI client selecting for events has exactly one
* OtherInputMasks struct and exactly one InputClients struct hanging off
* inputClients. Each further client appends to the inputClients list.
* Each Mask field is per-device, with the device id as the index.
* Exception: for non-device events (Presence events), the MAXDEVICES
* deviceid is used.
*/
typedef struct _OtherInputMasks {
/**
* Bitwise OR of all masks by all clients and the window's parent's masks.
*/
Mask deliverableEvents[EMASKSIZE];
/**
* Bitwise OR of all masks by all clients on this window.
*/
Mask inputEvents[EMASKSIZE];
/** The do-not-propagate masks for each device. */
Mask dontPropagateMask[EMASKSIZE];
/** The clients that selected for events */
InputClientsPtr inputClients;
/* XI2 event masks. One per device, each bit is a mask of (1 << type) */
unsigned char xi2mask[EMASKSIZE][XI2MASKSIZE];
} OtherInputMasks;
/*
* The following structure gets used for both active and passive grabs. For
* active grabs some of the fields (e.g. modifiers) are not used. However,
* that is not much waste since there aren't many active grabs (one per
* keyboard/pointer device) going at once in the server.
*/
#define MasksPerDetailMask 8 /* 256 keycodes and 256 possible
modifier combinations, but only
3 buttons. */
typedef struct _DetailRec { /* Grab details may be bit masks */
unsigned int exact;
Mask *pMask;
} DetailRec;
typedef enum {
GRABTYPE_CORE,
GRABTYPE_XI,
GRABTYPE_XI2
} GrabType;
union _GrabMask {
Mask core;
Mask xi;
char xi2mask[EMASKSIZE][XI2MASKSIZE];
};
/**
* Central struct for device grabs.
* The same struct is used for both core grabs and device grabs, with
* different fields being set.
* If the grab is a core grab (GrabPointer/GrabKeyboard), then the eventMask
* is a combination of standard event masks (i.e. PointerMotionMask |
* ButtonPressMask).
* If the grab is a device grab (GrabDevice), then the eventMask is a
* combination of event masks for a given XI event type (see SetEventInfo).
*
* If the grab is a result of a ButtonPress, then eventMask is the core mask
* and deviceMask is set to the XI event mask for the grab.
*/
typedef struct _GrabRec {
GrabPtr next; /* for chain of passive grabs */
XID resource;
DeviceIntPtr device;
WindowPtr window;
unsigned ownerEvents:1;
unsigned keyboardMode:1;
unsigned pointerMode:1;
GrabType grabtype;
CARD8 type; /* event type */
DetailRec modifiersDetail;
DeviceIntPtr modifierDevice;
DetailRec detail; /* key or button */
WindowPtr confineTo; /* always NULL for keyboards */
CursorPtr cursor; /* always NULL for keyboards */
Mask eventMask;
Mask deviceMask;
/* XI2 event masks. One per device, each bit is a mask of (1 << type) */
unsigned char xi2mask[EMASKSIZE][XI2MASKSIZE];
} GrabRec;
typedef struct _KeyClassRec {
int sourceid;
CARD8 down[DOWN_LENGTH];
CARD8 postdown[DOWN_LENGTH];
int modifierKeyCount[8];
struct _XkbSrvInfo *xkbInfo;
} KeyClassRec, *KeyClassPtr;
typedef struct _AxisInfo {
int resolution;
int min_resolution;
int max_resolution;
int min_value;
int max_value;
Atom label;
} AxisInfo, *AxisInfoPtr;
typedef struct _ValuatorAccelerationRec {
int number;
PointerAccelSchemeProc AccelSchemeProc;
void *accelData; /* at disposal of AccelScheme */
DeviceCallbackProc AccelCleanupProc;
} ValuatorAccelerationRec, *ValuatorAccelerationPtr;
typedef struct _ValuatorClassRec {
int sourceid;
int numMotionEvents;
int first_motion;
int last_motion;
void *motion; /* motion history buffer. Different layout
for MDs and SDs!*/
WindowPtr motionHintWindow;
AxisInfoPtr axes;
unsigned short numAxes;
double *axisVal; /* always absolute, but device-coord system */
CARD8 mode;
ValuatorAccelerationRec accelScheme;
} ValuatorClassRec, *ValuatorClassPtr;
typedef struct _ButtonClassRec {
int sourceid;
CARD8 numButtons;
CARD8 buttonsDown; /* number of buttons currently down
This counts logical buttons, not
physical ones, i.e if some buttons
are mapped to 0, they're not counted
here */
unsigned short state;
Mask motionMask;
CARD8 down[DOWN_LENGTH];
CARD8 postdown[DOWN_LENGTH];
CARD8 map[MAP_LENGTH];
union _XkbAction *xkb_acts;
Atom labels[MAX_BUTTONS];
} ButtonClassRec, *ButtonClassPtr;
typedef struct _FocusClassRec {
int sourceid;
WindowPtr win; /* May be set to a int constant (e.g. PointerRootWin)! */
int revert;
TimeStamp time;
WindowPtr *trace;
int traceSize;
int traceGood;
} FocusClassRec, *FocusClassPtr;
typedef struct _ProximityClassRec {
int sourceid;
char pad;
} ProximityClassRec, *ProximityClassPtr;
typedef struct _AbsoluteClassRec {
int sourceid;
/* Calibration. */
int min_x;
int max_x;
int min_y;
int max_y;
int flip_x;
int flip_y;
int rotation;
int button_threshold;
/* Area. */
int offset_x;
int offset_y;
int width;
int height;
int screen;
XID following;
} AbsoluteClassRec, *AbsoluteClassPtr;
typedef struct _KbdFeedbackClassRec *KbdFeedbackPtr;
typedef struct _PtrFeedbackClassRec *PtrFeedbackPtr;
typedef struct _IntegerFeedbackClassRec *IntegerFeedbackPtr;
typedef struct _StringFeedbackClassRec *StringFeedbackPtr;
typedef struct _BellFeedbackClassRec *BellFeedbackPtr;
typedef struct _LedFeedbackClassRec *LedFeedbackPtr;
typedef struct _KbdFeedbackClassRec {
BellProcPtr BellProc;
KbdCtrlProcPtr CtrlProc;
KeybdCtrl ctrl;
KbdFeedbackPtr next;
struct _XkbSrvLedInfo *xkb_sli;
} KbdFeedbackClassRec;
typedef struct _PtrFeedbackClassRec {
PtrCtrlProcPtr CtrlProc;
PtrCtrl ctrl;
PtrFeedbackPtr next;
} PtrFeedbackClassRec;
typedef struct _IntegerFeedbackClassRec {
IntegerCtrlProcPtr CtrlProc;
IntegerCtrl ctrl;
IntegerFeedbackPtr next;
} IntegerFeedbackClassRec;
typedef struct _StringFeedbackClassRec {
StringCtrlProcPtr CtrlProc;
StringCtrl ctrl;
StringFeedbackPtr next;
} StringFeedbackClassRec;
typedef struct _BellFeedbackClassRec {
BellProcPtr BellProc;
BellCtrlProcPtr CtrlProc;
BellCtrl ctrl;
BellFeedbackPtr next;
} BellFeedbackClassRec;
typedef struct _LedFeedbackClassRec {
LedCtrlProcPtr CtrlProc;
LedCtrl ctrl;
LedFeedbackPtr next;
struct _XkbSrvLedInfo *xkb_sli;
} LedFeedbackClassRec;
typedef struct _ClassesRec {
KeyClassPtr key;
ValuatorClassPtr valuator;
ButtonClassPtr button;
FocusClassPtr focus;
ProximityClassPtr proximity;
AbsoluteClassPtr absolute;
KbdFeedbackPtr kbdfeed;
PtrFeedbackPtr ptrfeed;
IntegerFeedbackPtr intfeed;
StringFeedbackPtr stringfeed;
BellFeedbackPtr bell;
LedFeedbackPtr leds;
} ClassesRec;
/**
* Sprite information for a device.
*/
typedef struct {
CursorPtr current;
BoxRec hotLimits; /* logical constraints of hot spot */
Bool confined; /* confined to screen */
RegionPtr hotShape; /* additional logical shape constraint */
BoxRec physLimits; /* physical constraints of hot spot */
WindowPtr win; /* window of logical position */
HotSpot hot; /* logical pointer position */
HotSpot hotPhys; /* physical pointer position */
#ifdef PANORAMIX
ScreenPtr screen; /* all others are in Screen 0 coordinates */
RegionRec Reg1; /* Region 1 for confining motion */
RegionRec Reg2; /* Region 2 for confining virtual motion */
WindowPtr windows[MAXSCREENS];
WindowPtr confineWin; /* confine window */
#endif
/* The window trace information is used at dix/events.c to avoid having
* to compute all the windows between the root and the current pointer
* window each time a button or key goes down. The grabs on each of those
* windows must be checked.
* spriteTraces should only be used at dix/events.c! */
WindowPtr *spriteTrace;
int spriteTraceSize;
int spriteTraceGood;
/* Due to delays between event generation and event processing, it is
* possible that the pointer has crossed screen boundaries between the
* time in which it begins generating events and the time when
* those events are processed.
*
* pEnqueueScreen: screen the pointer was on when the event was generated
* pDequeueScreen: screen the pointer was on when the event is processed
*/
ScreenPtr pEnqueueScreen;
ScreenPtr pDequeueScreen;
} SpriteRec, *SpritePtr;
/* Device properties */
typedef struct _XIPropertyValue
{
Atom type; /* ignored by server */
short format; /* format of data for swapping - 8,16,32 */
long size; /* size of data in (format/8) bytes */
pointer data; /* private to client */
} XIPropertyValueRec;
typedef struct _XIProperty
{
struct _XIProperty *next;
Atom propertyName;
BOOL deletable; /* clients can delete this prop? */
XIPropertyValueRec value;
} XIPropertyRec;
typedef XIPropertyRec *XIPropertyPtr;
typedef XIPropertyValueRec *XIPropertyValuePtr;
typedef struct _XIPropertyHandler
{
struct _XIPropertyHandler* next;
long id;
int (*SetProperty) (DeviceIntPtr dev,
Atom property,
XIPropertyValuePtr prop,
BOOL checkonly);
int (*GetProperty) (DeviceIntPtr dev,
Atom property);
int (*DeleteProperty) (DeviceIntPtr dev,
Atom property);
} XIPropertyHandler, *XIPropertyHandlerPtr;
/* states for devices */
#define NOT_GRABBED 0
#define THAWED 1
#define THAWED_BOTH 2 /* not a real state */
#define FREEZE_NEXT_EVENT 3
#define FREEZE_BOTH_NEXT_EVENT 4
#define FROZEN 5 /* any state >= has device frozen */
#define FROZEN_NO_EVENT 5
#define FROZEN_WITH_EVENT 6
#define THAW_OTHERS 7
typedef struct _GrabInfoRec {
TimeStamp grabTime;
Bool fromPassiveGrab; /* true if from passive grab */
Bool implicitGrab; /* implicit from ButtonPress */
GrabRec activeGrab;
GrabPtr grab;
CARD8 activatingKey;
void (*ActivateGrab) (
DeviceIntPtr /*device*/,
GrabPtr /*grab*/,
TimeStamp /*time*/,
Bool /*autoGrab*/);
void (*DeactivateGrab)(
DeviceIntPtr /*device*/);
struct {
Bool frozen;
int state;
GrabPtr other; /* if other grab has this frozen */
DeviceEvent *event; /* saved to be replayed */
} sync;
} GrabInfoRec, *GrabInfoPtr;
typedef struct _SpriteInfoRec {
/* sprite must always point to a valid sprite. For devices sharing the
* sprite, let sprite point to a paired spriteOwner's sprite. */
SpritePtr sprite; /* sprite information */
Bool spriteOwner; /* True if device owns the sprite */
DeviceIntPtr paired; /* The paired device. Keyboard if
spriteOwner is TRUE, otherwise the
pointer that owns the sprite. */
} SpriteInfoRec, *SpriteInfoPtr;
/* device types */
#define MASTER_POINTER 1
#define MASTER_KEYBOARD 2
#define SLAVE 3
typedef struct _DeviceIntRec {
DeviceRec public;
DeviceIntPtr next;
Bool startup; /* true if needs to be turned on at
server intialization time */
DeviceProc deviceProc; /* proc(DevicePtr, DEVICE_xx). It is
used to initialize, turn on, or
turn off the device */
Bool inited; /* TRUE if INIT returns Success */
Bool enabled; /* TRUE if ON returns Success */
Bool coreEvents; /* TRUE if device also sends core */
GrabInfoRec deviceGrab; /* grab on the device */
int type; /* MASTER_POINTER, MASTER_KEYBOARD, SLAVE */
Atom xinput_type;
char *name;
int id;
KeyClassPtr key;
ValuatorClassPtr valuator;
ButtonClassPtr button;
FocusClassPtr focus;
ProximityClassPtr proximity;
AbsoluteClassPtr absolute;
KbdFeedbackPtr kbdfeed;
PtrFeedbackPtr ptrfeed;
IntegerFeedbackPtr intfeed;
StringFeedbackPtr stringfeed;
BellFeedbackPtr bell;
LedFeedbackPtr leds;
struct _XkbInterest *xkb_interest;
char *config_info; /* used by the hotplug layer */
PrivateRec *devPrivates;
int nPrivates;
DeviceUnwrapProc unwrapProc;
SpriteInfoPtr spriteInfo;
union {
DeviceIntPtr master; /* master device */
DeviceIntPtr lastSlave; /* last slave device used */
} u;
/* last valuator values recorded, not posted to client;
* for slave devices, valuators is in device coordinates
* for master devices, valuators is in screen coordinates
* see dix/getevents.c
* remainder supports acceleration
*/
struct {
int valuators[MAX_VALUATORS];
float remainder[MAX_VALUATORS];
int numValuators;
DeviceIntPtr slave;
} last;
/* Input device property handling. */
struct {
XIPropertyPtr properties;
XIPropertyHandlerPtr handlers; /* NULL-terminated */
} properties;
} DeviceIntRec;
typedef struct {
int numDevices; /* total number of devices */
DeviceIntPtr devices; /* all devices turned on */
DeviceIntPtr off_devices; /* all devices turned off */
DeviceIntPtr keyboard; /* the main one for the server */
DeviceIntPtr pointer;
DeviceIntPtr all_devices;
DeviceIntPtr all_master_devices;
} InputInfo;
extern _X_EXPORT InputInfo inputInfo;
/* for keeping the events for devices grabbed synchronously */
typedef struct _QdEvent *QdEventPtr;
typedef struct _QdEvent {
QdEventPtr next;
DeviceIntPtr device;
ScreenPtr pScreen; /* what screen the pointer was on */
unsigned long months; /* milliseconds is in the event */
InternalEvent *event;
} QdEventRec;
/**
* syncEvents is the global structure for queued events.
*
* Devices can be frozen through GrabModeSync pointer grabs. If this is the
* case, events from these devices are added to "pending" instead of being
* processed normally. When the device is unfrozen, events in "pending" are
* replayed and processed as if they would come from the device directly.
*/
typedef struct _EventSyncInfo {
QdEventPtr pending, /**< list of queued events */
*pendtail; /**< last event in list */
/** The device to replay events for. Only set in AllowEvents(), in which
* case it is set to the device specified in the request. */
DeviceIntPtr replayDev; /* kludgy rock to put flag for */
/**
* The window the events are supposed to be replayed on.
* This window may be set to the grab's window (but only when
* Replay{Pointer|Keyboard} is given in the XAllowEvents()
* request. */
WindowPtr replayWin; /* ComputeFreezes */
/**
* Flag to indicate whether we're in the process of
* replaying events. Only set in ComputeFreezes(). */
Bool playingEvents;
TimeStamp time;
} EventSyncInfoRec, *EventSyncInfoPtr;
extern EventSyncInfoRec syncEvents;
#endif /* INPUTSTRUCT_H */