xenocara/app/xcalc/math.c
2019-08-15 17:13:47 +00:00

1043 lines
22 KiB
C

/*
* math.c - mathematics functions for a hand calculator under X
*
* Author: John H. Bradley, University of Pennsylvania
* (bradley@cis.upenn.edu)
* March, 1987
*
* RPN mode added and port to X11 by Mark Rosenstein, MIT Project Athena
*
* Modified to be a client of the Xt toolkit and the Athena widget set by
* Donna Converse, MIT X Consortium. This is all that remains of the
* original calculator, and it still needs to be rewritten. The HP
* functionality should be separated from the TI functionality.
* Beware the HP functions: there are still errors here.
*
* Geoffrey Coram fixed most of the HP mode bugs.
*/
#include "xcalc.h"
#ifndef M_PI /* sometimes defined in math.h */
#define M_PI 3.14159265358979323846
#endif
#ifndef M_E /* sometimes defined in math.h */
#define M_E 2.7182818284590452354
#endif
#define MAXDISP 11
#define DEG 0 /* DRG mode. used for trig calculations */
#define RAD 1
#define GRAD 2
#define True 1
#define False 0
#ifndef IEEE
jmp_buf env;
#endif
/* This section is all of the state machine that implements the calculator
* functions. Much of it is shared between the infix and rpn modes.
*/
static int flagINV, flagPAREN, flagM, drgmode, numbase; /* display flags */
static double drg2rad=M_PI/180.0; /* Conversion factors for trig funcs */
static double rad2drg=180.0/M_PI;
static int entered=1; /* true if display contains a valid number.
if==2, then use 'dnum', rather than the string
stored in the display. (for accuracy)
if==3, then error occurred, only CLR & AC work */
/* entered seems to be overloaded - dmc */
static int lift_enabled = 0; /* for rpn mode only */
static int CLR =0; /* CLR clears display. if 1, clears acc, also */
static int Dpoint=0; /* to prevent using decimal pt twice in a # */
static int clrdisp=1; /* if true clears display before entering # */
static int lastop =kCLR;
static int memop =kCLR;
static int exponent=0;
static double acc =0.0;
static double dnum=0.0;
#define XCALC_MEMORY 10
static double mem[XCALC_MEMORY] = { 0.0 };
static void DrawDisplay(void);
static void PushOp(int op);
static int PopOp(void);
static int isopempty(void);
#ifdef DEBUG
static void showstack(char *string);
#endif
static void PushNum(double num);
static double PopNum(void);
static void RollNum(int dir);
static void ClearStacks(void);
static int priority(int op);
#ifndef HAVE_STRLCPY
/* Close enough for the short strings copied in xcalc */
static inline size_t
strlcpy(char *dst, const char *src, size_t size)
{
strncpy(dst, src, size);
dst[size - 1] = '\0';
return strlen(src);
}
#endif
/*
* The following is to deal with the unfortunate assumption that if errno
* is non-zero then an error has occurred. On some systems (e.g. Ultrix),
* sscanf will call lower level routines that will set errno.
*/
static void
parse_double(double *dp)
{
unsigned long n = 0;
int olderrno = errno;
switch (numbase) {
case 8:
(void)sscanf(dispstr, "%lo", &n);
*dp = (double)n;
break;
case 16:
(void)sscanf(dispstr, "%lX", &n);
*dp = (double)n;
break;
default:
(void)sscanf(dispstr, "%lf", dp);
}
errno = olderrno;
return;
}
/**
* Format the given double according to the
* selected number base.
*/
static void
format_double(double n)
{
switch (numbase) {
case 8:
snprintf(dispstr, sizeof(dispstr), "%lo", (long)n);
break;
case 16:
snprintf(dispstr, sizeof(dispstr), "%lX", (long)n);
break;
default:
snprintf(dispstr, sizeof(dispstr), "%.8g", n);
}
}
/*********************************/
int pre_op(int keynum)
{
if (keynum==-1) return(0);
errno = 0; /* for non-IEEE machines */
if ( (entered==3) && !(keynum==kCLR || keynum==kOFF)) {
if (rpn) {
clrdisp++;
} else {
ringbell();
return(1); /* the intent was probably not to do the operation */
}
}
if (keynum != kCLR) CLR=0;
return(0);
}
#ifndef IEEE
/* cannot assign result of setjmp under ANSI C, use global instead */
static volatile int SignalKind;
void fail_op(void)
{
if (SignalKind == SIGFPE)
strlcpy(dispstr, "math error", sizeof(dispstr));
else if (SignalKind == SIGILL)
strlcpy(dispstr, "illegal operand", sizeof(dispstr));
entered=3;
DrawDisplay();
return;
}
/*ARGSUSED*/
void fperr(int sig)
{
#if defined(SYSV) || defined(SVR4) || defined(linux)
signal(SIGFPE, fperr);
#endif
SignalKind = sig;
longjmp(env,1);
}
/* for VAX BSD4.3 */
/*ARGSUSED*/
void illerr(int sig)
{
/* not reset when caught? */
signal(SIGILL, illerr);
SignalKind = sig;
longjmp(env,1);
}
#endif /* not IEEE */
void post_op(void)
{
#ifdef DEBUG
showstack("\0");
#endif
#ifndef IEEE
if (errno) {
strlcpy(dispstr, "error", sizeof(dispstr));
DrawDisplay();
entered=3;
errno=0;
}
#endif
}
/*-------------------------------------------------------------------------*/
static void
DrawDisplay(void)
{
if (strlen(dispstr) >= MAXDISP) { /* strip out some decimal digits */
char *estr = index(dispstr,'e'); /* search for exponent part */
if (!estr) dispstr[12]='\0'; /* no exp, just trunc. */
else {
char tmp[32];
if (strlen(estr) <= 4) /* leftmost 8 chars plus exponent */
snprintf(tmp, sizeof(tmp), "%.8s%s", dispstr, estr);
else /* leftmost 7 chars plus exponent */
snprintf(tmp, sizeof(tmp), "%.7s%s", dispstr, estr);
strlcpy(dispstr, tmp, sizeof(dispstr));
}
}
draw(dispstr);
setflag(XCalc_MEMORY, (flagM));
setflag(XCalc_INVERSE, (flagINV));
setflag(XCalc_DEGREE, (drgmode==DEG));
setflag(XCalc_RADIAN, (drgmode==RAD));
setflag(XCalc_GRADAM, (drgmode==GRAD));
setflag(XCalc_PAREN, (flagPAREN));
setflag(XCalc_HEX, (numbase==16));
setflag(XCalc_DEC, (numbase==10));
setflag(XCalc_OCT, (numbase==8));
}
/*-------------------------------------------------------------------------*/
void
change_base(void)
{
parse_double(&dnum);
if (dnum >= 0) {
switch (numbase) {
case 8: numbase = 10; break;
case 10: numbase = 16; break;
case 16: numbase = 8; break;
}
format_double(dnum);
} else strlcpy(dispstr, "error", sizeof(dispstr));
DrawDisplay();
}
/*-------------------------------------------------------------------------*/
void
numeric(int keynum)
{
char st[2];
flagINV=0;
if (rpn && (memop == kSTO || memop == kRCL || memop == kSUM)) {
int cell = 0;
switch (keynum) {
case kONE: cell = 1; break;
case kTWO: cell = 2; break;
case kTHREE: cell = 3; break;
case kFOUR: cell = 4; break;
case kFIVE: cell = 5; break;
case kSIX: cell = 6; break;
case kSEVEN: cell = 7; break;
case kEIGHT: cell = 8; break;
case kNINE: cell = 9; break;
case kZERO: cell = 0; break;
}
switch (memop) {
case kSTO:
mem[cell] = dnum;
lift_enabled = 1;
entered = 2;
clrdisp++;
break;
case kRCL:
PushNum(dnum);
dnum = mem[cell];
format_double(dnum);
lift_enabled = 1;
entered = 1;
clrdisp++;
break;
case kSUM:
mem[cell] += dnum;
lift_enabled = 1;
entered = 2;
clrdisp++;
break;
}
memop = kCLR;
DrawDisplay();
return;
}
if (clrdisp) {
dispstr[0]='\0';
exponent=Dpoint=0;
/* if (rpn && entered==2)
PushNum(dnum);
*/
if (rpn & lift_enabled)
PushNum(dnum);
}
if ((int) strlen(dispstr) >= MAXDISP)
return;
st[0] = '\0';
switch (keynum){
case kZERO: st[0] = '0'; break;
case kONE: st[0] = '1'; break;
case kTWO: st[0] = '2'; break;
case kTHREE: st[0] = '3'; break;
case kFOUR: st[0] = '4'; break;
case kFIVE: st[0] = '5'; break;
case kSIX: st[0] = '6'; break;
case kSEVEN: st[0] = '7'; break;
case kEIGHT: if (numbase > 8) st[0] = '8'; break;
case kNINE: if (numbase > 8) st[0] = '9'; break;
case kxA: if (numbase > 10) st[0] = 'A'; break;
case kxB: if (numbase > 10) st[0] = 'B'; break;
case kxC: if (numbase > 10) st[0] = 'C'; break;
case kxD: if (numbase > 10) st[0] = 'D'; break;
case kxE: if (numbase > 10) st[0] = 'E'; break;
case kxF: if (numbase > 10) st[0] = 'F'; break;
}
if (st[0] == '\0')
return;
st[1] = '\0';
strcat(dispstr,st);
DrawDisplay();
if (clrdisp && keynum != kZERO)
clrdisp=0; /*no leading 0s*/
memop = keynum;
entered=1;
lift_enabled = 0;
}
void
bkspf(void)
{
lift_enabled = 0;
if (! flagINV)
{
if (entered!=1) {
clearf();
return;
}
if (clrdisp)
return;
if ((int) strlen(dispstr) > 0) {
#ifndef X_LOCALE
const char *dp = localeconv()->decimal_point;
size_t dp_len = strlen(dp);
size_t ds_len = strlen(dispstr);
if (ds_len >= dp_len && strcmp(dispstr + ds_len - dp_len, dp) == 0)
Dpoint=0;
#else
if (dispstr[strlen(dispstr)-1] == '.')
Dpoint=0;
#endif
dispstr[strlen(dispstr)-1] = 0;
}
if (strlen(dispstr) == 0) {
strcat(dispstr, "0");
clrdisp++;
}
}
else
{
strlcpy(dispstr, "0", sizeof(dispstr));
dnum = 0.0;
clrdisp++;
flagINV = 0;
}
DrawDisplay();
}
void
decf(void)
{
flagINV=0;
if (clrdisp) {
if (rpn && lift_enabled)
PushNum(dnum);
strlcpy(dispstr, "0", sizeof(dispstr));
}
if (!Dpoint) {
#ifndef X_LOCALE
strcat(dispstr, localeconv()->decimal_point);
#else
strcat(dispstr, ".");
#endif
DrawDisplay();
Dpoint++;
}
clrdisp=0;
entered=1;
}
void
eef(void)
{
flagINV=0;
if (clrdisp) {
if (rpn && lift_enabled)
PushNum(dnum);
strlcpy(dispstr, rpn ? "1" : "0", sizeof(dispstr));
}
if (!exponent) {
strcat(dispstr,"E+");
DrawDisplay();
exponent=strlen(dispstr)-1; /* where the '-' goes */
}
clrdisp=0;
entered=1;
}
void
clearf(void)
{
flagINV=0;
if (CLR && !rpn) { /* clear all */
ClearStacks();
flagPAREN=0;
}
CLR++;
exponent=Dpoint=0;
clrdisp=1;
entered=1;
strlcpy(dispstr, "0", sizeof(dispstr));
DrawDisplay();
}
void
negf(void)
{
flagINV=0;
if (exponent) { /* neg the exponent */
if (dispstr[exponent]=='-')
dispstr[exponent]='+';
else
dispstr[exponent]='-';
DrawDisplay();
return;
}
if (strcmp("0",dispstr)==0)
return; /* don't neg a zero */
if (dispstr[0]=='-') /* already neg-ed */
strcpy(dispstr,dispstr+1); /* move str left once */
else { /* not neg-ed. add a '-' */
char tmp[32];
snprintf(tmp, sizeof(tmp), "-%s", dispstr);
strlcpy(dispstr, tmp, sizeof(dispstr));
}
if (entered==2)
dnum = -1.0 * dnum;
DrawDisplay();
}
/* Two operand functions for infix calc */
void
twoop(int keynum)
{
if (flagINV) {
flagINV=0;
DrawDisplay();
}
if (!entered) { /* something like "5+*" */
if (!isopempty())
(void) PopOp(); /* replace the prev op */
PushOp(keynum); /* with the new one */
return;
}
if (entered==1)
parse_double(&dnum);
clrdisp=CLR=1;
entered=Dpoint=exponent=0;
if (!isopempty()) { /* there was a previous op */
lastop=PopOp(); /* get it */
if (lastop==kLPAR) { /* put it back */
PushOp(kLPAR);
PushOp(keynum);
PushNum(dnum);
return;
}
/* now, if the current op (keynum) is of
higher priority than the lastop, the current
op and number are just pushed on top
Priorities: (Y^X) > *,/ > +,- > >>,<< > & > ^ > ~ */
if (priority(keynum) > priority(lastop)) {
PushNum(dnum);
PushOp(lastop);
PushOp(keynum);
} else { /* execute lastop on lastnum and dnum, push
result and current op on stack */
acc=PopNum();
switch (lastop) { /* perform the operation */
case kADD: acc += dnum; break;
case kSUB: acc -= dnum; break;
case kMUL: acc *= dnum; break;
case kDIV: acc /= dnum; break;
case kPOW: acc = pow(acc,dnum); break;
case kMOD: acc = (long)acc % (long)dnum; break;
case kAND: acc = (long)acc & (long)dnum; break;
case kOR: acc = (long)acc | (long)dnum; break;
case kXOR: acc = (long)acc ^ (long)dnum; break;
case kSHL: acc = (long)acc << (long)dnum; break;
case kSHR: acc = (long)acc >> (long)dnum; break;
}
PushNum(acc);
PushOp(keynum);
format_double(acc);
DrawDisplay();
dnum=acc;
}
}
else { /* op stack is empty, push op and num */
PushOp(keynum);
PushNum(dnum);
}
}
/* Two operand functions for rpn calc */
void
twof(int keynum)
{
if (flagINV) {
flagINV=0;
DrawDisplay();
}
if (!entered)
return;
if (entered==1)
parse_double(&dnum);
acc = PopNum();
switch(keynum) {
case kADD: acc += dnum; break;
case kSUB: acc -= dnum; break;
case kMUL: acc *= dnum; break;
case kDIV: acc /= dnum; break;
case kPOW: acc = pow(acc,dnum); break;
case kXXY: PushNum(dnum); break;
case kMOD: acc = (long)acc % (long)dnum; break;
case kAND: acc = (long)acc & (long)dnum; break;
case kOR: acc = (long)acc | (long)dnum; break;
case kXOR: acc = (long)acc ^ (long)dnum; break;
case kSHL: acc = (long)acc << (long)dnum; break;
case kSHR: acc = (long)acc >> (long)dnum; break;
}
format_double(acc);
DrawDisplay();
clrdisp++;
Dpoint = exponent = 0;
entered = 2;
lift_enabled = 1;
dnum = acc;
}
void
entrf(void)
{
flagINV=0;
if (!entered)
return;
clrdisp=CLR=1;
Dpoint=exponent=0;
if (entered==1)
parse_double(&dnum);
entered=2;
memop = kENTR;
PushNum(dnum);
lift_enabled = 0;
}
void
equf(void)
{
flagINV=0;
if (!entered)
return;
clrdisp=CLR=1;
Dpoint=exponent=0;
if (entered==1)
parse_double(&dnum);
entered=2;
PushNum(dnum);
while (!isopempty()) { /* do all pending ops */
dnum=PopNum();
acc=PopNum();
lastop=PopOp();
switch (lastop) {
case kADD: acc += dnum;
break;
case kSUB: acc -= dnum;
break;
case kMUL: acc *= dnum;
break;
case kDIV: acc /= dnum;
break;
case kPOW: acc = pow(acc,dnum);
break;
case kLPAR: flagPAREN--;
PushNum(acc);
break;
case kMOD: acc = (long)acc % (long)dnum;
break;
case kAND: acc = (long)acc & (long)dnum;
break;
case kOR: acc = (long)acc | (long)dnum;
break;
case kXOR: acc = (long)acc ^ (long)dnum;
break;
case kSHL: acc = (long)acc << (long)dnum;
break;
case kSHR: acc = (long)acc >> (long)dnum;
break;
}
dnum=acc;
PushNum(dnum);
}
format_double(dnum);
DrawDisplay();
}
void
lparf(void)
{
flagINV=0;
PushOp(kLPAR);
flagPAREN++;
DrawDisplay();
}
void
rollf(void)
{
if (!entered)
return;
if (entered==1)
parse_double(&dnum);
entered = 2;
lift_enabled = 1;
RollNum(flagINV);
flagINV=0;
clrdisp++;
format_double(dnum);
DrawDisplay();
}
void
rparf(void)
{
flagINV=0;
if (!entered)
return;
if (!flagPAREN)
return;
clrdisp++;
Dpoint=exponent=0;
if (entered==1)
parse_double(&dnum);
entered=2;
PushNum(dnum);
while (!isopempty() && (lastop=PopOp())!=kLPAR) {
/* do all pending ops, back to left paren */
dnum=PopNum();
acc=PopNum();
switch (lastop) {
case kADD: acc += dnum;
break;
case kSUB: acc -= dnum;
break;
case kMUL: acc *= dnum;
break;
case kDIV: acc /= dnum;
break;
case kPOW: acc = pow(acc,dnum);
break;
case kMOD: acc = (long)acc % (long)dnum;
break;
case kAND: acc = (long)acc & (long)dnum;
break;
case kOR: acc = (long)acc | (long)dnum;
break;
case kXOR: acc = (long)acc ^ (long)dnum;
break;
case kSHL: acc = (long)acc << (long)dnum;
break;
case kSHR: acc = (long)acc >> (long)dnum;
break;
}
dnum=acc;
PushNum(dnum);
}
(void) PopNum();
flagPAREN--;
entered=2;
format_double(dnum);
DrawDisplay();
}
void
drgf(void)
{
if (flagINV) {
if (entered==1)
parse_double(&dnum);
switch (drgmode) {
case DEG: dnum=dnum*M_PI/180.0; break;
case RAD: dnum=dnum*200.0/M_PI; break;
case GRAD: dnum=dnum*90.0/100.0; break;
}
entered=2;
clrdisp=1;
flagINV=0;
format_double(dnum);
}
flagINV=0;
drgmode = (drgmode + 1) % 3;
switch (drgmode) {
case DEG: drg2rad=M_PI / 180.0;
rad2drg=180.0 / M_PI;
break;
case RAD: drg2rad=1.0;
rad2drg=1.0;
break;
case GRAD: drg2rad=M_PI / 200.0;
rad2drg=200.0 / M_PI;
break;
}
DrawDisplay();
}
void
invf(void)
{
flagINV = ~flagINV;
DrawDisplay();
}
void
memf(int keynum)
{
memop = keynum;
if (entered==1)
parse_double(&dnum);
entered = 2;
clrdisp++;
lift_enabled = 0;
}
void
oneop(int keynum)
{
int i,j;
double dtmp;
if (entered==1)
parse_double(&dnum);
entered = 2;
switch (keynum) { /* do the actual math fn. */
case kE: if (rpn && memop != kENTR) PushNum(dnum); dnum=M_E; break;
case kPI: if (rpn && memop != kENTR) PushNum(dnum); dnum=M_PI; break;
case kRECIP: dnum=1.0/dnum; break;
case kSQR: flagINV = !flagINV; /* fall through */
case kSQRT: if (flagINV) dnum=dnum*dnum;
else dnum=sqrt(dnum);
break;
case k10X: flagINV = !flagINV; /* fall through */
case kLOG: if (flagINV) dnum=pow(10.0,dnum);
else dnum=log10(dnum);
break;
case kEXP: flagINV = !flagINV; /* fall through */
case kLN: if (flagINV) dnum=exp(dnum);
else dnum=log(dnum);
break;
case kSIN: if (flagINV) dnum=asin(dnum)*rad2drg;
else dnum=sin(dnum*drg2rad);
break;
case kCOS: if (flagINV) dnum=acos(dnum)*rad2drg;
else dnum=cos(dnum*drg2rad);
break;
case kTAN: if (flagINV) dnum=atan(dnum)*rad2drg;
else dnum=tan(dnum*drg2rad);
break;
case kSTO: mem[0]=dnum; flagM=!(mem[0]==0.0); break;
case kRCL: if (rpn && lift_enabled) PushNum(dnum);
dnum=mem[0]; flagM=!(mem[0]==0.0); break;
case kSUM: mem[0]+=dnum; flagM=!(mem[0]==0.0); break;
case kEXC: dtmp=dnum; dnum=mem[0]; mem[0]=dtmp;
flagM=!(mem[0]==0.0); break;
case kFACT: if (floor(dnum)!=dnum || dnum<0.0 || dnum>500.0) {
strlcpy(dispstr, "error", sizeof(dispstr));
entered=3;
break;
}
dtmp = floor(dnum); i = dtmp;
for (j=1,dnum=1.0; j<=i; j++)
dnum*=(float) j;
break;
case kNOT: dnum = ~(long)dnum; break;
case kTRUNC: dnum = trunc(dnum); break;
}
if (entered==3) { /* error */
DrawDisplay();
return;
}
memop = keynum;
entered=2;
clrdisp=1;
flagINV=0;
lift_enabled = 1;
format_double(dnum);
DrawDisplay();
}
void
offf(void)
{
/* full reset */
ResetCalc();
entered=clrdisp=1;
lift_enabled = 0;
dnum=mem[0]=0.0;
if (rpn)
for (int i=1; i < XCALC_MEMORY; i++)
mem[i]=0.0;
exponent=Dpoint=0;
DrawDisplay();
}
#define STACKMAX 32
static int opstack[STACKMAX];
static int opsp;
static double numstack[STACKMAX];
static int numsp;
/*******/
static void
PushOp(int op)
/*******/
{
if (opsp==STACKMAX) {
strlcpy(dispstr, "stack error", sizeof(dispstr));
entered=3;
} else
opstack[opsp++]=op;
}
/*******/
static int
PopOp(void)
/*******/
{
if (opsp==0) {
strlcpy(dispstr, "stack error", sizeof(dispstr));
entered=3;
return(kNOP);
} else
return(opstack[--opsp]);
}
/*******/
static int
isopempty(void)
/*******/
{
return( opsp ? 0 : 1 );
}
#ifdef DEBUG
static void
showstack(char *string)
{
fprintf(stderr, "%s: %lf %lf %lf\n", string, numstack[0], numstack[1],
numstack[2]);
}
#endif
/*******/
static void
PushNum(double num)
/*******/
{
if (rpn) {
numstack[2] = numstack[1];
numstack[1] = numstack[0];
numstack[0] = num;
return;
}
if (numsp==STACKMAX) {
strlcpy(dispstr, "stack error", sizeof(dispstr));
entered=3;
} else
numstack[numsp++]=num;
}
/*******/
static double
PopNum(void)
/*******/
{
if (rpn) {
double tmp = numstack[0];
numstack[0] = numstack[1];
numstack[1] = numstack[2];
return(tmp);
}
if (numsp==0) {
strlcpy(dispstr, "stack error", sizeof(dispstr));
entered=3;
return 0.0;
} else
return(numstack[--numsp]);
}
/*******/
static void
RollNum(int dir)
/*******/
{
double tmp;
if (dir) { /* roll up */
tmp = dnum;
dnum = numstack[2];
numstack[2] = numstack[1];
numstack[1] = numstack[0];
numstack[0] = tmp;
} else { /* roll down */
tmp = dnum;
dnum = numstack[0];
numstack[0] = numstack[1];
numstack[1] = numstack[2];
numstack[2] = tmp;
}
}
/*******/
static void
ClearStacks(void)
/*******/
{
if (rpn)
numstack[0] = numstack[1] = numstack[2] = 0.;
opsp=numsp=0;
}
/*******/
static int
priority(int op)
/*******/
{
switch (op) {
case kPOW: return(6);
case kMUL:
case kDIV:
case kMOD: return(5);
case kADD:
case kSUB: return(4);
case kSHL:
case kSHR: return(3);
case kAND: return(2);
case kXOR: return(1);
case kOR: return(0);
}
return 0;
}
/********/
void
ResetCalc(void)
/********/
{
flagM=flagINV=flagPAREN=0; drgmode=DEG;
numbase=(!numbase ? 10 : numbase);
setflag(XCalc_MEMORY, False);
setflag(XCalc_INVERSE, False);
setflag(XCalc_PAREN, False);
setflag(XCalc_RADIAN, False);
setflag(XCalc_GRADAM, False);
setflag(XCalc_DEGREE, True);
setflag(XCalc_HEX, False);
setflag(XCalc_DEC, True);
setflag(XCalc_OCT, False);
strlcpy(dispstr, "0", sizeof(dispstr));
draw(dispstr);
ClearStacks();
drg2rad=M_PI/180.0;
rad2drg=180.0/M_PI;
}