xenocara/app/xedit/lisp/math.c
2008-10-13 20:53:31 +00:00

1478 lines
26 KiB
C

/*
* Copyright (c) 2001 by The XFree86 Project, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE XFREE86 PROJECT BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the XFree86 Project shall
* not be used in advertising or otherwise to promote the sale, use or other
* dealings in this Software without prior written authorization from the
* XFree86 Project.
*
* Author: Paulo César Pereira de Andrade
*/
/* $XFree86: xc/programs/xedit/lisp/math.c,v 1.23tsi Exp $ */
#include "lisp/math.h"
#include "lisp/private.h"
#ifdef __UNIXOS2__
# define finite(x) isfinite(x)
#endif
/*
* Prototypes
*/
static LispObj *LispDivide(LispBuiltin*, int, int);
/*
* Initialization
*/
static LispObj *obj_zero, *obj_one;
LispObj *Ocomplex, *Oequal_;
LispObj *Oshort_float, *Osingle_float, *Odouble_float, *Olong_float;
Atom_id Sdefault_float_format;
/*
* Implementation
*/
#include "lisp/mathimp.c"
void
LispMathInit(void)
{
LispObj *object, *result;
mp_set_malloc(LispMalloc);
mp_set_calloc(LispCalloc);
mp_set_realloc(LispRealloc);
mp_set_free(LispFree);
number_init();
obj_zero = FIXNUM(0);
obj_one = FIXNUM(1);
Oequal_ = STATIC_ATOM("=");
Ocomplex = STATIC_ATOM(Scomplex->value);
Oshort_float = STATIC_ATOM("SHORT-FLOAT");
LispExportSymbol(Oshort_float);
Osingle_float = STATIC_ATOM("SINGLE-FLOAT");
LispExportSymbol(Osingle_float);
Odouble_float = STATIC_ATOM("DOUBLE-FLOAT");
LispExportSymbol(Odouble_float);
Olong_float = STATIC_ATOM("LONG-FLOAT");
LispExportSymbol(Olong_float);
object = STATIC_ATOM("*DEFAULT-FLOAT-FORMAT*");
LispProclaimSpecial(object, Odouble_float, NIL);
LispExportSymbol(object);
Sdefault_float_format = ATOMID(object);
object = STATIC_ATOM("PI");
result = number_pi();
LispProclaimSpecial(object, result, NIL);
LispExportSymbol(object);
object = STATIC_ATOM("MOST-POSITIVE-FIXNUM");
LispDefconstant(object, FIXNUM(MOST_POSITIVE_FIXNUM), NIL);
LispExportSymbol(object);
object = STATIC_ATOM("MOST-NEGATIVE-FIXNUM");
LispDefconstant(object, FIXNUM(MOST_NEGATIVE_FIXNUM), NIL);
LispExportSymbol(object);
}
LispObj *
Lisp_Mul(LispBuiltin *builtin)
/*
* &rest numbers
*/
{
n_number num;
LispObj *number, *numbers;
numbers = ARGUMENT(0);
if (CONSP(numbers)) {
number = CAR(numbers);
numbers = CDR(numbers);
if (!CONSP(numbers)) {
CHECK_NUMBER(number);
return (number);
}
}
else
return (FIXNUM(1));
set_number_object(&num, number);
do {
mul_number_object(&num, CAR(numbers));
numbers = CDR(numbers);
} while (CONSP(numbers));
return (make_number_object(&num));
}
LispObj *
Lisp_Plus(LispBuiltin *builtin)
/*
+ &rest numbers
*/
{
n_number num;
LispObj *number, *numbers;
numbers = ARGUMENT(0);
if (CONSP(numbers)) {
number = CAR(numbers);
numbers = CDR(numbers);
if (!CONSP(numbers)) {
CHECK_NUMBER(number);
return (number);
}
}
else
return (FIXNUM(0));
set_number_object(&num, number);
do {
add_number_object(&num, CAR(numbers));
numbers = CDR(numbers);
} while (CONSP(numbers));
return (make_number_object(&num));
}
LispObj *
Lisp_Minus(LispBuiltin *builtin)
/*
- number &rest more_numbers
*/
{
n_number num;
LispObj *number, *more_numbers;
more_numbers = ARGUMENT(1);
number = ARGUMENT(0);
set_number_object(&num, number);
if (!CONSP(more_numbers)) {
neg_number(&num);
return (make_number_object(&num));
}
do {
sub_number_object(&num, CAR(more_numbers));
more_numbers = CDR(more_numbers);
} while (CONSP(more_numbers));
return (make_number_object(&num));
}
LispObj *
Lisp_Div(LispBuiltin *builtin)
/*
/ number &rest more_numbers
*/
{
n_number num;
LispObj *number, *more_numbers;
more_numbers = ARGUMENT(1);
number = ARGUMENT(0);
if (CONSP(more_numbers))
set_number_object(&num, number);
else {
num.complex = 0;
num.real.type = N_FIXNUM;
num.real.data.fixnum = 1;
goto div_one_argument;
}
for (;;) {
number = CAR(more_numbers);
more_numbers = CDR(more_numbers);
div_one_argument:
div_number_object(&num, number);
if (!CONSP(more_numbers))
break;
}
return (make_number_object(&num));
}
LispObj *
Lisp_OnePlus(LispBuiltin *builtin)
/*
1+ number
*/
{
n_number num;
LispObj *number;
number = ARGUMENT(0);
num.complex = 0;
num.real.type = N_FIXNUM;
num.real.data.fixnum = 1;
add_number_object(&num, number);
return (make_number_object(&num));
}
LispObj *
Lisp_OneMinus(LispBuiltin *builtin)
/*
1- number
*/
{
n_number num;
LispObj *number;
number = ARGUMENT(0);
num.complex = 0;
num.real.type = N_FIXNUM;
num.real.data.fixnum = -1;
add_number_object(&num, number);
return (make_number_object(&num));
}
LispObj *
Lisp_Less(LispBuiltin *builtin)
/*
< number &rest more-numbers
*/
{
LispObj *compare, *number, *more_numbers;
more_numbers = ARGUMENT(1);
compare = ARGUMENT(0);
if (CONSP(more_numbers)) {
do {
number = CAR(more_numbers);
if (cmp_object_object(compare, number, 1) >= 0)
return (NIL);
compare = number;
more_numbers = CDR(more_numbers);
} while (CONSP(more_numbers));
}
else {
CHECK_REAL(compare);
}
return (T);
}
LispObj *
Lisp_LessEqual(LispBuiltin *builtin)
/*
<= number &rest more-numbers
*/
{
LispObj *compare, *number, *more_numbers;
more_numbers = ARGUMENT(1);
compare = ARGUMENT(0);
if (CONSP(more_numbers)) {
do {
number = CAR(more_numbers);
if (cmp_object_object(compare, number, 1) > 0)
return (NIL);
compare = number;
more_numbers = CDR(more_numbers);
} while (CONSP(more_numbers));
}
else {
CHECK_REAL(compare);
}
return (T);
}
LispObj *
Lisp_Equal_(LispBuiltin *builtin)
/*
= number &rest more-numbers
*/
{
LispObj *compare, *number, *more_numbers;
more_numbers = ARGUMENT(1);
compare = ARGUMENT(0);
if (CONSP(more_numbers)) {
do {
number = CAR(more_numbers);
if (cmp_object_object(compare, number, 0) != 0)
return (NIL);
compare = number;
more_numbers = CDR(more_numbers);
} while (CONSP(more_numbers));
}
else {
CHECK_REAL(compare);
}
return (T);
}
LispObj *
Lisp_Greater(LispBuiltin *builtin)
/*
> number &rest more-numbers
*/
{
LispObj *compare, *number, *more_numbers;
more_numbers = ARGUMENT(1);
compare = ARGUMENT(0);
if (CONSP(more_numbers)) {
do {
number = CAR(more_numbers);
if (cmp_object_object(compare, number, 1) <= 0)
return (NIL);
compare = number;
more_numbers = CDR(more_numbers);
} while (CONSP(more_numbers));
}
else {
CHECK_REAL(compare);
}
return (T);
}
LispObj *
Lisp_GreaterEqual(LispBuiltin *builtin)
/*
>= number &rest more-numbers
*/
{
LispObj *compare, *number, *more_numbers;
more_numbers = ARGUMENT(1);
compare = ARGUMENT(0);
if (CONSP(more_numbers)) {
do {
number = CAR(more_numbers);
if (cmp_object_object(compare, number, 1) < 0)
return (NIL);
compare = number;
more_numbers = CDR(more_numbers);
} while (CONSP(more_numbers));
}
else {
CHECK_REAL(compare);
}
return (T);
}
LispObj *
Lisp_NotEqual(LispBuiltin *builtin)
/*
/= number &rest more-numbers
*/
{
LispObj *object, *compare, *number, *more_numbers;
more_numbers = ARGUMENT(1);
number = ARGUMENT(0);
if (!CONSP(more_numbers)) {
CHECK_REAL(number);
return (T);
}
/* compare all numbers */
while (1) {
compare = number;
for (object = more_numbers; CONSP(object); object = CDR(object)) {
number = CAR(object);
if (cmp_object_object(compare, number, 0) == 0)
return (NIL);
}
if (CONSP(more_numbers)) {
number = CAR(more_numbers);
more_numbers = CDR(more_numbers);
}
else
break;
}
return (T);
}
LispObj *
Lisp_Min(LispBuiltin *builtin)
/*
min number &rest more-numbers
*/
{
LispObj *result, *number, *more_numbers;
more_numbers = ARGUMENT(1);
result = ARGUMENT(0);
if (CONSP(more_numbers)) {
do {
number = CAR(more_numbers);
if (cmp_object_object(result, number, 1) > 0)
result = number;
more_numbers = CDR(more_numbers);
} while (CONSP(more_numbers));
}
else {
CHECK_REAL(result);
}
return (result);
}
LispObj *
Lisp_Max(LispBuiltin *builtin)
/*
max number &rest more-numbers
*/
{
LispObj *result, *number, *more_numbers;
more_numbers = ARGUMENT(1);
result = ARGUMENT(0);
if (CONSP(more_numbers)) {
do {
number = CAR(more_numbers);
if (cmp_object_object(result, number, 1) < 0)
result = number;
more_numbers = CDR(more_numbers);
} while (CONSP(more_numbers));
}
else {
CHECK_REAL(result);
}
return (result);
}
LispObj *
Lisp_Abs(LispBuiltin *builtin)
/*
abs number
*/
{
LispObj *result, *number;
result = number = ARGUMENT(0);
switch (OBJECT_TYPE(number)) {
case LispFixnum_t:
case LispInteger_t:
case LispBignum_t:
case LispDFloat_t:
case LispRatio_t:
case LispBigratio_t:
if (cmp_real_object(&zero, number) > 0) {
n_real real;
set_real_object(&real, number);
neg_real(&real);
result = make_real_object(&real);
}
break;
case LispComplex_t: {
n_number num;
set_number_object(&num, number);
abs_number(&num);
result = make_number_object(&num);
} break;
default:
fatal_builtin_object_error(builtin, number, NOT_A_NUMBER);
break;
}
return (result);
}
LispObj *
Lisp_Complex(LispBuiltin *builtin)
/*
complex realpart &optional imagpart
*/
{
LispObj *realpart, *imagpart;
imagpart = ARGUMENT(1);
realpart = ARGUMENT(0);
CHECK_REAL(realpart);
if (imagpart == UNSPEC)
return (realpart);
else {
CHECK_REAL(imagpart);
}
if (!FLOATP(imagpart) && cmp_real_object(&zero, imagpart) == 0)
return (realpart);
return (COMPLEX(realpart, imagpart));
}
LispObj *
Lisp_Complexp(LispBuiltin *builtin)
/*
complexp object
*/
{
LispObj *object;
object = ARGUMENT(0);
return (COMPLEXP(object) ? T : NIL);
}
LispObj *
Lisp_Conjugate(LispBuiltin *builtin)
/*
conjugate number
*/
{
n_number num;
LispObj *number, *realpart, *imagpart;
number = ARGUMENT(0);
CHECK_NUMBER(number);
if (REALP(number))
return (number);
realpart = OCXR(number);
num.complex = 0;
num.real.type = N_FIXNUM;
num.real.data.fixnum = -1;
mul_number_object(&num, OCXI(number));
imagpart = make_number_object(&num);
return (COMPLEX(realpart, imagpart));
}
LispObj *
Lisp_Decf(LispBuiltin *builtin)
/*
decf place &optional delta
*/
{
n_number num;
LispObj *place, *delta, *number;
delta = ARGUMENT(1);
place = ARGUMENT(0);
if (SYMBOLP(place)) {
number = LispGetVar(place);
if (number == NULL)
LispDestroy("EVAL: the variable %s is unbound", STROBJ(place));
}
else
number = EVAL(place);
if (delta != UNSPEC) {
LispObj *operand;
operand = EVAL(delta);
set_number_object(&num, number);
sub_number_object(&num, operand);
number = make_number_object(&num);
}
else {
num.complex = 0;
num.real.type = N_FIXNUM;
num.real.data.fixnum = -1;
add_number_object(&num, number);
number = make_number_object(&num);
}
if (SYMBOLP(place)) {
CHECK_CONSTANT(place);
LispSetVar(place, number);
}
else {
GC_ENTER();
GC_PROTECT(number);
(void)APPLY2(Osetf, place, number);
GC_LEAVE();
}
return (number);
}
LispObj *
Lisp_Denominator(LispBuiltin *builtin)
/*
denominator rational
*/
{
LispObj *result, *rational;
rational = ARGUMENT(0);
switch (OBJECT_TYPE(rational)) {
case LispFixnum_t:
case LispInteger_t:
case LispBignum_t:
result = FIXNUM(1);
break;
case LispRatio_t:
result = INTEGER(OFRD(rational));
break;
case LispBigratio_t:
if (mpi_fiti(OBRD(rational)))
result = INTEGER(mpi_geti(OBRD(rational)));
else {
mpi *den = XALLOC(mpi);
mpi_init(den);
mpi_set(den, OBRD(rational));
result = BIGNUM(den);
}
break;
default:
LispDestroy("%s: %s is not a rational number",
STRFUN(builtin), STROBJ(rational));
/*NOTREACHED*/
result = NIL;
}
return (result);
}
LispObj *
Lisp_Evenp(LispBuiltin *builtin)
/*
evenp integer
*/
{
LispObj *result, *integer;
integer = ARGUMENT(0);
switch (OBJECT_TYPE(integer)) {
case LispFixnum_t:
result = FIXNUM_VALUE(integer) % 2 ? NIL : T;
break;
case LispInteger_t:
result = INT_VALUE(integer) % 2 ? NIL : T;
break;
case LispBignum_t:
result = mpi_remi(OBI(integer), 2) ? NIL : T;
break;
default:
fatal_builtin_object_error(builtin, integer, NOT_AN_INTEGER);
/*NOTREACHED*/
result = NIL;
}
return (result);
}
/* only one float format */
LispObj *
Lisp_Float(LispBuiltin *builtin)
/*
float number &optional other
*/
{
LispObj *number, *other;
other = ARGUMENT(1);
number = ARGUMENT(0);
if (other != UNSPEC) {
CHECK_DFLOAT(other);
}
return (LispFloatCoerce(builtin, number));
}
LispObj *
LispFloatCoerce(LispBuiltin *builtin, LispObj *number)
{
double value;
switch (OBJECT_TYPE(number)) {
case LispFixnum_t:
value = FIXNUM_VALUE(number);
break;
case LispInteger_t:
value = INT_VALUE(number);
break;
case LispBignum_t:
value = mpi_getd(OBI(number));
break;
case LispDFloat_t:
return (number);
case LispRatio_t:
value = (double)OFRN(number) / (double)OFRD(number);
break;
case LispBigratio_t:
value = mpr_getd(OBR(number));
break;
default:
value = 0.0;
fatal_builtin_object_error(builtin, number, NOT_A_REAL_NUMBER);
break;
}
if (!finite(value))
fatal_error(FLOATING_POINT_OVERFLOW);
return (DFLOAT(value));
}
LispObj *
Lisp_Floatp(LispBuiltin *builtin)
/*
floatp object
*/
{
LispObj *object;
object = ARGUMENT(0);
return (FLOATP(object) ? T : NIL);
}
LispObj *
Lisp_Gcd(LispBuiltin *builtin)
/*
gcd &rest integers
*/
{
n_real real;
LispObj *integers, *integer, *operand;
integers = ARGUMENT(0);
if (!CONSP(integers))
return (FIXNUM(0));
integer = CAR(integers);
CHECK_INTEGER(integer);
set_real_object(&real, integer);
integers = CDR(integers);
for (; CONSP(integers); integers = CDR(integers)) {
operand = CAR(integers);
gcd_real_object(&real, operand);
}
abs_real(&real);
return (make_real_object(&real));
}
LispObj *
Lisp_Imagpart(LispBuiltin *builtin)
/*
imagpart number
*/
{
LispObj *number;
number = ARGUMENT(0);
if (COMPLEXP(number))
return (OCXI(number));
else {
CHECK_REAL(number);
}
return (FIXNUM(0));
}
LispObj *
Lisp_Incf(LispBuiltin *builtin)
/*
incf place &optional delta
*/
{
n_number num;
LispObj *place, *delta, *number;
delta = ARGUMENT(1);
place = ARGUMENT(0);
if (SYMBOLP(place)) {
number = LispGetVar(place);
if (number == NULL)
LispDestroy("EVAL: the variable %s is unbound", STROBJ(place));
}
else
number = EVAL(place);
if (delta != UNSPEC) {
LispObj *operand;
operand = EVAL(delta);
set_number_object(&num, number);
add_number_object(&num, operand);
number = make_number_object(&num);
}
else {
num.complex = 0;
num.real.type = N_FIXNUM;
num.real.data.fixnum = 1;
add_number_object(&num, number);
number = make_number_object(&num);
}
if (SYMBOLP(place)) {
CHECK_CONSTANT(place);
LispSetVar(place, number);
}
else {
GC_ENTER();
GC_PROTECT(number);
(void)APPLY2(Osetf, place, number);
GC_LEAVE();
}
return (number);
}
LispObj *
Lisp_Integerp(LispBuiltin *builtin)
/*
integerp object
*/
{
LispObj *object;
object = ARGUMENT(0);
return (INTEGERP(object) ? T : NIL);
}
LispObj *
Lisp_Isqrt(LispBuiltin *builtin)
/*
isqrt natural
*/
{
LispObj *natural, *result;
natural = ARGUMENT(0);
if (cmp_object_object(natural, obj_zero, 1) < 0)
goto not_a_natural_number;
switch (OBJECT_TYPE(natural)) {
case LispFixnum_t:
result = FIXNUM((long)floor(sqrt(FIXNUM_VALUE(natural))));
break;
case LispInteger_t:
result = INTEGER((long)floor(sqrt(INT_VALUE(natural))));
break;
case LispBignum_t: {
mpi *bigi;
bigi = XALLOC(mpi);
mpi_init(bigi);
mpi_sqrt(bigi, OBI(natural));
if (mpi_fiti(bigi)) {
result = INTEGER(mpi_geti(bigi));
mpi_clear(bigi);
XFREE(bigi);
}
else
result = BIGNUM(bigi);
} break;
default:
goto not_a_natural_number;
}
return (result);
not_a_natural_number:
LispDestroy("%s: %s is not a natural number",
STRFUN(builtin), STROBJ(natural));
/*NOTREACHED*/
return (NIL);
}
LispObj *
Lisp_Lcm(LispBuiltin *builtin)
/*
lcm &rest integers
*/
{
n_real real, gcd;
LispObj *integers, *operand;
integers = ARGUMENT(0);
if (!CONSP(integers))
return (FIXNUM(1));
operand = CAR(integers);
CHECK_INTEGER(operand);
set_real_object(&real, operand);
integers = CDR(integers);
gcd.type = N_FIXNUM;
gcd.data.fixnum = 0;
for (; CONSP(integers); integers = CDR(integers)) {
operand = CAR(integers);
if (real.type == N_FIXNUM && real.data.fixnum == 0)
break;
/* calculate gcd before changing integer */
clear_real(&gcd);
set_real_real(&gcd, &real);
gcd_real_object(&gcd, operand);
/* calculate lcm */
mul_real_object(&real, operand);
div_real_real(&real, &gcd);
}
clear_real(&gcd);
abs_real(&real);
return (make_real_object(&real));
}
LispObj *
Lisp_Logand(LispBuiltin *builtin)
/*
logand &rest integers
*/
{
n_real real;
LispObj *integers;
integers = ARGUMENT(0);
real.type = N_FIXNUM;
real.data.fixnum = -1;
for (; CONSP(integers); integers = CDR(integers))
and_real_object(&real, CAR(integers));
return (make_real_object(&real));
}
LispObj *
Lisp_Logeqv(LispBuiltin *builtin)
/*
logeqv &rest integers
*/
{
n_real real;
LispObj *integers;
integers = ARGUMENT(0);
real.type = N_FIXNUM;
real.data.fixnum = -1;
for (; CONSP(integers); integers = CDR(integers))
eqv_real_object(&real, CAR(integers));
return (make_real_object(&real));
}
LispObj *
Lisp_Logior(LispBuiltin *builtin)
/*
logior &rest integers
*/
{
n_real real;
LispObj *integers;
integers = ARGUMENT(0);
real.type = N_FIXNUM;
real.data.fixnum = 0;
for (; CONSP(integers); integers = CDR(integers))
ior_real_object(&real, CAR(integers));
return (make_real_object(&real));
}
LispObj *
Lisp_Lognot(LispBuiltin *builtin)
/*
lognot integer
*/
{
n_real real;
LispObj *integer;
integer = ARGUMENT(0);
CHECK_INTEGER(integer);
set_real_object(&real, integer);
not_real(&real);
return (make_real_object(&real));
}
LispObj *
Lisp_Logxor(LispBuiltin *builtin)
/*
logxor &rest integers
*/
{
n_real real;
LispObj *integers;
integers = ARGUMENT(0);
real.type = N_FIXNUM;
real.data.fixnum = 0;
for (; CONSP(integers); integers = CDR(integers))
xor_real_object(&real, CAR(integers));
return (make_real_object(&real));
}
LispObj *
Lisp_Minusp(LispBuiltin *builtin)
/*
minusp number
*/
{
LispObj *number;
number = ARGUMENT(0);
CHECK_REAL(number);
return (cmp_real_object(&zero, number) > 0 ? T : NIL);
}
LispObj *
Lisp_Mod(LispBuiltin *builtin)
/*
mod number divisor
*/
{
LispObj *result;
LispObj *number, *divisor;
divisor = ARGUMENT(1);
number = ARGUMENT(0);
if (INTEGERP(number) && INTEGERP(divisor)) {
n_real real;
set_real_object(&real, number);
mod_real_object(&real, divisor);
result = make_real_object(&real);
}
else {
n_number num;
set_number_object(&num, number);
divide_number_object(&num, divisor, NDIVIDE_FLOOR, 0);
result = make_real_object(&(num.imag));
clear_real(&(num.real));
}
return (result);
}
LispObj *
Lisp_Numberp(LispBuiltin *builtin)
/*
numberp object
*/
{
LispObj *object;
object = ARGUMENT(0);
return (NUMBERP(object) ? T : NIL);
}
LispObj *
Lisp_Numerator(LispBuiltin *builtin)
/*
numerator rational
*/
{
LispObj *result, *rational;
rational = ARGUMENT(0);
switch (OBJECT_TYPE(rational)) {
case LispFixnum_t:
case LispInteger_t:
case LispBignum_t:
result = rational;
break;
case LispRatio_t:
result = INTEGER(OFRN(rational));
break;
case LispBigratio_t:
if (mpi_fiti(OBRN(rational)))
result = INTEGER(mpi_geti(OBRN(rational)));
else {
mpi *num = XALLOC(mpi);
mpi_init(num);
mpi_set(num, OBRN(rational));
result = BIGNUM(num);
}
break;
default:
LispDestroy("%s: %s is not a rational number",
STRFUN(builtin), STROBJ(rational));
/*NOTREACHED*/
result = NIL;
}
return (result);
}
LispObj *
Lisp_Oddp(LispBuiltin *builtin)
/*
oddp integer
*/
{
LispObj *result, *integer;
integer = ARGUMENT(0);
switch (OBJECT_TYPE(integer)) {
case LispFixnum_t:
result = FIXNUM_VALUE(integer) % 2 ? T : NIL;
break;
case LispInteger_t:
result = INT_VALUE(integer) % 2 ? T : NIL;
break;
case LispBignum_t:
result = mpi_remi(OBI(integer), 2) ? T : NIL;
break;
default:
fatal_builtin_object_error(builtin, integer, NOT_AN_INTEGER);
/*NOTREACHED*/
result = NIL;
}
return (result);
}
LispObj *
Lisp_Plusp(LispBuiltin *builtin)
/*
plusp number
*/
{
LispObj *number;
number = ARGUMENT(0);
CHECK_REAL(number);
return (cmp_real_object(&zero, number) < 0 ? T : NIL);
}
LispObj *
Lisp_Rational(LispBuiltin *builtin)
/*
rational number
*/
{
LispObj *number;
number = ARGUMENT(0);
if (DFLOATP(number)) {
double numerator = ODF(number);
if ((long)numerator == numerator)
number = INTEGER(numerator);
else {
n_real real;
mpr *bigr = XALLOC(mpr);
mpr_init(bigr);
mpr_setd(bigr, numerator);
real.type = N_BIGRATIO;
real.data.bigratio = bigr;
rbr_canonicalize(&real);
number = make_real_object(&real);
}
}
else {
CHECK_REAL(number);
}
return (number);
}
LispObj *
Lisp_Rationalp(LispBuiltin *builtin)
/*
rationalp object
*/
{
LispObj *object;
object = ARGUMENT(0);
return (RATIONALP(object) ? T : NIL);
}
LispObj *
Lisp_Realpart(LispBuiltin *builtin)
/*
realpart number
*/
{
LispObj *number;
number = ARGUMENT(0);
if (COMPLEXP(number))
return (OCXR(number));
else {
CHECK_REAL(number);
}
return (number);
}
LispObj *
Lisp_Rem(LispBuiltin *builtin)
/*
rem number divisor
*/
{
LispObj *result;
LispObj *number, *divisor;
divisor = ARGUMENT(1);
number = ARGUMENT(0);
if (INTEGERP(number) && INTEGERP(divisor)) {
n_real real;
set_real_object(&real, number);
rem_real_object(&real, divisor);
result = make_real_object(&real);
}
else {
n_number num;
set_number_object(&num, number);
divide_number_object(&num, divisor, NDIVIDE_TRUNC, 0);
result = make_real_object(&(num.imag));
clear_real(&(num.real));
}
return (result);
}
LispObj *
Lisp_Sqrt(LispBuiltin *builtin)
/*
sqrt number
*/
{
n_number num;
LispObj *number;
number = ARGUMENT(0);
set_number_object(&num, number);
sqrt_number(&num);
return (make_number_object(&num));
}
LispObj *
Lisp_Zerop(LispBuiltin *builtin)
/*
zerop number
*/
{
LispObj *result, *number;
number = ARGUMENT(0);
switch (OBJECT_TYPE(number)) {
case LispFixnum_t:
case LispInteger_t:
case LispBignum_t:
case LispDFloat_t:
case LispRatio_t:
case LispBigratio_t:
result = cmp_real_object(&zero, number) == 0 ? T : NIL;
break;
case LispComplex_t:
result = cmp_real_object(&zero, OCXR(number)) == 0 &&
cmp_real_object(&zero, OCXI(number)) == 0 ? T : NIL;
break;
default:
fatal_builtin_object_error(builtin, number, NOT_A_NUMBER);
/*NOTREACHED*/
result = NIL;
}
return (result);
}
static LispObj *
LispDivide(LispBuiltin *builtin, int fun, int flo)
{
n_number num;
LispObj *number, *divisor;
divisor = ARGUMENT(1);
number = ARGUMENT(0);
RETURN_COUNT = 1;
if (cmp_real_object(&zero, number) == 0) {
if (divisor != NIL) {
CHECK_REAL(divisor);
}
return (RETURN(0) = obj_zero);
}
if (divisor == UNSPEC)
divisor = obj_one;
set_number_object(&num, number);
if (num.complex)
fatal_builtin_object_error(builtin, divisor, NOT_A_REAL_NUMBER);
divide_number_object(&num, divisor, fun, flo);
RETURN(0) = make_real_object(&(num.imag));
return (make_real_object(&(num.real)));
}
LispObj *
Lisp_Ceiling(LispBuiltin *builtin)
/*
ceiling number &optional divisor
*/
{
return (LispDivide(builtin, NDIVIDE_CEIL, 0));
}
LispObj *
Lisp_Fceiling(LispBuiltin *builtin)
/*
fceiling number &optional divisor
*/
{
return (LispDivide(builtin, NDIVIDE_CEIL, 1));
}
LispObj *
Lisp_Floor(LispBuiltin *builtin)
/*
floor number &optional divisor
*/
{
return (LispDivide(builtin, NDIVIDE_FLOOR, 0));
}
LispObj *
Lisp_Ffloor(LispBuiltin *builtin)
/*
ffloor number &optional divisor
*/
{
return (LispDivide(builtin, NDIVIDE_FLOOR, 1));
}
LispObj *
Lisp_Round(LispBuiltin *builtin)
/*
round number &optional divisor
*/
{
return (LispDivide(builtin, NDIVIDE_ROUND, 0));
}
LispObj *
Lisp_Fround(LispBuiltin *builtin)
/*
fround number &optional divisor
*/
{
return (LispDivide(builtin, NDIVIDE_ROUND, 1));
}
LispObj *
Lisp_Truncate(LispBuiltin *builtin)
/*
truncate number &optional divisor
*/
{
return (LispDivide(builtin, NDIVIDE_TRUNC, 0));
}
LispObj *
Lisp_Ftruncate(LispBuiltin *builtin)
/*
ftruncate number &optional divisor
*/
{
return (LispDivide(builtin, NDIVIDE_TRUNC, 1));
}