xenocara/driver/xf86-video-mach64/src/aticlock.c
2010-05-24 09:28:57 +00:00

440 lines
15 KiB
C

/*
* Copyright 1997 through 2004 by Marc Aurele La France (TSI @ UQV), tsi@xfree86.org
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that copyright
* notice and this permission notice appear in supporting documentation, and
* that the name of Marc Aurele La France not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. Marc Aurele La France makes no representations
* about the suitability of this software for any purpose. It is provided
* "as-is" without express or implied warranty.
*
* MARC AURELE LA FRANCE DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
* EVENT SHALL MARC AURELE LA FRANCE BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*
* For all supported programmable clock generators, the driver will ignore any
* XF86Config clock line and programme, as needed, the clock number reserved by
* the BIOS for accelerated drivers. The driver's mode initialisation routine
* finds integers N, M and D such that
*
* N
* R * ------- MHz
* M * D
*
* best approximates the mode's clock frequency, where R is the crystal-
* generated reference frequency (usually 14.318 MHz). D is a power of 2
* except for those integrated controllers that also offer odd dividers.
* Different clock generators have different restrictions on the value N, M and
* D can assume. The driver contains an internal table to record these
* restrictions (among other things). The resulting values of N, M and D are
* then encoded in a generator-specific way and used to programme the clock.
* The Mach64's clock divider is not used in this case.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdlib.h>
#include "ati.h"
#include "atichip.h"
#include "atidac.h"
#include "atidsp.h"
#include "atimach64io.h"
#include "atimode.h"
#include "atiwonderio.h"
/*
* Definitions related to programmable clock generators.
*/
static CARD16 ATIPostDividers[] = {1, 2, 4, 8, 16, 32, 64, 128},
ATI264xTPostDividers[] = {1, 2, 4, 8, 3, 0, 6, 12};
ClockRec ATIClockDescriptors[] =
{
{
0, 0, 0, 1, 1,
1, 1, 0,
0, NULL,
"Non-programmable"
},
{
257, 512, 257, 1, 1,
46, 46, 0,
4, ATIPostDividers,
"ATI 18818 or ICS 2595 or similar"
},
{
2, 129, 2, 1, 1,
8, 14, 2,
8, ATIPostDividers,
"SGS-Thompson 1703 or similar"
},
{
16, 263, 8, 8, 9,
4, 12, 2,
4, ATIPostDividers,
"Chrontel 8398 or similar"
},
{
2, 255, 0, 1, 1,
45, 45, 0,
4, ATI264xTPostDividers,
"Internal"
},
{
2, 257, 2, 1, 1,
2, 32, 2,
4, ATIPostDividers,
"AT&T 20C408 or similar"
},
{
65, 128, 65, 1, 1,
2, 14, 0,
4, ATIPostDividers,
"IBM RGB 514 or similar"
}
};
/*
* ATIClockPreInit --
*
* This function is called by ATIPreInit() and handles the XF86Config clocks
* line (or lack thereof).
*/
void
ATIClockPreInit
(
ScrnInfoPtr pScreenInfo,
ATIPtr pATI
)
{
/*
* Recognise supported clock generators. This involves telling the
* rest of the server about it and (re-)initializing the XF86Config
* clocks line.
*/
pScreenInfo->progClock = TRUE;
xf86DrvMsg(pScreenInfo->scrnIndex, X_PROBED,
"%s programmable clock generator detected.\n",
pATI->ClockDescriptor.ClockName);
if (pATI->ReferenceDenominator == 1)
xf86DrvMsg(pScreenInfo->scrnIndex, X_PROBED,
"Reference clock %.3f MHz.\n",
(double)pATI->ReferenceNumerator / 1000.0);
else
xf86DrvMsg(pScreenInfo->scrnIndex, X_PROBED,
"Reference clock %.6g/%d (%.3f) MHz.\n",
(double)pATI->ReferenceNumerator / 1000.0,
pATI->ReferenceDenominator,
(double)pATI->ReferenceNumerator /
((double)pATI->ReferenceDenominator * 1000.0));
#if defined(__sparc__)
if ((pATI->refclk / 100000) != 286 &&
(pATI->refclk / 100000) != 295)
{
xf86DrvMsg(pScreenInfo->scrnIndex, X_INFO,
"If modes do not work on Ultra 5/10 or Blade 100/150,\n"
"\tset option \"reference_clock\" to \"28.636 MHz\""
" or \"29.5 MHz\"\n");
}
#endif
if (pATI->ProgrammableClock == ATI_CLOCK_CH8398)
{ /* First two are fixed */
pScreenInfo->numClocks = 2;
pScreenInfo->clock[0] = 25175;
pScreenInfo->clock[1] = 28322;
}
else if (pATI->ProgrammableClock == ATI_CLOCK_INTERNAL)
{
/*
* The integrated PLL generates clocks as if the reference
* frequency were doubled.
*/
pATI->ReferenceNumerator <<= 1;
}
}
/*
* ATIClockCalculate --
*
* This function is called to generate, if necessary, the data needed for clock
* programming, and set clock select bits in various register values.
*/
Bool
ATIClockCalculate
(
int iScreen,
ATIPtr pATI,
ATIHWPtr pATIHW,
DisplayModePtr pMode
)
{
int N, M, D;
int ClockSelect, N1, MinimumGap;
int Frequency, Multiple; /* Used as temporaries */
/* Set default values */
pATIHW->FeedbackDivider = pATIHW->ReferenceDivider = pATIHW->PostDivider = 0;
if (((pATI->ProgrammableClock == ATI_CLOCK_CH8398) &&
(pMode->ClockIndex < 2)))
{
xf86DrvMsg(iScreen, X_ERROR,
"First two clocks of Chrontel 8398 clock generator are fixed\n");
return FALSE;
}
{
/* Generate clock programme word, using units of kHz */
MinimumGap = ((unsigned int)(-1)) >> 1;
/* Loop through reference dividers */
for (M = pATI->ClockDescriptor.MinM;
M <= pATI->ClockDescriptor.MaxM;
M++)
{
/* Loop through post-dividers */
for (D = 0; D < pATI->ClockDescriptor.NumD; D++)
{
if (!pATI->ClockDescriptor.PostDividers[D])
continue;
/* Limit undivided VCO to maxClock */
if (pATI->maxClock &&
((pATI->maxClock / pATI->ClockDescriptor.PostDividers[D]) <
pMode->Clock))
continue;
/*
* Calculate closest feedback divider and apply its
* restrictions.
*/
Multiple = M * pATI->ReferenceDenominator *
pATI->ClockDescriptor.PostDividers[D];
N = ATIDivide(pMode->Clock * Multiple,
pATI->ReferenceNumerator, 0, 0);
if (N < pATI->ClockDescriptor.MinN)
N = pATI->ClockDescriptor.MinN;
else if (N > pATI->ClockDescriptor.MaxN)
N = pATI->ClockDescriptor.MaxN;
N -= pATI->ClockDescriptor.NAdjust;
N1 = (N / pATI->ClockDescriptor.N1) * pATI->ClockDescriptor.N2;
if (N > N1)
N = ATIDivide(N1 + 1, pATI->ClockDescriptor.N1, 0, 1);
N += pATI->ClockDescriptor.NAdjust;
N1 += pATI->ClockDescriptor.NAdjust;
for (; ; N = N1)
{
/* Pick the closest setting */
Frequency = abs(ATIDivide(N * pATI->ReferenceNumerator,
Multiple, 0, 0) - pMode->Clock);
if ((Frequency < MinimumGap) ||
((Frequency == MinimumGap) &&
(pATIHW->FeedbackDivider < N)))
{
/* Save settings */
pATIHW->FeedbackDivider = N;
pATIHW->ReferenceDivider = M;
pATIHW->PostDivider = D;
MinimumGap = Frequency;
}
if (N <= N1)
break;
}
}
}
Multiple = pATIHW->ReferenceDivider * pATI->ReferenceDenominator *
pATI->ClockDescriptor.PostDividers[pATIHW->PostDivider];
Frequency = pATIHW->FeedbackDivider * pATI->ReferenceNumerator;
Frequency = ATIDivide(Frequency, Multiple, 0, 0);
if (abs(Frequency - pMode->Clock) > CLOCK_TOLERANCE)
{
xf86DrvMsg(iScreen, X_ERROR,
"Unable to programme clock %.3fMHz for mode %s.\n",
(double)(pMode->Clock) / 1000.0, pMode->name);
return FALSE;
}
pMode->SynthClock = Frequency;
ClockSelect = pATI->ClockNumberToProgramme;
xf86ErrorFVerb(4,
"\n Programming clock %d to %.3fMHz for mode %s."
" N=%d, M=%d, D=%d.\n",
ClockSelect, (double)Frequency / 1000.0, pMode->name,
pATIHW->FeedbackDivider, pATIHW->ReferenceDivider,
pATIHW->PostDivider);
if (pATI->Chip >= ATI_CHIP_264VTB)
ATIDSPCalculate(pATI, pATIHW, pMode);
}
/* Set clock select bits */
pATIHW->clock = ClockSelect;
{
pATIHW->clock_cntl = CLOCK_STROBE |
SetBits(ClockSelect, CLOCK_SELECT | CLOCK_DIVIDER);
}
return TRUE;
}
/*
* ATIClockSet --
*
* This function is called to programme a clock for the mode being set.
*/
void
ATIClockSet
(
ATIPtr pATI,
ATIHWPtr pATIHW
)
{
CARD32 crtc_gen_cntl, tmp;
CARD8 clock_cntl0;
CARD8 tmp2;
unsigned int Programme;
int N = pATIHW->FeedbackDivider - pATI->ClockDescriptor.NAdjust;
int M = pATIHW->ReferenceDivider - pATI->ClockDescriptor.MAdjust;
int D = pATIHW->PostDivider;
/* Temporarily switch to accelerator mode */
crtc_gen_cntl = inr(CRTC_GEN_CNTL);
if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN))
outr(CRTC_GEN_CNTL, crtc_gen_cntl | CRTC_EXT_DISP_EN);
switch (pATI->ProgrammableClock)
{
case ATI_CLOCK_ICS2595:
clock_cntl0 = in8(CLOCK_CNTL);
Programme = (SetBits(pATIHW->clock, ICS2595_CLOCK) |
SetBits(N, ICS2595_FB_DIV) | SetBits(D, ICS2595_POST_DIV)) ^
ICS2595_TOGGLE;
ATIDelay(50000); /* 50 milliseconds */
/* Send all 20 bits of programme word */
while (Programme >= CLOCK_BIT)
{
tmp = (Programme & CLOCK_BIT) | CLOCK_STROBE;
out8(CLOCK_CNTL, tmp);
ATIDelay(26); /* 26 microseconds */
out8(CLOCK_CNTL, tmp | CLOCK_PULSE);
ATIDelay(26); /* 26 microseconds */
Programme >>= 1;
}
/* Restore register */
out8(CLOCK_CNTL, clock_cntl0 | CLOCK_STROBE);
break;
case ATI_CLOCK_STG1703:
(void)ATIGetDACCmdReg(pATI);
(void)in8(M64_DAC_MASK);
out8(M64_DAC_MASK, (pATIHW->clock << 1) + 0x20U);
out8(M64_DAC_MASK, 0);
out8(M64_DAC_MASK, SetBits(N, 0xFFU));
out8(M64_DAC_MASK, SetBits(M, 0x1FU) | SetBits(D, 0xE0U));
break;
case ATI_CLOCK_CH8398:
tmp = inr(DAC_CNTL) | (DAC_EXT_SEL_RS2 | DAC_EXT_SEL_RS3);
outr(DAC_CNTL, tmp);
out8(M64_DAC_WRITE, pATIHW->clock);
out8(M64_DAC_DATA, SetBits(N, 0xFFU));
out8(M64_DAC_DATA, SetBits(M, 0x3FU) | SetBits(D, 0xC0U));
out8(M64_DAC_MASK, 0x04U);
outr(DAC_CNTL, tmp & ~(DAC_EXT_SEL_RS2 | DAC_EXT_SEL_RS3));
tmp2 = in8(M64_DAC_WRITE);
out8(M64_DAC_WRITE, (tmp2 & 0x70U) | 0x80U);
outr(DAC_CNTL, tmp & ~DAC_EXT_SEL_RS2);
break;
case ATI_CLOCK_INTERNAL:
/* Reset VCLK generator */
ATIMach64PutPLLReg(PLL_VCLK_CNTL, pATIHW->pll_vclk_cntl);
/* Set post-divider */
tmp2 = pATIHW->clock << 1;
tmp = ATIMach64GetPLLReg(PLL_VCLK_POST_DIV);
tmp &= ~(0x03U << tmp2);
tmp |= SetBits(D, 0x03U) << tmp2;
ATIMach64PutPLLReg(PLL_VCLK_POST_DIV, tmp);
/* Set extended post-divider */
tmp = ATIMach64GetPLLReg(PLL_XCLK_CNTL);
tmp &= ~(SetBits(1, PLL_VCLK0_XDIV) << pATIHW->clock);
tmp |= SetBits(D >> 2, PLL_VCLK0_XDIV) << pATIHW->clock;
ATIMach64PutPLLReg(PLL_XCLK_CNTL, tmp);
/* Set feedback divider */
tmp = PLL_VCLK0_FB_DIV + pATIHW->clock;
ATIMach64PutPLLReg(tmp, SetBits(N, 0xFFU));
/* End VCLK generator reset */
ATIMach64PutPLLReg(PLL_VCLK_CNTL,
pATIHW->pll_vclk_cntl & ~PLL_VCLK_RESET);
/* Reset write bit */
ATIMach64AccessPLLReg(pATI, 0, FALSE);
break;
case ATI_CLOCK_ATT20C408:
(void)ATIGetDACCmdReg(pATI);
tmp = in8(M64_DAC_MASK);
(void)ATIGetDACCmdReg(pATI);
out8(M64_DAC_MASK, tmp | 1);
out8(M64_DAC_WRITE, 1);
out8(M64_DAC_MASK, tmp | 9);
ATIDelay(400); /* 400 microseconds */
tmp2 = (pATIHW->clock << 2) + 0x40U;
out8(M64_DAC_WRITE, tmp2);
out8(M64_DAC_MASK, SetBits(N, 0xFFU));
out8(M64_DAC_WRITE, ++tmp2);
out8(M64_DAC_MASK, SetBits(M, 0x3FU) | SetBits(D, 0xC0U));
out8(M64_DAC_WRITE, ++tmp2);
out8(M64_DAC_MASK, 0x77U);
ATIDelay(400); /* 400 microseconds */
out8(M64_DAC_WRITE, 1);
out8(M64_DAC_MASK, tmp);
break;
case ATI_CLOCK_IBMRGB514:
/*
* Here, only update in-core data. It will be written out later by
* ATIRGB514Set().
*/
tmp = (pATIHW->clock << 1) + 0x20U;
pATIHW->ibmrgb514[tmp] =
(SetBits(N, 0x3FU) | SetBits(D, 0xC0U)) ^ 0xC0U;
pATIHW->ibmrgb514[tmp + 1] = SetBits(M, 0x3FU);
break;
default:
break;
}
(void)in8(M64_DAC_WRITE); /* Clear DAC counter */
/* Restore register */
if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN))
outr(CRTC_GEN_CNTL, crtc_gen_cntl);
}