xenocara/driver/xf86-video-openchrome/libxvmc/viaLowLevelPro.c
matthieu 855916fc83 update to openchrome.net svn commit 750.
This adds among others support for the VX800 chipset.
This has been in snapshots for weeks.
2009-06-25 21:27:18 +00:00

1651 lines
41 KiB
C

/*****************************************************************************
* VIA Unichrome XvMC extension client lib.
*
* Copyright (c) 2004 Thomas Hellström. All rights reserved.
* Copyright (c) 2003 Andreas Robinson. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHOR(S) OR COPYRIGHT HOLDER(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/*
* Low-level functions that deal directly with the hardware. In the future,
* these functions might be implemented in a kernel module. Also, some of them
* would benefit from DMA.
*
* Authors:
* Andreas Robinson 2003. (Initial decoder interface functions).
* Thomas Hellstrom 2004, 2005 (Blitting functions, AGP and locking, Unichrome Pro Video AGP).
* Ivor Hewitt 2005 (Unichrome Pro modifications and merging).
*/
/* IH
* I've left the proReg or-ing in case we need/want to implement the V1/V3
* register toggle too, which also moves the register locations.
* The CN400 has dual mpeg decoders, not sure at the moment whether these
* are also operated through independent registers also.
*/
#undef VIDEO_DMA
#define HQV_USE_IRQ
#define UNICHROME_PRO
#include "viaXvMCPriv.h"
#include "viaLowLevel.h"
#include "driDrawable.h"
#include <time.h>
#include <sys/time.h>
#include <stdio.h>
typedef enum
{ ll_init, ll_agpBuf, ll_pciBuf, ll_timeStamp, ll_llBuf }
LLState;
typedef struct
{
drm_via_mem_t mem;
unsigned offset;
unsigned stride;
unsigned height;
} LowLevelBuffer;
struct _XvMCLowLevel;
typedef struct _ViaCommandBuffer
{
CARD32 *buf;
CARD32 waitFlags;
unsigned pos;
unsigned bufSize;
int mode;
int header_start;
int rindex;
void (*flushFunc) (struct _ViaCommandBuffer * cb,
struct _XvMCLowLevel * xl);
} ViaCommandBuffer;
typedef struct _XvMCLowLevel
{
ViaCommandBuffer agpBuf, pciBuf, *videoBuf;
int use_agp;
int fd;
drm_context_t *drmcontext;
drmLockPtr hwLock;
drmAddress mmioAddress;
drmAddress fbAddress;
unsigned fbStride;
unsigned fbDepth;
unsigned width;
unsigned height;
int performLocking;
unsigned errors;
drm_via_mem_t tsMem;
CARD32 tsOffset;
volatile CARD32 *tsP;
CARD32 curTimeStamp;
CARD32 lastReadTimeStamp;
int agpSync;
CARD32 agpSyncTimeStamp;
unsigned chipId;
/*
* Data for video-engine less display
*/
XvMCRegion sRegion;
XvMCRegion dRegion;
LowLevelBuffer scale;
LowLevelBuffer back;
Bool downScaling;
CARD32 downScaleW;
CARD32 downScaleH;
CARD32 upScaleW;
CARD32 upScaleH;
unsigned fetch;
unsigned line;
LLState state;
} XvMCLowLevel;
/*
* For Other architectures than i386 these might have to be modified for
* bigendian etc.
*/
#define MPEGIN(xl,reg) \
*((volatile CARD32 *)(((CARD8 *)(xl)->mmioAddress) + 0xc00 + (reg)))
#define VIDIN(ctx,reg) \
*((volatile CARD32 *)(((CARD8 *)(ctx)->mmioAddress) + 0x200 + (reg)))
#define REGIN(ctx,reg) \
*((volatile CARD32 *)(((CARD8 *)(ctx)->mmioAddress) + 0x0000 + (reg)))
#define HQV_CONTROL 0x1D0
#define HQV_SRC_OFFSET 0x1CC
#define HQV_SRC_STARTADDR_Y 0x1D4
#define HQV_SRC_STARTADDR_U 0x1D8
#define HQV_SRC_STARTADDR_V 0x1DC
#define HQV_MINIFY_DEBLOCK 0x1E8
#define REG_HQV1_INDEX 0x00001000
#define HQV_SW_FLIP 0x00000010
#define HQV_FLIP_STATUS 0x00000001
#define HQV_SUBPIC_FLIP 0x00008000
#define HQV_FLIP_ODD 0x00000020
#define HQV_DEINTERLACE 0x00010000
#define HQV_FIELD_2_FRAME 0x00020000
#define HQV_FRAME_2_FIELD 0x00040000
#define HQV_FIELD_UV 0x00100000
#define HQV_DEBLOCK_HOR 0x00008000
#define HQV_DEBLOCK_VER 0x80000000
#define HQV_YUV420 0xC0000000
#define HQV_YUV422 0x80000000
#define HQV_ENABLE 0x08000000
#define HQV_GEN_IRQ 0x00000080
#define HQV_SCALE_ENABLE 0x00000800
#define HQV_SCALE_DOWN 0x00001000
#define V_COMPOSE_MODE 0x98
#define V1_COMMAND_FIRE 0x80000000
#define V3_COMMAND_FIRE 0x40000000
/* SUBPICTURE Registers */
#define SUBP_CONTROL_STRIDE 0x1C0
#define SUBP_STARTADDR 0x1C4
#define RAM_TABLE_CONTROL 0x1C8
#define RAM_TABLE_READ 0x1CC
/* SUBP_CONTROL_STRIDE 0x3c0 */
#define SUBP_HQV_ENABLE 0x00010000
#define SUBP_IA44 0x00020000
#define SUBP_AI44 0x00000000
#define SUBP_STRIDE_MASK 0x00001fff
#define SUBP_CONTROL_MASK 0x00070000
/* RAM_TABLE_CONTROL 0x3c8 */
#define RAM_TABLE_RGB_ENABLE 0x00000007
#define VIA_REG_STATUS 0x400
#define VIA_REG_GEMODE 0x004
#define VIA_REG_SRCBASE 0x030
#define VIA_REG_DSTBASE 0x034
#define VIA_REG_PITCH 0x038
#define VIA_REG_SRCCOLORKEY 0x01C
#define VIA_REG_KEYCONTROL 0x02C
#define VIA_REG_SRCPOS 0x008
#define VIA_REG_DSTPOS 0x00C
#define VIA_REG_GECMD 0x000
#define VIA_REG_DIMENSION 0x010 /* width and height */
#define VIA_REG_FGCOLOR 0x018
#define VIA_VR_QUEUE_BUSY 0x00020000 /* Virtual Queue is busy */
#define VIA_CMD_RGTR_BUSY 0x00000080 /* Command Regulator is busy */
#define VIA_2D_ENG_BUSY 0x00000002 /* 2D Engine is busy */
#define VIA_3D_ENG_BUSY 0x00000001 /* 3D Engine is busy */
#define VIA_GEM_8bpp 0x00000000
#define VIA_GEM_16bpp 0x00000100
#define VIA_GEM_32bpp 0x00000300
#define VIA_GEC_BLT 0x00000001
#define VIA_PITCH_ENABLE 0x80000000
#define VIA_GEC_INCX 0x00000000
#define VIA_GEC_DECY 0x00004000
#define VIA_GEC_INCY 0x00000000
#define VIA_GEC_DECX 0x00008000
#define VIA_GEC_FIXCOLOR_PAT 0x00002000
#define VIA_BLIT_CLEAR 0x00
#define VIA_BLIT_COPY 0xCC
#define VIA_BLIT_FILL 0xF0
#define VIA_BLIT_SET 0xFF
#define VIA_SYNCWAITTIMEOUT 50000 /* Might be a bit conservative */
#define VIA_DMAWAITTIMEOUT 150000
#define VIA_VIDWAITTIMEOUT 50000
#define VIA_XVMC_DECODERTIMEOUT 50000 /*(microseconds) */
#define VIA_AGP_HEADER5 0xFE040000
#define VIA_AGP_HEADER6 0xFE050000
typedef struct
{
CARD32 data;
Bool set;
} HQVRegister;
#define H1_ADDR(val) (((val) >> 2) | 0xF0000000)
#define WAITFLAGS(cb, flags) \
(cb)->waitFlags |= (flags)
#define BEGIN_RING_AGP(cb, xl, size) \
do { \
if ((cb)->pos > ((cb)->bufSize-(size))) { \
cb->flushFunc(cb, xl); \
} \
} while(0)
#define OUT_RING_AGP(cb, val) do{ \
(cb)->buf[(cb)->pos++] = (val); \
} while(0);
#define OUT_RING_QW_AGP(cb, val1, val2) \
do { \
(cb)->buf[(cb)->pos++] = (val1); \
(cb)->buf[(cb)->pos++] = (val2); \
} while (0)
#define BEGIN_HEADER5_AGP(cb, xl, index) \
do { \
BEGIN_RING_AGP(cb, xl, 8); \
(cb)->mode = VIA_AGP_HEADER5; \
(cb)->rindex = (index); \
(cb)->header_start = (cb)->pos; \
(cb)->pos += 4; \
} while (0)
#define BEGIN_HEADER6_AGP(cb, xl) \
do { \
BEGIN_RING_AGP(cb, xl, 8); \
(cb)->mode = VIA_AGP_HEADER6; \
(cb)->header_start = (cb)->pos; \
(cb)->pos += 4; \
} while (0)
#define BEGIN_HEADER5_DATA(cb, xl, size, index) \
do { \
if ((cb)->pos > ((cb)->bufSize - ((size) + 16))) { \
cb->flushFunc(cb, xl); \
BEGIN_HEADER5_AGP(cb, xl, index); \
} else if ((cb)->mode && (((cb)->mode != VIA_AGP_HEADER5) || \
((cb)->rindex != index))) { \
finish_header_agp(cb); \
BEGIN_HEADER5_AGP((cb), xl, (index)); \
} else if (cb->mode != VIA_AGP_HEADER5) { \
BEGIN_HEADER5_AGP((cb), xl, (index)); \
} \
}while(0)
#define BEGIN_HEADER6_DATA(cb, xl, size) \
do{ \
if ((cb)->pos > (cb->bufSize-(((size) << 1) + 16))) { \
cb->flushFunc(cb, xl); \
BEGIN_HEADER6_AGP(cb, xl); \
} else if ((cb)->mode && ((cb)->mode != VIA_AGP_HEADER6)) { \
finish_header_agp(cb); \
BEGIN_HEADER6_AGP(cb, xl); \
} \
else if ((cb->mode != VIA_AGP_HEADER6)) { \
BEGIN_HEADER6_AGP(cb, (xl)); \
} \
}while(0)
#define HQV_SHADOW_BASE 0x3CC
#define HQV_SHADOW_SIZE 13
#define SETHQVSHADOW(shadow, offset, value) \
do { \
HQVRegister *r = (shadow) + (((offset) - HQV_SHADOW_BASE) >> 2); \
r->data = (value); \
r->set = TRUE; \
} while(0)
#define GETHQVSHADOW(shadow, offset) ((shadow)[(offset - HQV_SHADOW_BASE) >> 2].data)
#define LL_HW_LOCK(xl) \
do { \
DRM_LOCK((xl)->fd,(xl)->hwLock,*(xl)->drmcontext,0); \
} while(0);
#define LL_HW_UNLOCK(xl) \
do { \
DRM_UNLOCK((xl)->fd,(xl)->hwLock,*(xl)->drmcontext); \
} while(0);
static HQVRegister hqvShadow[HQV_SHADOW_SIZE];
static void
initHQVShadow(HQVRegister * r)
{
int i;
for (i = 0; i < HQV_SHADOW_SIZE; ++i) {
r->data = 0;
r++->set = FALSE;
}
}
#if 0
static void
setHQVHWDeinterlacing(HQVRegister * shadow, Bool on, Bool motionDetect,
CARD32 stride, CARD32 height)
{
CARD32 tmp = GETHQVSHADOW(shadow, 0x3E4);
if (!on) {
tmp &= ~((1 << 0) | (1 << 12) | (1 << 27) | (1 << 31));
SETHQVSHADOW(shadow, 0x3E4, tmp);
return;
}
tmp = (1 << 31) |
(4 << 28) |
(1 << 27) |
(3 << 25) | (1 << 18) | (2 << 14) | (8 << 8) | (8 << 1) | (1 << 0);
if (motionDetect)
tmp |= (1 << 12);
SETHQVSHADOW(shadow, 0x3E4, tmp);
tmp = GETHQVSHADOW(shadow, 0x3DC);
tmp |= (stride * height * 1536) / 1024 & 0x7ff;
SETHQVSHADOW(shadow, 0x3DC, tmp);
tmp = GETHQVSHADOW(shadow, 0x3D0);
tmp |= (1 << 23);
SETHQVSHADOW(shadow, 0x3D0, tmp);
}
#endif
static void
setHQVDeblocking(HQVRegister * shadow, Bool on, Bool lowPass)
{
CARD32 tmp = GETHQVSHADOW(shadow, 0x3DC);
if (!on) {
tmp &= ~(1 << 27);
SETHQVSHADOW(shadow, 0x3DC, tmp);
return;
}
tmp |= (8 << 16) | (1 << 27);
if (lowPass)
tmp |= (1 << 26);
SETHQVSHADOW(shadow, 0x3DC, tmp);
tmp = GETHQVSHADOW(shadow, 0x3D4);
tmp |= (6 << 27);
SETHQVSHADOW(shadow, 0x3D4, tmp);
tmp = GETHQVSHADOW(shadow, 0x3D8);
tmp |= (19 << 27);
SETHQVSHADOW(shadow, 0x3D8, tmp);
}
static void
setHQVStartAddress(HQVRegister * shadow, unsigned yOffs, unsigned uOffs,
unsigned stride, unsigned format)
{
CARD32 tmp = GETHQVSHADOW(shadow, 0x3D4);
tmp |= yOffs & 0x03FFFFF0;
SETHQVSHADOW(shadow, 0x3D4, tmp);
tmp = GETHQVSHADOW(shadow, 0x3D8);
tmp |= uOffs & 0x03FFFFF0;
SETHQVSHADOW(shadow, 0x3D8, tmp);
tmp = GETHQVSHADOW(shadow, 0x3F8);
tmp |= (stride & 0x1FF8);
SETHQVSHADOW(shadow, 0x3F8, tmp);
tmp = GETHQVSHADOW(shadow, 0x3D0);
if (format == 0) {
/*
* NV12
*/
tmp |= (0x0C << 28);
} else if (format == 1) {
/*
* RGB16
*/
tmp |= (0x02 << 28);
} else if (format == 2) {
/*
* RGB32
*/
;
}
SETHQVSHADOW(shadow, 0x3D0, tmp);
}
#if 0
static void
setHQVColorSpaceConversion(HQVRegister * shadow, unsigned depth, Bool on)
{
CARD32 tmp = GETHQVSHADOW(shadow, 0x3DC);
if (!on) {
tmp &= ~(1 << 28);
SETHQVSHADOW(shadow, 0x3DC, tmp);
return;
}
if (depth == 32)
tmp |= (1 << 29);
tmp |= (1 << 28);
tmp &= ~(1 << 15);
SETHQVSHADOW(shadow, 0x3DC, tmp);
}
static void
setHQVFetchLine(HQVRegister * shadow, unsigned fetch, unsigned lines)
{
SETHQVSHADOW(shadow, 0x3E0,
((lines - 1) & 0x7FF) | (((fetch - 1) & 0x1FFF) << 16));
}
static void
setHQVScale(HQVRegister * shadow, unsigned horizontal, unsigned vertical)
{
SETHQVSHADOW(shadow, 0x3E8,
(horizontal & 0xFFFF) | ((vertical & 0xFFFF) << 16));
}
static void
setHQVSingleDestination(HQVRegister * shadow, unsigned offset,
unsigned stride)
{
CARD32 tmp = GETHQVSHADOW(shadow, 0x3D0);
tmp |= (1 << 6);
SETHQVSHADOW(shadow, 0x3D0, tmp);
SETHQVSHADOW(shadow, 0x3EC, offset & 0x03FFFFF8);
SETHQVSHADOW(shadow, 0x3F4, stride & 0x1FF8);
}
#endif
static void
setHQVDeinterlacing(HQVRegister * shadow, CARD32 frameType)
{
CARD32 tmp = GETHQVSHADOW(shadow, 0x3D0);
if ((frameType & XVMC_FRAME_PICTURE) == XVMC_TOP_FIELD) {
tmp |= HQV_FIELD_UV |
HQV_DEINTERLACE | HQV_FIELD_2_FRAME | HQV_FRAME_2_FIELD;
} else if ((frameType & XVMC_FRAME_PICTURE) == XVMC_BOTTOM_FIELD) {
tmp |= HQV_FIELD_UV |
HQV_DEINTERLACE |
HQV_FIELD_2_FRAME | HQV_FRAME_2_FIELD | HQV_FLIP_ODD;
}
SETHQVSHADOW(shadow, 0x3D0, tmp);
}
static void
setHQVTripleBuffer(HQVRegister * shadow, Bool on)
{
CARD32 tmp = GETHQVSHADOW(shadow, 0x3D0);
if (on)
tmp |= (1 << 26);
else
tmp &= ~(1 << 26);
SETHQVSHADOW(shadow, 0x3D0, tmp);
}
static void
finish_header_agp(ViaCommandBuffer * cb)
{
int numDWords, i;
CARD32 *hb;
if (!cb->mode)
return;
numDWords = cb->pos - cb->header_start - 4;
hb = cb->buf + cb->header_start;
switch (cb->mode) {
case VIA_AGP_HEADER5:
hb[0] = VIA_AGP_HEADER5 | cb->rindex;
hb[1] = numDWords;
hb[2] = 0x00F50000; /* SW debug flag. (?) */
break;
default:
hb[0] = VIA_AGP_HEADER6;
hb[1] = numDWords >> 1;
hb[2] = 0x00F60000; /* SW debug flag. (?) */
break;
}
hb[3] = 0;
if (numDWords & 3) {
for (i = 0; i < (4 - (numDWords & 3)); ++i)
OUT_RING_AGP(cb, 0x00000000);
}
cb->mode = 0;
}
void
hwlLock(void *xlp, int videoLock)
{
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
LL_HW_LOCK(xl);
}
void
hwlUnlock(void *xlp, int videoLock)
{
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
LL_HW_UNLOCK(xl);
}
static unsigned
timeDiff(struct timeval *now, struct timeval *then)
{
return (now->tv_usec >= then->tv_usec) ?
now->tv_usec - then->tv_usec :
1000000 - (then->tv_usec - now->tv_usec);
}
void
setAGPSyncLowLevel(void *xlp, int val, CARD32 timeStamp)
{
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
xl->agpSync = val;
xl->agpSyncTimeStamp = timeStamp;
}
CARD32
viaDMATimeStampLowLevel(void *xlp)
{
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
if (xl->use_agp) {
viaBlit(xl, 32, xl->tsOffset, 1, xl->tsOffset, 1, 1, 1, 0, 0,
VIABLIT_FILL, xl->curTimeStamp);
return xl->curTimeStamp++;
}
return 0;
}
static void
viaDMAWaitTimeStamp(XvMCLowLevel * xl, CARD32 timeStamp, int doSleep)
{
struct timeval now, then;
struct timezone here;
struct timespec sleep, rem;
if (xl->use_agp && (xl->lastReadTimeStamp - timeStamp > (1 << 23))) {
sleep.tv_nsec = 1;
sleep.tv_sec = 0;
here.tz_minuteswest = 0;
here.tz_dsttime = 0;
gettimeofday(&then, &here);
while (((xl->lastReadTimeStamp = *xl->tsP) - timeStamp) > (1 << 23)) {
gettimeofday(&now, &here);
if (timeDiff(&now, &then) > VIA_DMAWAITTIMEOUT) {
if (((xl->lastReadTimeStamp =
*xl->tsP) - timeStamp) > (1 << 23)) {
xl->errors |= LL_DMA_TIMEDOUT;
break;
}
}
if (doSleep)
nanosleep(&sleep, &rem);
}
}
}
static int
viaDMAInitTimeStamp(XvMCLowLevel * xl)
{
int ret = 0;
if (xl->use_agp) {
xl->tsMem.context = *(xl->drmcontext);
xl->tsMem.size = 64;
xl->tsMem.type = VIA_MEM_VIDEO;
if ((ret = drmCommandWriteRead(xl->fd, DRM_VIA_ALLOCMEM,
&xl->tsMem, sizeof(xl->tsMem))) < 0)
return ret;
if (xl->tsMem.size != 64)
return -1;
xl->tsOffset = (xl->tsMem.offset + 31) & ~31;
xl->tsP = (CARD32 *) xl->fbAddress + (xl->tsOffset >> 2);
xl->curTimeStamp = 1;
*xl->tsP = 0;
}
return 0;
}
static int
viaDMACleanupTimeStamp(XvMCLowLevel * xl)
{
if (!(xl->tsMem.size) || !xl->use_agp)
return 0;
return drmCommandWrite(xl->fd, DRM_VIA_FREEMEM, &xl->tsMem,
sizeof(xl->tsMem));
}
static CARD32
viaMpegGetStatus(XvMCLowLevel * xl)
{
return MPEGIN(xl, 0x54);
}
static int
viaMpegIsBusy(XvMCLowLevel * xl, CARD32 mask, CARD32 idle)
{
CARD32 tmp = viaMpegGetStatus(xl);
/*
* Error detected.
* FIXME: Are errors really shown when error concealment is on?
*/
if (tmp & 0x70)
return 0;
return (tmp & mask) != idle;
}
static void
syncDMA(XvMCLowLevel * xl, unsigned int doSleep)
{
/*
* Ideally, we'd like to have an interrupt wait here, but, according to second hand
* information, the hardware does not support this, although earlier S3 chips do that.
* It is therefore not implemented into the DRM, and we'll do a user space wait here.
*/
struct timeval now, then;
struct timezone here;
struct timespec sleep, rem;
sleep.tv_nsec = 1;
sleep.tv_sec = 0;
here.tz_minuteswest = 0;
here.tz_dsttime = 0;
gettimeofday(&then, &here);
while (!(REGIN(xl, VIA_REG_STATUS) & VIA_VR_QUEUE_BUSY)) {
gettimeofday(&now, &here);
if (timeDiff(&now, &then) > VIA_DMAWAITTIMEOUT) {
if (!(REGIN(xl, VIA_REG_STATUS) & VIA_VR_QUEUE_BUSY)) {
xl->errors |= LL_DMA_TIMEDOUT;
break;
}
}
if (doSleep)
nanosleep(&sleep, &rem);
}
while (REGIN(xl, VIA_REG_STATUS) & VIA_CMD_RGTR_BUSY) {
gettimeofday(&now, &here);
if (timeDiff(&now, &then) > VIA_DMAWAITTIMEOUT) {
if (REGIN(xl, VIA_REG_STATUS) & VIA_CMD_RGTR_BUSY) {
xl->errors |= LL_DMA_TIMEDOUT;
break;
}
}
if (doSleep)
nanosleep(&sleep, &rem);
}
}
#ifdef HQV_USE_IRQ
static void
syncVideo(XvMCLowLevel * xl, unsigned int doSleep)
{
int proReg = REG_HQV1_INDEX;
/*
* Wait for HQV completion using completion interrupt. Nothing strange here.
* Note that the interrupt handler clears the HQV_FLIP_STATUS bit, so we
* can't wait on that one.
*/
if ((VIDIN(xl, HQV_CONTROL | proReg) & (HQV_SW_FLIP | HQV_SUBPIC_FLIP))) {
drm_via_irqwait_t irqw;
irqw.request.irq = 1;
irqw.request.type = VIA_IRQ_ABSOLUTE;
if (drmCommandWriteRead(xl->fd, DRM_VIA_WAIT_IRQ, &irqw,
sizeof(irqw)) < 0)
xl->errors |= LL_VIDEO_TIMEDOUT;
}
}
#else
static void
syncVideo(XvMCLowLevel * xl, unsigned int doSleep)
{
/*
* Wait for HQV completion. Nothing strange here. We assume that the HQV
* Handles syncing to the V1 / V3 engines by itself. It should be safe to
* always wait for SUBPIC_FLIP completion although subpictures are not always
* used.
*/
struct timeval now, then;
struct timezone here;
struct timespec sleep, rem;
int proReg = REG_HQV1_INDEX;
sleep.tv_nsec = 1;
sleep.tv_sec = 0;
here.tz_minuteswest = 0;
here.tz_dsttime = 0;
gettimeofday(&then, &here);
while ((VIDIN(xl,
HQV_CONTROL | proReg) & (HQV_SW_FLIP | HQV_SUBPIC_FLIP))) {
gettimeofday(&now, &here);
if (timeDiff(&now, &then) > VIA_SYNCWAITTIMEOUT) {
if ((VIDIN(xl,
HQV_CONTROL | proReg) & (HQV_SW_FLIP |
HQV_SUBPIC_FLIP))) {
xl->errors |= LL_VIDEO_TIMEDOUT;
break;
}
}
if (doSleep)
nanosleep(&sleep, &rem);
}
}
#endif
static void
syncAccel(XvMCLowLevel * xl, unsigned int mode, unsigned int doSleep)
{
struct timeval now, then;
struct timezone here;
struct timespec sleep, rem;
CARD32 mask = ((mode & LL_MODE_2D) ? VIA_2D_ENG_BUSY : 0) |
((mode & LL_MODE_3D) ? VIA_3D_ENG_BUSY : 0);
sleep.tv_nsec = 1;
sleep.tv_sec = 0;
here.tz_minuteswest = 0;
here.tz_dsttime = 0;
gettimeofday(&then, &here);
while (REGIN(xl, VIA_REG_STATUS) & mask) {
gettimeofday(&now, &here);
if (timeDiff(&now, &then) > VIA_SYNCWAITTIMEOUT) {
if (REGIN(xl, VIA_REG_STATUS) & mask) {
xl->errors |= LL_ACCEL_TIMEDOUT;
break;
}
}
if (doSleep)
nanosleep(&sleep, &rem);
}
}
static void
syncMpeg(XvMCLowLevel * xl, unsigned int mode, unsigned int doSleep)
{
/*
* Ideally, we'd like to have an interrupt wait here, but from information from VIA
* at least the MPEG completion interrupt is broken on the CLE266, which was
* discovered during validation of the chip.
*/
struct timeval now, then;
struct timezone here;
struct timespec sleep, rem;
CARD32 busyMask = 0;
CARD32 idleVal = 0;
CARD32 ret;
sleep.tv_nsec = 1;
sleep.tv_sec = 0;
here.tz_minuteswest = 0;
here.tz_dsttime = 0;
gettimeofday(&then, &here);
if (mode & LL_MODE_DECODER_SLICE) {
busyMask = VIA_SLICEBUSYMASK;
idleVal = VIA_SLICEIDLEVAL;
}
if (mode & LL_MODE_DECODER_IDLE) {
busyMask |= VIA_BUSYMASK;
idleVal = VIA_IDLEVAL;
}
while (viaMpegIsBusy(xl, busyMask, idleVal)) {
gettimeofday(&now, &here);
if (timeDiff(&now, &then) > VIA_XVMC_DECODERTIMEOUT) {
if (viaMpegIsBusy(xl, busyMask, idleVal)) {
xl->errors |= LL_DECODER_TIMEDOUT;
}
break;
}
if (doSleep)
nanosleep(&sleep, &rem);
}
ret = viaMpegGetStatus(xl);
if (ret & 0x70) {
xl->errors |= ((ret & 0x70) >> 3);
}
return;
}
static void
pciFlush(ViaCommandBuffer * cb, XvMCLowLevel * xl)
{
int ret;
drm_via_cmdbuffer_t b;
unsigned mode = cb->waitFlags;
finish_header_agp(cb);
b.buf = (char *)cb->buf;
b.size = cb->pos * sizeof(CARD32);
if (xl->performLocking)
hwlLock(xl, 0);
if (((mode == LL_MODE_VIDEO) && (xl->videoBuf == &xl->agpBuf)) ||
((mode != LL_MODE_VIDEO) && (mode != 0)))
syncDMA(xl, 0);
if ((mode & LL_MODE_2D) || (mode & LL_MODE_3D)) {
syncAccel(xl, mode, 0);
}
if (mode & LL_MODE_VIDEO) {
syncVideo(xl, 1);
}
if (mode & (LL_MODE_DECODER_SLICE | LL_MODE_DECODER_IDLE)) {
syncMpeg(xl, mode, 0);
}
ret = drmCommandWrite(xl->fd, DRM_VIA_PCICMD, &b, sizeof(b));
if (xl->performLocking)
hwlUnlock(xl, 0);
if (ret) {
xl->errors |= LL_PCI_COMMAND_ERR;
}
cb->pos = 0;
cb->waitFlags = 0;
}
static void
agpFlush(ViaCommandBuffer * cb, XvMCLowLevel * xl)
{
drm_via_cmdbuffer_t b;
int ret;
int i;
finish_header_agp(cb);
if (xl->use_agp) {
b.buf = (char *)cb->buf;
b.size = cb->pos * sizeof(CARD32);
if (xl->agpSync) {
syncXvMCLowLevel(xl, LL_MODE_DECODER_IDLE, 1,
xl->agpSyncTimeStamp);
xl->agpSync = 0;
}
if (xl->performLocking)
hwlLock(xl, 0);
do {
ret = drmCommandWrite(xl->fd, DRM_VIA_CMDBUFFER, &b, sizeof(b));
} while (-EAGAIN == ret);
if (xl->performLocking)
hwlUnlock(xl, 0);
if (ret) {
xl->errors |= LL_AGP_COMMAND_ERR;
for (i = 0; i < cb->pos; i += 2) {
printf("0x%x, 0x%x\n", (unsigned)cb->buf[i],
(unsigned)cb->buf[i + 1]);
}
exit(-1);
} else {
cb->pos = 0;
}
cb->waitFlags &= LL_MODE_VIDEO; /* FIXME: Check this! */
} else {
unsigned mode = cb->waitFlags;
b.buf = (char *)cb->buf;
b.size = cb->pos * sizeof(CARD32);
if (xl->performLocking)
hwlLock(xl, 0);
if (((mode == LL_MODE_VIDEO) && (cb == &xl->agpBuf)) ||
((mode != LL_MODE_VIDEO) && (mode != 0)))
syncDMA(xl, 0);
if ((mode & LL_MODE_2D) || (mode & LL_MODE_3D))
syncAccel(xl, mode, 0);
if (mode & LL_MODE_VIDEO)
syncVideo(xl, 1);
if (mode & (LL_MODE_DECODER_SLICE | LL_MODE_DECODER_IDLE))
syncMpeg(xl, mode, 0);
ret = drmCommandWrite(xl->fd, DRM_VIA_PCICMD, &b, sizeof(b));
if (xl->performLocking)
hwlUnlock(xl, 0);
if (ret) {
xl->errors |= LL_PCI_COMMAND_ERR;
}
cb->pos = 0;
cb->waitFlags = 0;
}
}
#if 0 /* Needs debugging */
static void
uploadHQVDeinterlace(XvMCLowLevel * xl, unsigned offset, HQVRegister * shadow,
CARD32 cur_offset, CARD32 prev_offset, CARD32 stride,
Bool top_field_first, CARD32 height)
{
CARD32 tmp;
ViaCommandBuffer *cb = &xl->agpBuf;
BEGIN_HEADER6_DATA(cb, xl, 9);
tmp = GETHQVSHADOW(shadow, 0x3F8);
tmp &= ~(3 << 30);
tmp |= (1 << 30);
OUT_RING_QW_AGP(cb, 0x3F8 + offset, tmp);
OUT_RING_QW_AGP(cb, 0x3D4 + offset, prev_offset +
((top_field_first) ? stride : 0));
OUT_RING_QW_AGP(cb, 0x3D8 + offset, prev_offset + stride * height);
tmp &= ~(3 << 30);
tmp |= (2 << 30);
OUT_RING_QW_AGP(cb, 0x3F8 + offset, tmp);
OUT_RING_QW_AGP(cb, 0x3D4 + offset, cur_offset +
((top_field_first) ? 0 : stride));
OUT_RING_QW_AGP(cb, 0x3D8 + offset, cur_offset + stride * height);
tmp |= (3 << 30);
OUT_RING_QW_AGP(cb, 0x3F8 + offset, tmp);
OUT_RING_QW_AGP(cb, 0x3D4 + offset, cur_offset +
((top_field_first) ? stride : 0));
OUT_RING_QW_AGP(cb, 0x3D8 + offset, cur_offset + stride * height);
}
#endif
static void
uploadHQVShadow(XvMCLowLevel * xl, unsigned offset, HQVRegister * shadow,
Bool flip)
{
int i;
CARD32 tmp;
ViaCommandBuffer *cb = xl->videoBuf;
BEGIN_HEADER6_DATA(cb, xl, HQV_SHADOW_SIZE);
WAITFLAGS(cb, LL_MODE_VIDEO);
if (shadow[0].set)
OUT_RING_QW_AGP(cb, 0x3CC + offset, 0);
for (i = 2; i < HQV_SHADOW_SIZE; ++i) {
if (shadow[i].set) {
OUT_RING_QW_AGP(cb, offset + HQV_SHADOW_BASE + (i << 2),
shadow[i].data);
shadow[i].set = FALSE;
}
}
/*
* Finally the control register for flip.
*/
if (flip) {
tmp = GETHQVSHADOW(shadow, 0x3D0);
OUT_RING_QW_AGP(cb, offset + HQV_CONTROL + 0x200,
HQV_ENABLE | HQV_GEN_IRQ | HQV_SUBPIC_FLIP | HQV_SW_FLIP | tmp);
}
shadow[0].set = FALSE;
shadow[1].set = FALSE;
}
unsigned
flushXvMCLowLevel(void *xlp)
{
unsigned errors;
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
if (xl->pciBuf.pos)
pciFlush(&xl->pciBuf, xl);
if (xl->agpBuf.pos)
agpFlush(&xl->agpBuf, xl);
errors = xl->errors;
if (errors)
printf("Error 0x%x\n", errors);
xl->errors = 0;
return errors;
}
void
flushPCIXvMCLowLevel(void *xlp)
{
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
if (xl->pciBuf.pos)
pciFlush(&xl->pciBuf, xl);
if ((!xl->use_agp && xl->agpBuf.pos))
agpFlush(&xl->agpBuf, xl);
}
void
viaMpegSetSurfaceStride(void *xlp, ViaXvMCContext * ctx)
{
CARD32 y_stride = ctx->yStride;
CARD32 uv_stride = y_stride >> 1;
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
ViaCommandBuffer *cb = &xl->agpBuf;
BEGIN_HEADER6_DATA(cb, xl, 1);
OUT_RING_QW_AGP(cb, 0xc50, (y_stride >> 3) | ((uv_stride >> 3) << 16));
WAITFLAGS(cb, LL_MODE_DECODER_IDLE);
}
void
viaVideoSetSWFLipLocked(void *xlp, unsigned yOffs, unsigned uOffs,
unsigned vOffs, unsigned yStride, unsigned uvStride)
{
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
initHQVShadow(hqvShadow);
setHQVStartAddress(hqvShadow, yOffs, vOffs, yStride, 0);
if (xl->videoBuf == &xl->agpBuf)
syncDMA(xl, 1);
syncVideo(xl, 1);
uploadHQVShadow(xl, REG_HQV1_INDEX, hqvShadow, FALSE);
xl->videoBuf->flushFunc(xl->videoBuf, xl);
}
void
viaVideoSWFlipLocked(void *xlp, unsigned flags, Bool progressiveSequence)
{
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
setHQVDeinterlacing(hqvShadow, flags);
setHQVDeblocking(hqvShadow,
((flags & XVMC_FRAME_PICTURE) == XVMC_FRAME_PICTURE), TRUE);
setHQVTripleBuffer(hqvShadow, TRUE);
if (xl->videoBuf == &xl->agpBuf)
syncDMA(xl, 1);
syncVideo(xl, 1);
uploadHQVShadow(xl, REG_HQV1_INDEX, hqvShadow, TRUE);
xl->videoBuf->flushFunc(xl->videoBuf, xl);
}
void
viaMpegSetFB(void *xlp, unsigned i,
unsigned yOffs, unsigned uOffs, unsigned vOffs)
{
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
ViaCommandBuffer *cb = &xl->agpBuf;
i *= (4 * 2);
BEGIN_HEADER6_DATA(cb, xl, 2);
OUT_RING_QW_AGP(cb, 0xc28 + i, yOffs >> 3);
OUT_RING_QW_AGP(cb, 0xc2c + i, vOffs >> 3);
WAITFLAGS(cb, LL_MODE_DECODER_IDLE);
}
void
viaMpegBeginPicture(void *xlp, ViaXvMCContext * ctx,
unsigned width, unsigned height, const XvMCMpegControl * control)
{
unsigned j, mb_width, mb_height;
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
ViaCommandBuffer *cb = &xl->agpBuf;
mb_width = (width + 15) >> 4;
mb_height =
((control->mpeg_coding == XVMC_MPEG_2) &&
(control->flags & XVMC_PROGRESSIVE_SEQUENCE)) ?
2 * ((height + 31) >> 5) : (((height + 15) >> 4));
BEGIN_HEADER6_DATA(cb, xl, 72);
WAITFLAGS(cb, LL_MODE_DECODER_IDLE);
OUT_RING_QW_AGP(cb, 0xc00,
((control->picture_structure & XVMC_FRAME_PICTURE) << 2) |
((control->picture_coding_type & 3) << 4) |
((control->flags & XVMC_ALTERNATE_SCAN) ? (1 << 6) : 0));
if (!(ctx->intraLoaded)) {
OUT_RING_QW_AGP(cb, 0xc5c, 0);
for (j = 0; j < 64; j += 4) {
OUT_RING_QW_AGP(cb, 0xc60,
ctx->intra_quantiser_matrix[j] |
(ctx->intra_quantiser_matrix[j + 1] << 8) |
(ctx->intra_quantiser_matrix[j + 2] << 16) |
(ctx->intra_quantiser_matrix[j + 3] << 24));
}
ctx->intraLoaded = 1;
}
if (!(ctx->nonIntraLoaded)) {
OUT_RING_QW_AGP(cb, 0xc5c, 1);
for (j = 0; j < 64; j += 4) {
OUT_RING_QW_AGP(cb, 0xc60,
ctx->non_intra_quantiser_matrix[j] |
(ctx->non_intra_quantiser_matrix[j + 1] << 8) |
(ctx->non_intra_quantiser_matrix[j + 2] << 16) |
(ctx->non_intra_quantiser_matrix[j + 3] << 24));
}
ctx->nonIntraLoaded = 1;
}
if (!(ctx->chromaIntraLoaded)) {
OUT_RING_QW_AGP(cb, 0xc5c, 2);
for (j = 0; j < 64; j += 4) {
OUT_RING_QW_AGP(cb, 0xc60,
ctx->chroma_intra_quantiser_matrix[j] |
(ctx->chroma_intra_quantiser_matrix[j + 1] << 8) |
(ctx->chroma_intra_quantiser_matrix[j + 2] << 16) |
(ctx->chroma_intra_quantiser_matrix[j + 3] << 24));
}
ctx->chromaIntraLoaded = 1;
}
if (!(ctx->chromaNonIntraLoaded)) {
OUT_RING_QW_AGP(cb, 0xc5c, 3);
for (j = 0; j < 64; j += 4) {
OUT_RING_QW_AGP(cb, 0xc60,
ctx->chroma_non_intra_quantiser_matrix[j] |
(ctx->chroma_non_intra_quantiser_matrix[j + 1] << 8) |
(ctx->chroma_non_intra_quantiser_matrix[j + 2] << 16) |
(ctx->chroma_non_intra_quantiser_matrix[j + 3] << 24));
}
ctx->chromaNonIntraLoaded = 1;
}
OUT_RING_QW_AGP(cb, 0xc90,
((mb_width * mb_height) & 0x3fff) |
((control->flags & XVMC_PRED_DCT_FRAME) ? (1 << 14) : 0) |
((control->flags & XVMC_TOP_FIELD_FIRST) ? (1 << 15) : 0) |
((control->mpeg_coding == XVMC_MPEG_2) ? (1 << 16) : 0) |
((mb_width & 0xff) << 18));
OUT_RING_QW_AGP(cb, 0xc94,
((control->flags & XVMC_CONCEALMENT_MOTION_VECTORS) ? 1 : 0) |
((control->flags & XVMC_Q_SCALE_TYPE) ? 2 : 0) |
((control->intra_dc_precision & 3) << 2) |
(((1 + 0x100000 / mb_width) & 0xfffff) << 4) |
((control->flags & XVMC_INTRA_VLC_FORMAT) ? (1 << 24) : 0));
OUT_RING_QW_AGP(cb, 0xc98,
(((control->FHMV_range) & 0xf) << 0) |
(((control->FVMV_range) & 0xf) << 4) |
(((control->BHMV_range) & 0xf) << 8) |
(((control->BVMV_range) & 0xf) << 12) |
((control->flags & XVMC_SECOND_FIELD) ? (1 << 20) : 0) |
(0x0a6 << 16));
}
void
viaMpegReset(void *xlp)
{
int i, j;
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
ViaCommandBuffer *cb = &xl->agpBuf;
BEGIN_HEADER6_DATA(cb, xl, 99);
WAITFLAGS(cb, LL_MODE_DECODER_IDLE);
OUT_RING_QW_AGP(cb, 0xcf0, 0);
for (i = 0; i < 6; i++) {
OUT_RING_QW_AGP(cb, 0xcc0, 0);
OUT_RING_QW_AGP(cb, 0xc0c, 0x43 | 0x20);
for (j = 0xc10; j < 0xc20; j += 4)
OUT_RING_QW_AGP(cb, j, 0);
}
OUT_RING_QW_AGP(cb, 0xc0c, 0x1c3);
for (j = 0xc10; j < 0xc20; j += 4)
OUT_RING_QW_AGP(cb, j, 0);
for (i = 0; i < 19; i++)
OUT_RING_QW_AGP(cb, 0xc08, 0);
OUT_RING_QW_AGP(cb, 0xc98, 0x400000);
for (i = 0; i < 6; i++) {
OUT_RING_QW_AGP(cb, 0xcc0, 0);
OUT_RING_QW_AGP(cb, 0xc0c, 0x1c3 | 0x20);
for (j = 0xc10; j < 0xc20; j += 4)
OUT_RING_QW_AGP(cb, j, 0);
}
OUT_RING_QW_AGP(cb, 0xcf0, 0);
}
void
viaMpegWriteSlice(void *xlp, CARD8 * slice, int nBytes, CARD32 sCode)
{
int i, n, r;
CARD32 *buf;
int count;
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
ViaCommandBuffer *cb = &xl->agpBuf;
if (xl->errors & (LL_DECODER_TIMEDOUT |
LL_IDCT_FIFO_ERROR | LL_SLICE_FIFO_ERROR | LL_SLICE_FAULT))
return;
n = nBytes >> 2;
if (sCode)
nBytes += 4;
r = nBytes & 3;
buf = (CARD32 *) slice;
if (r)
nBytes += 4 - r;
nBytes += 8;
BEGIN_HEADER6_DATA(cb, xl, 2);
WAITFLAGS(cb, LL_MODE_DECODER_IDLE);
OUT_RING_QW_AGP(cb, 0xc9c, nBytes);
if (sCode)
OUT_RING_QW_AGP(cb, 0xca0, sCode);
i = 0;
count = 0;
do {
count += (LL_AGP_CMDBUF_SIZE - 20);
count = (count > n) ? n : count;
BEGIN_HEADER5_DATA(cb, xl, (count - i), 0xca0);
for (; i < count; i++) {
OUT_RING_AGP(cb, *buf++);
}
finish_header_agp(cb);
} while (i < n);
BEGIN_HEADER5_DATA(cb, xl, 3, 0xca0);
if (r) {
OUT_RING_AGP(cb, *buf & ((1 << (r << 3)) - 1));
}
OUT_RING_AGP(cb, 0);
OUT_RING_AGP(cb, 0);
finish_header_agp(cb);
}
void
viaVideoSubPictureOffLocked(void *xlp)
{
CARD32 stride;
int proReg = REG_HQV1_INDEX;
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
ViaCommandBuffer *cb = xl->videoBuf;
if (xl->videoBuf == &xl->agpBuf)
syncDMA(xl, 1);
stride = VIDIN(xl, proReg | SUBP_CONTROL_STRIDE);
WAITFLAGS(cb, LL_MODE_VIDEO);
BEGIN_HEADER6_DATA(cb, xl, 1);
OUT_RING_QW_AGP(cb, proReg | SUBP_CONTROL_STRIDE | 0x200,
stride & ~SUBP_HQV_ENABLE);
}
void
viaVideoSubPictureLocked(void *xlp, ViaXvMCSubPicture * pViaSubPic)
{
unsigned i;
CARD32 cWord;
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
int proReg = REG_HQV1_INDEX;
ViaCommandBuffer *cb = xl->videoBuf;
if (xl->videoBuf == &xl->agpBuf)
syncDMA(xl, 1);
WAITFLAGS(cb, LL_MODE_VIDEO);
BEGIN_HEADER6_DATA(cb, xl, VIA_SUBPIC_PALETTE_SIZE + 2);
for (i = 0; i < VIA_SUBPIC_PALETTE_SIZE; ++i) {
OUT_RING_QW_AGP(cb, proReg | RAM_TABLE_CONTROL | 0x200,
pViaSubPic->palette[i]);
}
cWord = (pViaSubPic->stride & SUBP_STRIDE_MASK) | SUBP_HQV_ENABLE;
cWord |= (pViaSubPic->ia44) ? SUBP_IA44 : SUBP_AI44;
OUT_RING_QW_AGP(cb, proReg | SUBP_STARTADDR | 0x200, pViaSubPic->offset);
OUT_RING_QW_AGP(cb, proReg | SUBP_CONTROL_STRIDE | 0x200, cWord);
}
void
viaBlit(void *xlp, unsigned bpp, unsigned srcBase,
unsigned srcPitch, unsigned dstBase, unsigned dstPitch,
unsigned w, unsigned h, int xdir, int ydir, unsigned blitMode,
unsigned color)
{
CARD32 dwGEMode = 0, srcY = 0, srcX, dstY = 0, dstX;
CARD32 cmd;
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
ViaCommandBuffer *cb = &xl->agpBuf;
if (!w || !h)
return;
finish_header_agp(cb);
switch (bpp) {
case 16:
dwGEMode |= VIA_GEM_16bpp;
break;
case 32:
dwGEMode |= VIA_GEM_32bpp;
break;
default:
dwGEMode |= VIA_GEM_8bpp;
break;
}
srcX = srcBase & 31;
dstX = dstBase & 31;
switch (bpp) {
case 16:
dwGEMode |= VIA_GEM_16bpp;
srcX >>= 2;
dstX >>= 2;
break;
case 32:
dwGEMode |= VIA_GEM_32bpp;
srcX >>= 4;
dstX >>= 4;
break;
default:
dwGEMode |= VIA_GEM_8bpp;
break;
}
BEGIN_RING_AGP(cb, xl, 20);
WAITFLAGS(cb, LL_MODE_2D);
OUT_RING_QW_AGP(cb, H1_ADDR(VIA_REG_GEMODE), dwGEMode);
cmd = 0;
if (xdir < 0) {
cmd |= VIA_GEC_DECX;
srcX += (w - 1);
dstX += (w - 1);
}
if (ydir < 0) {
cmd |= VIA_GEC_DECY;
srcY += (h - 1);
dstY += (h - 1);
}
switch (blitMode) {
case VIABLIT_TRANSCOPY:
OUT_RING_QW_AGP(cb, H1_ADDR(VIA_REG_SRCCOLORKEY), color);
OUT_RING_QW_AGP(cb, H1_ADDR(VIA_REG_KEYCONTROL), 0x4000);
cmd |= VIA_GEC_BLT | (VIA_BLIT_COPY << 24);
break;
case VIABLIT_FILL:
OUT_RING_QW_AGP(cb, H1_ADDR(VIA_REG_FGCOLOR), color);
cmd |= VIA_GEC_BLT | VIA_GEC_FIXCOLOR_PAT | (VIA_BLIT_FILL << 24);
break;
default:
OUT_RING_QW_AGP(cb, H1_ADDR(VIA_REG_KEYCONTROL), 0x0);
cmd |= VIA_GEC_BLT | (VIA_BLIT_COPY << 24);
}
OUT_RING_QW_AGP(cb, H1_ADDR(VIA_REG_SRCBASE), (srcBase & ~31) >> 3);
OUT_RING_QW_AGP(cb, H1_ADDR(VIA_REG_DSTBASE), (dstBase & ~31) >> 3);
OUT_RING_QW_AGP(cb, H1_ADDR(VIA_REG_PITCH), VIA_PITCH_ENABLE |
(srcPitch >> 3) | (((dstPitch) >> 3) << 16));
OUT_RING_QW_AGP(cb, H1_ADDR(VIA_REG_SRCPOS), ((srcY << 16) | srcX));
OUT_RING_QW_AGP(cb, H1_ADDR(VIA_REG_DSTPOS), ((dstY << 16) | dstX));
OUT_RING_QW_AGP(cb, H1_ADDR(VIA_REG_DIMENSION),
(((h - 1) << 16) | (w - 1)));
OUT_RING_QW_AGP(cb, H1_ADDR(VIA_REG_GECMD), cmd);
}
unsigned
syncXvMCLowLevel(void *xlp, unsigned int mode, unsigned int doSleep,
CARD32 timeStamp)
{
unsigned errors;
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
if (mode == 0) {
errors = xl->errors;
xl->errors = 0;
return errors;
}
if ((mode & (LL_MODE_VIDEO | LL_MODE_3D)) || !xl->use_agp) {
if (xl->performLocking)
hwlLock(xl, 0);
if ((xl->videoBuf == &xl->agpBuf) || (mode != LL_MODE_VIDEO))
syncDMA(xl, doSleep);
if (mode & LL_MODE_3D)
syncAccel(xl, mode, doSleep);
if (mode & LL_MODE_VIDEO)
syncVideo(xl, doSleep);
if (xl->performLocking)
hwlUnlock(xl, 0);
} else {
viaDMAWaitTimeStamp(xl, timeStamp, doSleep);
}
if (mode & (LL_MODE_DECODER_SLICE | LL_MODE_DECODER_IDLE))
syncMpeg(xl, mode, doSleep);
errors = xl->errors;
xl->errors = 0;
return errors;
}
static int
updateLowLevelBuf(XvMCLowLevel * xl, LowLevelBuffer * buf,
unsigned width, unsigned height)
{
unsigned stride, size;
drm_via_mem_t *mem = &buf->mem;
int ret;
stride = (width + 31) & ~31;
size = stride * height + (xl->fbDepth >> 3);
if (size != mem->size) {
if (mem->size)
drmCommandWrite(xl->fd, DRM_VIA_FREEMEM, mem, sizeof(*mem));
mem->context = *(xl->drmcontext);
mem->size = size;
mem->type = VIA_MEM_VIDEO;
if (((ret = drmCommandWriteRead(xl->fd, DRM_VIA_ALLOCMEM, mem,
sizeof(*mem))) < 0) || mem->size != size) {
mem->size = 0;
return -1;
}
}
buf->offset = (mem->offset + 31) & ~31;
buf->stride = stride;
buf->height = height;
return 0;
}
static void
cleanupLowLevelBuf(XvMCLowLevel * xl, LowLevelBuffer * buf)
{
drm_via_mem_t *mem = &buf->mem;
if (mem->size)
drmCommandWrite(xl->fd, DRM_VIA_FREEMEM, mem, sizeof(*mem));
mem->size = 0;
}
static void *
releaseXvMCLowLevel(XvMCLowLevel * xl)
{
switch (xl->state) {
case ll_llBuf:
cleanupLowLevelBuf(xl, &xl->scale);
case ll_timeStamp:
viaDMACleanupTimeStamp(xl);
case ll_pciBuf:
free(xl->pciBuf.buf);
case ll_agpBuf:
free(xl->agpBuf.buf);
case ll_init:
free(xl);
default:
;
}
return NULL;
}
void *
initXvMCLowLevel(int fd, drm_context_t * ctx,
drmLockPtr hwLock, drmAddress mmioAddress,
drmAddress fbAddress, unsigned fbStride, unsigned fbDepth,
unsigned width, unsigned height, int useAgp, unsigned chipId)
{
XvMCLowLevel *xl;
if (chipId != PCI_CHIP_VT3259 && chipId != PCI_CHIP_VT3364) {
fprintf(stderr, "You are using an XvMC driver for the wrong chip.\n");
fprintf(stderr, "Chipid is 0x%04x.\n", chipId);
return NULL;
}
xl = (XvMCLowLevel *) malloc(sizeof(XvMCLowLevel));
if (!xl)
return NULL;
xl->state = ll_init;
xl->agpBuf.buf = (CARD32 *) malloc(LL_AGP_CMDBUF_SIZE * sizeof(CARD32));
if (!xl->agpBuf.buf)
return releaseXvMCLowLevel(xl);
xl->state = ll_agpBuf;
xl->agpBuf.bufSize = LL_AGP_CMDBUF_SIZE;
xl->agpBuf.flushFunc = &agpFlush;
xl->agpBuf.pos = 0;
xl->agpBuf.mode = 0;
xl->agpBuf.waitFlags = 0;
xl->pciBuf.buf = (CARD32 *) malloc(LL_PCI_CMDBUF_SIZE * sizeof(CARD32));
if (!xl->pciBuf.buf)
return releaseXvMCLowLevel(xl);
xl->state = ll_pciBuf;
xl->pciBuf.bufSize = LL_PCI_CMDBUF_SIZE;
xl->pciBuf.flushFunc = &pciFlush;
xl->pciBuf.pos = 0;
xl->pciBuf.mode = 0;
xl->pciBuf.waitFlags = 0;
xl->use_agp = useAgp;
xl->fd = fd;
xl->drmcontext = ctx;
xl->hwLock = hwLock;
xl->mmioAddress = mmioAddress;
xl->fbAddress = fbAddress;
xl->fbDepth = fbDepth;
xl->fbStride = fbStride;
xl->width = width;
xl->height = height;
xl->performLocking = 1;
xl->errors = 0;
xl->agpSync = 0;
xl->chipId = chipId;
if (viaDMAInitTimeStamp(xl))
return releaseXvMCLowLevel(xl);
xl->state = ll_timeStamp;
xl->scale.mem.size = 0;
xl->back.mem.size = 0;
if (updateLowLevelBuf(xl, &xl->scale, width, height))
return releaseXvMCLowLevel(xl);
xl->state = ll_llBuf;
#ifdef VIDEO_DMA
xl->videoBuf = &xl->agpBuf;
#else
xl->videoBuf = &xl->pciBuf;
#endif
return xl;
}
void
setLowLevelLocking(void *xlp, int performLocking)
{
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
xl->performLocking = performLocking;
}
void
closeXvMCLowLevel(void *xlp)
{
XvMCLowLevel *xl = (XvMCLowLevel *) xlp;
releaseXvMCLowLevel(xl);
}
#if 0 /* Under development */
static CARD32
computeDownScaling(int dst, int *src)
{
CARD32 value = 0x800;
while (*src > dst) {
*src >>= 1;
value--;
}
return value;
}
static void
computeHQVScaleAndFilter(XvMCLowLevel * xl)
{
int srcW, srcH;
const XvMCRegion *src = &xl->sRegion, *back = &xl->dRegion;
xl->downScaling = FALSE;
if (back->w < src->w || back->h < src->h) {
xl->downScaling = TRUE;
srcW = src->w;
srcH = src->h;
xl->downScaleW = (back->w >= srcW) ? 0 :
HQV_SCALE_ENABLE | HQV_SCALE_DOWN |
(computeDownScaling(back->w, &srcW));
xl->downScaleH = (back->h >= srcH) ? 0 :
HQV_SCALE_ENABLE | HQV_SCALE_DOWN |
(computeDownScaling(back->h, &srcH));
}
xl->upScaleW =
(back->w == srcW) ? 0 : (0x800 * srcW / back->w) | HQV_SCALE_ENABLE;
xl->upScaleH =
(back->h == srcH) ? 0 : (0x800 * srcH / back->h) | HQV_SCALE_ENABLE;
}
static int
setupBackBuffer(XvMCLowLevel * xl)
{
return updateLowLevelBuf(xl, &xl->back, xl->dRegion.w, xl->dRegion.h);
}
#endif