xenocara/app/xlockmore/modes/penrose.c
2006-11-26 11:07:42 +00:00

1352 lines
38 KiB
C

/* -*- Mode: C; tab-width: 4 -*- */
/* penrose --- quasiperiodic tilings */
#if !defined( lint ) && !defined( SABER )
static const char sccsid[] = "@(#)penrose.c 5.09 2003/07/08 xlockmore";
#endif
/*-
* Copyright (c) 1996 by Timo Korvola <tkorvola@dopey.hut.fi>
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation.
*
* This file is provided AS IS with no warranties of any kind. The author
* shall have no liability with respect to the infringement of copyrights,
* trade secrets or any patents by this file or any part thereof. In no
* event will the author be liable for any lost revenue or profits or
* other special, indirect and consequential damages.
*
* Revision History:
* 08-Jul-2003: Mono made a little more interesting.
* 01-Nov-2000: Allocation checks
* 10-May-1997: Jamie Zawinski <jwz@jwz.org> compatible with xscreensaver
* 09-Sep-1996: Written.
*/
/*-
Be careful, this probably still has a few bugs (many of which may only
appear with a very low probability). These are seen with -verbose .
If one of these are hit penrose will reinitialize.
*/
/*-
* See Onoda, Steinhardt, DiVincenzo and Socolar in
* Phys. Rev. Lett. 60, #25, 1988 or
* Strandburg in Computers in Physics, Sep/Oct 1991.
*
* This implementation uses the simpler version of the growth
* algorithm, i.e., if there are no forced vertices, a randomly chosen
* tile is added to a randomly chosen vertex (no preference for those
* 108 degree angles).
*
* There are two essential differences to the algorithm presented in
* the literature: First, we do not allow the tiling to enclose an
* untiled area. Whenever this is in danger of happening, we just
* do not add the tile, hoping for a better random choice the next
* time. Second, when choosing a vertex randomly, we will take
* one that lies within the viewport if available. If this seems to
* cause enclosures in the forced rule case, we will allow invisible
* vertices to be chosen.
*
* Tiling is restarted whenever one of the following happens: there
* are no incomplete vertices within the viewport or the tiling has
* extended a window's length beyond the edge of the window
* horizontally or vertically or forced rule choice has failed 100
* times due to areas about to become enclosed.
*
* Introductory info:
* Science News March 23 1985 Vol 127, No. 12
* Science News July 16 1988 Vol 134, No. 3
* The Economist Sept 17 1988 pg. 100
*
*/
#ifdef STANDALONE
#define MODE_penrose
#define PROGCLASS "Penrose"
#define HACK_INIT init_penrose
#define HACK_DRAW draw_penrose
#define penrose_opts xlockmore_opts
#define DEFAULTS "*delay: 10000 \n" \
"*size: 40 \n" \
"*ncolors: 64 \n" \
"*fullrandom: True \n" \
"*verbose: False \n"
#include "xlockmore.h" /* from the xscreensaver distribution */
#else /* !STANDALONE */
#include "xlock.h" /* from the xlockmore distribution */
#endif /* !STANDALONE */
#ifdef MODE_penrose
#define DEF_AMMANN "False"
static Bool ammann;
static XrmOptionDescRec opts[] =
{
{(char *) "-ammann", (char *) ".penrose.ammann", XrmoptionNoArg, (caddr_t) "on"},
{(char *) "+ammann", (char *) ".penrose.ammann", XrmoptionNoArg, (caddr_t) "off"}
};
static argtype vars[] =
{
{(void *) & ammann, (char *) "ammann", (char *) "Ammann", (char *) DEF_AMMANN, t_Bool}
};
static OptionStruct desc[] =
{
{(char *) "-/+ammann", (char *) "turn on/off Ammann lines"}
};
ModeSpecOpt penrose_opts =
{sizeof opts / sizeof opts[0], opts, sizeof vars / sizeof vars[0], vars, desc};
#ifdef USE_MODULES
ModStruct penrose_description =
{"penrose", "init_penrose", "draw_penrose", "release_penrose",
"init_penrose", "init_penrose", (char *) NULL, &penrose_opts,
10000, 1, 1, -40, 64, 1.0, "",
"Shows Penrose's quasiperiodic tilings", 0, NULL};
#endif
/*-
* Annoyingly the ANSI C library people have reserved all identifiers
* ending with _t for future use. Hence we use _c as a suffix for
* typedefs (c for class, although this is not C++).
*/
#define MINSIZE 5
/*-
* In theory one could fit 10 tiles to a single vertex. However, the
* vertex rules only allow at most seven tiles to meet at a vertex.
*/
#define CELEBRATE 31415 /* This causes a pause, an error occurred. */
#define COMPLETION 3141 /* This causes a pause, tiles filled up screen. */
#define MAX_TILES_PER_VERTEX 7
#define N_VERTEX_RULES 8
#define ALLOC_NODE(type) (type *)malloc(sizeof (type))
/*-
* These are used to specify directions. They can also be used in bit
* masks to specify a combination of directions.
*/
#define S_LEFT 1
#define S_RIGHT 2
/*-
* We do not actually maintain objects corresponding to the tiles since
* we do not really need them and they would only consume memory and
* cause additional bookkeeping. Instead we only have vertices, and
* each vertex lists the type of each adjacent tile as well as the
* position of the vertex on the tile (hereafter refered to as
* "corner"). These positions are numbered in counterclockwise order
* so that 0 is where two double arrows meet (see one of the
* articles). The tile type and vertex number are stored in a single
* integer (we use char, and even most of it remains unused).
*
* The primary use of tile objects would be draw traversal, but we do
* not currently do redraws at all (we just start over).
*/
#define VT_CORNER_MASK 0x3
#define VT_TYPE_MASK 0x4
#define VT_THIN 0
#define VT_THICK 0x4
#define VT_BITS 3
#define VT_TOTAL_MASK 0x7
typedef unsigned char vertex_type_c;
/*-
* These allow one to compute the types of the other corners of the tile. If
* you are standing at a vertex of type vt looking towards the middle of the
* tile, VT_LEFT( vt) is the vertex on your left etc.
*/
#define VT_LEFT( vt) ((((vt) - 1) & VT_CORNER_MASK) | (((vt) & VT_TYPE_MASK)))
#define VT_RIGHT( vt) ((((vt) + 1) & VT_CORNER_MASK) | (((vt) & VT_TYPE_MASK)))
#define VT_FAR( vt) ((vt) ^ 2)
/*-
* Since we do not do redraws, we only store the vertices we need. These are
* the ones with still some empty space around them for the growth algorithm
* to fill.
*
* Here we use a doubly chained ring-like structure as vertices often need
* to be removed or inserted (they are kept in geometrical order
* circling the tiled area counterclockwise). The ring is refered to by
* a pointer to one more or less random node. When deleting nodes one
* must make sure that this pointer continues to refer to a valid
* node. A vertex count is maintained to make it easier to pick
* vertices randomly.
*/
typedef struct forced_node forced_node_c;
typedef struct fringe_node {
struct fringe_node *prev;
struct fringe_node *next;
/* These are numbered counterclockwise. The gap, if any, lies
between the last and first tiles. */
vertex_type_c tiles[MAX_TILES_PER_VERTEX];
int n_tiles;
/* A bit mask used to indicate vertex rules that are still applicable for
completing this vertex. Initialize this to (1 << N_VERTEX_RULES) - 1,
i.e., all ones, and the rule matching functions will automatically mask
out rules that no longer match. */
unsigned char rule_mask;
/* If the vertex is on the forced vertex list, this points to the
pointer to the appropriate node in the list. To remove the
vertex from the list just set *list_ptr to the next node,
deallocate and decrement node count. */
struct forced_node **list_ptr;
/* Screen coordinates. */
XPoint loc;
/* We also keep track of 5D coordinates to avoid rounding errors.
These are in units of edge length. */
int fived[5];
/* This is used to quickly check if a vertex is visible. */
unsigned char off_screen;
} fringe_node_c;
typedef struct {
fringe_node_c *nodes;
/* This does not count off-screen nodes. */
int n_nodes;
} fringe_c;
/*-
* The forced vertex pool contains vertices where at least one
* side of the tiled region can only be extended in one way. Note
* that this does not necessarily mean that there would only be one
* applicable rule. forced_sides are specified using S_LEFT and
* S_RIGHT as if looking at the untiled region from the vertex.
*/
struct forced_node {
fringe_node_c *vertex;
unsigned forced_sides;
struct forced_node *next;
};
typedef struct {
forced_node_c *first;
int n_nodes, n_visible;
} forced_pool_c;
/* This is the data related to the tiling of one screen. */
typedef struct {
int width, height;
XPoint origin;
int edge_length;
fringe_c fringe;
forced_pool_c forced;
int done, failures;
unsigned long thick_color, thin_color;
int busyLoop;
Bool ammann;
} tiling_c;
static tiling_c *tilings = (tiling_c *) NULL;
/* The tiles are listed in counterclockwise order. */
typedef struct {
vertex_type_c tiles[MAX_TILES_PER_VERTEX];
int n_tiles;
} vertex_rule_c;
static vertex_rule_c vertex_rules[N_VERTEX_RULES] =
{
{
{VT_THICK | 2, VT_THICK | 2, VT_THICK | 2, VT_THICK | 2, VT_THICK | 2}, 5},
{
{VT_THICK | 0, VT_THICK | 0, VT_THICK | 0, VT_THICK | 0, VT_THICK | 0}, 5},
{
{VT_THICK | 0, VT_THICK | 0, VT_THICK | 0, VT_THIN | 0}, 4},
{
{VT_THICK | 2, VT_THICK | 2, VT_THIN | 1, VT_THIN | 3, VT_THICK | 2,
VT_THIN | 1, VT_THIN | 3}, 7},
{
{VT_THICK | 2, VT_THICK | 2, VT_THICK | 2, VT_THICK | 2,
VT_THIN | 1, VT_THIN | 3}, 6},
{
{VT_THICK | 1, VT_THICK | 3, VT_THIN | 2}, 3},
{
{VT_THICK | 0, VT_THIN | 0, VT_THIN | 0}, 3},
{
{VT_THICK | 2, VT_THIN | 1, VT_THICK | 3, VT_THICK | 1, VT_THIN | 3}, 5}
};
/* Match information returned by match_rules. */
typedef struct {
int rule;
int pos;
} rule_match_c;
/* Occasionally floating point coordinates are needed. */
typedef struct {
float x, y;
} fcoord_c;
/* All angles are measured in multiples of 36 degrees. */
typedef int angle_c;
static angle_c vtype_angles[] =
{4, 1, 4, 1, 2, 3, 2, 3};
#define vtype_angle( v) (vtype_angles[ v])
/* Direction angle of an edge. */
static angle_c
vertex_dir(ModeInfo * mi, fringe_node_c * vertex, unsigned side)
{
tiling_c *tp = &tilings[MI_SCREEN(mi)];
fringe_node_c *v2 =
(side == S_LEFT ? vertex->next : vertex->prev);
register int i;
for (i = 0; i < 5; i++)
switch (v2->fived[i] - vertex->fived[i]) {
case 1:
return 2 * i;
case -1:
return (2 * i + 5) % 10;
}
tp->done = True;
if (MI_IS_VERBOSE(mi)) {
(void) fprintf(stderr,
"Weirdness in vertex_dir (this has been reported)\n");
for (i = 0; i < 5; i++)
(void) fprintf(stderr, "v2->fived[%d]=%d, vertex->fived[%d]=%d\n",
i, v2->fived[i], i, vertex->fived[i]);
}
tp->busyLoop = CELEBRATE;
return 0;
}
/* Move one step to a given direction. */
static void
add_unit_vec(angle_c dir, int *fived)
{
static int dir2i[] =
{0, 3, 1, 4, 2};
while (dir < 0)
dir += 10;
fived[dir2i[dir % 5]] += (dir % 2 ? -1 : 1);
}
/* For comparing coordinates. */
#define fived_equal( f1, f2) (!memcmp( (f1), (f2), 5 * sizeof( int)))
/*-
* This computes screen coordinates from 5D representation. Note that X
* uses left-handed coordinates (y increases downwards).
*/
static void
fived_to_loc(int fived[], tiling_c * tp, XPoint *pt)
{
static fcoord_c fived_table[5] =
{
{.0, .0}};
float fifth = 8 * atan(1.) / 5;
register int i;
register float r;
register fcoord_c offset;
*pt = tp->origin;
offset.x = 0.0;
offset.y = 0.0;
if (fived_table[0].x == .0)
for (i = 0; i < 5; i++) {
fived_table[i].x = cos(fifth * i);
fived_table[i].y = sin(fifth * i);
}
for (i = 0; i < 5; i++) {
r = fived[i] * tp->edge_length;
offset.x += r * fived_table[i].x;
offset.y -= r * fived_table[i].y;
}
(*pt).x += (int) (offset.x + .5);
(*pt).y += (int) (offset.y + .5);
}
/* Mop up dynamic data for one screen. */
static void
free_penrose(tiling_c * tp)
{
register fringe_node_c *fp1, *fp2;
register forced_node_c *lp1, *lp2;
if (tp->fringe.nodes == NULL)
return;
fp1 = tp->fringe.nodes;
do {
fp2 = fp1;
fp1 = fp1->next;
free(fp2);
} while (fp1 != tp->fringe.nodes);
tp->fringe.nodes = (fringe_node_c *) NULL;
for (lp1 = tp->forced.first; lp1 != 0;) {
lp2 = lp1;
lp1 = lp1->next;
free(lp2);
}
tp->forced.first = 0;
}
/* Called to init the mode. */
void
init_penrose(ModeInfo * mi)
{
tiling_c *tp;
fringe_node_c *fp;
int i, size;
if (tilings == NULL) {
if ((tilings = (tiling_c *) calloc(MI_NUM_SCREENS(mi),
sizeof (tiling_c))) == NULL)
return;
}
tp = &tilings[MI_SCREEN(mi)];
if (MI_IS_FULLRANDOM(mi))
tp->ammann = (Bool) (LRAND() & 1);
else
tp->ammann = ammann;
tp->done = False;
tp->busyLoop = 0;
tp->failures = 0;
tp->width = MI_WIDTH(mi);
tp->height = MI_HEIGHT(mi);
if (MI_NPIXELS(mi) > 2) {
tp->thick_color = NRAND(MI_NPIXELS(mi));
/* Insure good contrast */
tp->thin_color = (NRAND(2 * MI_NPIXELS(mi) / 3) + tp->thick_color +
MI_NPIXELS(mi) / 6) % MI_NPIXELS(mi);
} else {
if (LRAND() & 1) {
tp->thick_color = MI_WHITE_PIXEL(mi);
tp->thin_color = MI_BLACK_PIXEL(mi);
} else {
tp->thick_color = MI_BLACK_PIXEL(mi);
tp->thin_color = MI_WHITE_PIXEL(mi);
}
}
size = MI_SIZE(mi);
if (size < -MINSIZE)
tp->edge_length = NRAND(MIN(-size, MAX(MINSIZE,
MIN(tp->width, tp->height) / 2)) - MINSIZE + 1) + MINSIZE;
else if (size < MINSIZE) {
if (!size)
tp->edge_length = MAX(MINSIZE, MIN(tp->width, tp->height) / 2);
else
tp->edge_length = MINSIZE;
} else
tp->edge_length = MIN(size, MAX(MINSIZE,
MIN(tp->width, tp->height) / 2));
tp->origin.x = (tp->width / 2 + NRAND(tp->width)) / 2;
tp->origin.y = (tp->height / 2 + NRAND(tp->height)) / 2;
tp->fringe.n_nodes = 2;
if (tp->fringe.nodes != NULL)
free_penrose(tp);
if (tp->fringe.nodes != NULL || tp->forced.first != 0) {
if (MI_IS_VERBOSE(mi)) {
(void) fprintf(stderr, "Weirdness in init_penrose()\n");
(void) fprintf(stderr, "tp->fringe.nodes = NULL && tp->forced.first = 0\n");
}
free_penrose(tp); /* Try again */
tp->done = True;
}
tp->forced.n_nodes = tp->forced.n_visible = 0;
if ((fp = tp->fringe.nodes = ALLOC_NODE(fringe_node_c)) == NULL) {
free_penrose(tp);
return;
}
if (fp == 0) {
if (MI_IS_VERBOSE(mi)) {
(void) fprintf(stderr, "Weirdness in init_penrose()\n");
(void) fprintf(stderr, "fp = 0\n");
}
if ((fp = tp->fringe.nodes = ALLOC_NODE(fringe_node_c)) == NULL) {
free_penrose(tp);
return;
}
tp->done = True;
}
/* First vertex. */
fp->rule_mask = (1 << N_VERTEX_RULES) - 1;
fp->list_ptr = 0;
if ((fp->prev = fp->next = ALLOC_NODE(fringe_node_c)) == NULL) {
free_penrose(tp);
return;
}
if (fp->next == 0) {
if (MI_IS_VERBOSE(mi)) {
(void) fprintf(stderr, "Weirdness in init_penrose()\n");
(void) fprintf(stderr, "fp->next = 0\n");
}
if ((fp->prev = fp->next = ALLOC_NODE(fringe_node_c)) == NULL) {
free_penrose(tp);
return;
}
tp->done = True;
}
fp->n_tiles = 0;
fp->loc = tp->origin;
fp->off_screen = False;
for (i = 0; i < 5; i++)
fp->fived[i] = 0;
/* Second vertex. */
*(fp->next) = *fp;
fp->next->prev = fp->next->next = fp;
fp = fp->next;
i = NRAND(5);
fp->fived[i] = 2 * NRAND(2) - 1;
fived_to_loc(fp->fived, tp, &(fp->loc));
/* That's it! We have created our first edge. */
}
/*-
* This attempts to match the configuration of vertex with the vertex
* rules. The return value is a total match count. If matches is
* non-null, it will be used to store information about the matches
* and must be large enough to contain it. To play it absolutely
* safe, allocate room for MAX_TILES_PER_VERTEX * N_VERTEX_RULES
* entries when searching all matches. The rule mask of vertex will
* be applied and rules masked out will not be searched. Only strict
* subsequences match. If first_only is true, the search stops when
* the first match is found. Otherwise all matches will be found and
* the rule_mask of vertex will be updated, which also happens in
* single-match mode if no match is found.
*/
static int
match_rules(fringe_node_c * vertex, rule_match_c * matches, int first_only)
{
/* I will assume that I can fit all the relevant bits in vertex->tiles
into one unsigned long. With 3 bits per element and at most 7
elements this means 21 bits, which should leave plenty of room.
After packing the bits the rest is just integer comparisons and
some bit shuffling. This is essentially Rabin-Karp without
congruence arithmetic. */
register int i, j;
int hits = 0, good_rules[N_VERTEX_RULES], n_good = 0;
unsigned long
vertex_hash = 0, lower_bits_mask = ~(VT_TOTAL_MASK << VT_BITS * (vertex->n_tiles - 1));
unsigned new_rule_mask = 0;
for (i = 0; i < N_VERTEX_RULES; i++)
if (vertex->n_tiles >= vertex_rules[i].n_tiles)
vertex->rule_mask &= ~(1 << i);
else if (vertex->rule_mask & 1 << i)
good_rules[n_good++] = i;
for (i = 0; i < vertex->n_tiles; i++)
vertex_hash |= (unsigned long) vertex->tiles[i] << (VT_BITS * i);
for (j = 0; j < n_good; j++) {
unsigned long rule_hash = 0;
vertex_rule_c *vr = vertex_rules + good_rules[j];
for (i = 0; i < vertex->n_tiles; i++)
rule_hash |= (unsigned long) vr->tiles[i] << (VT_BITS * i);
if (rule_hash == vertex_hash) {
if (matches != 0) {
matches[hits].rule = good_rules[j];
matches[hits].pos = 0;
}
hits++;
if (first_only)
return hits;
else
new_rule_mask |= 1 << good_rules[j];
}
for (i = vr->n_tiles - 1; i > 0; i--) {
rule_hash = vr->tiles[i] | (rule_hash & lower_bits_mask) << VT_BITS;
if (vertex_hash == rule_hash) {
if (matches != 0) {
matches[hits].rule = good_rules[j];
matches[hits].pos = i;
}
hits++;
if (first_only)
return hits;
else
new_rule_mask |= 1 << good_rules[j];
}
}
}
vertex->rule_mask = new_rule_mask;
return hits;
}
/*-
* find_completions finds the possible ways to add a tile to a vertex.
* The return values is the number of such possibilities. You must
* first call match_rules to produce matches and n_matches. sides
* specifies which side of the vertex to extend and can be S_LEFT or
* S_RIGHT. If results is non-null, it should point to an array large
* enough to contain the results, which will be stored there.
* MAX_COMPL elements will always suffice. If first_only is true we
* stop as soon as we find one possibility (NOT USED).
*/
#define MAX_COMPL 2
static int
find_completions(fringe_node_c * vertex, rule_match_c * matches, int n_matches,
unsigned side, vertex_type_c * results /*, int first_only */ )
{
int n_res = 0, cont;
register int i, j;
vertex_type_c buf[MAX_COMPL];
if (results == 0)
results = buf;
if (n_matches <= 0)
return 0;
for (i = 0; i < n_matches; i++) {
vertex_rule_c *rule = vertex_rules + matches[i].rule;
int pos = (matches[i].pos
+ (side == S_RIGHT ? vertex->n_tiles : rule->n_tiles - 1))
% rule->n_tiles;
vertex_type_c vtype = rule->tiles[pos];
cont = 1;
for (j = 0; j < n_res; j++)
if (vtype == results[j]) {
cont = 0;
break;
}
if (cont)
results[n_res++] = vtype;
}
return n_res;
}
/*-
* Draw a tile on the display. Vertices must be given in a
* counterclockwise order. vtype is the vertex type of v1 (and thus
* also gives the tile type).
*/
static void
draw_tile(fringe_node_c * v1, fringe_node_c * v2,
fringe_node_c * v3, fringe_node_c * v4,
vertex_type_c vtype, ModeInfo * mi)
{
Display *display = MI_DISPLAY(mi);
Window window = MI_WINDOW(mi);
GC gc = MI_GC(mi);
tiling_c *tp = &tilings[MI_SCREEN(mi)];
XPoint pts[5];
vertex_type_c corner = vtype & VT_CORNER_MASK;
if (v1->off_screen && v2->off_screen && v3->off_screen && v4->off_screen)
return;
pts[corner] = v1->loc;
pts[VT_RIGHT(corner)] = v2->loc;
pts[VT_FAR(corner)] = v3->loc;
pts[VT_LEFT(corner)] = v4->loc;
pts[4] = pts[0];
if (MI_NPIXELS(mi) > 2) {
if ((vtype & VT_TYPE_MASK) == VT_THICK)
XSetForeground(display, gc, MI_PIXEL(mi, tp->thick_color));
else
XSetForeground(display, gc, MI_PIXEL(mi, tp->thin_color));
} else {
if ((vtype & VT_TYPE_MASK) == VT_THICK)
XSetForeground(display, gc, tp->thick_color);
else
XSetForeground(display, gc, tp->thin_color);
}
XFillPolygon(display, window, gc, pts, 4, Convex, CoordModeOrigin);
if (MI_NPIXELS(mi) <= 2) {
if ((vtype & VT_TYPE_MASK) == VT_THICK)
XSetForeground(display, gc, tp->thin_color);
else
XSetForeground(display, gc, tp->thick_color);
} else
XSetForeground(display, gc, MI_BLACK_PIXEL(mi));
XDrawLines(display, window, gc, pts, 5, CoordModeOrigin);
if (tp->ammann) {
/* Draw some Ammann lines for debugging purposes. This will probably
fail miserably on a b&w display. */
if ((vtype & VT_TYPE_MASK) == VT_THICK) {
static float r = .0;
if (r == .0) {
float pi10 = 2 * atan(1.) / 5;
r = 1 - sin(pi10) / (2 * sin(3 * pi10));
}
if (MI_NPIXELS(mi) > 2)
XSetForeground(display, gc, MI_PIXEL(mi, tp->thin_color));
else {
XSetForeground(display, gc, tp->thin_color);
XSetLineAttributes(display, gc, 1, LineOnOffDash, CapNotLast, JoinMiter);
}
XDrawLine(display, window, gc,
(int) (r * pts[3].x + (1 - r) * pts[0].x + .5),
(int) (r * pts[3].y + (1 - r) * pts[0].y + .5),
(int) (r * pts[1].x + (1 - r) * pts[0].x + .5),
(int) (r * pts[1].y + (1 - r) * pts[0].y + .5));
if (MI_NPIXELS(mi) <= 2)
XSetLineAttributes(display, gc, 1, LineSolid, CapNotLast, JoinMiter);
} else {
if (MI_NPIXELS(mi) > 2)
XSetForeground(display, gc, MI_PIXEL(mi, tp->thick_color));
else {
XSetForeground(display, gc, tp->thick_color);
XSetLineAttributes(display, gc, 1, LineOnOffDash, CapNotLast, JoinMiter);
}
XDrawLine(display, window, gc,
(int) ((pts[3].x + pts[2].x) / 2 + .5),
(int) ((pts[3].y + pts[2].y) / 2 + .5),
(int) ((pts[1].x + pts[2].x) / 2 + .5),
(int) ((pts[1].y + pts[2].y) / 2 + .5));
if (MI_NPIXELS(mi) <= 2)
XSetLineAttributes(display, gc, 1, LineSolid, CapNotLast, JoinMiter);
}
}
}
/*-
* Update the status of this vertex on the forced vertex queue. If
* the vertex has become untileable set tp->done. This is supposed
* to detect dislocations -- never call this routine with a completely
* tiled vertex.
*
* Check for untileable vertices in check_vertex and stop tiling as
* soon as one finds one. I don't know if it is possible to run out
* of forced vertices while untileable vertices exist (or will
* cavities inevitably appear). If this can happen, add_random_tile
* might get called with an untileable vertex, causing ( n <= 1).
* (This is what the tp->done checks for).
*
* A delayLoop celebrates the dislocation.
*/
static void
check_vertex(ModeInfo * mi, fringe_node_c * vertex, tiling_c * tp)
{
rule_match_c hits[MAX_TILES_PER_VERTEX * N_VERTEX_RULES];
int n_hits = match_rules(vertex, hits, False);
unsigned forced_sides = 0;
if (vertex->rule_mask == 0) {
tp->done = True;
if (MI_IS_VERBOSE(mi)) {
(void) fprintf(stderr, "Dislocation occurred!\n");
}
tp->busyLoop = CELEBRATE; /* Should be able to recover */
}
if (1 == find_completions(vertex, hits, n_hits, S_LEFT, 0 /*, False */ ))
forced_sides |= S_LEFT;
if (1 == find_completions(vertex, hits, n_hits, S_RIGHT, 0 /*, False */ ))
forced_sides |= S_RIGHT;
if (forced_sides == 0) {
if (vertex->list_ptr != 0) {
forced_node_c *node = *vertex->list_ptr;
*vertex->list_ptr = node->next;
if (node->next != 0)
node->next->vertex->list_ptr = vertex->list_ptr;
free(node);
tp->forced.n_nodes--;
if (!vertex->off_screen)
tp->forced.n_visible--;
vertex->list_ptr = 0;
}
} else {
forced_node_c *node;
if (vertex->list_ptr == 0) {
if ((node = ALLOC_NODE(forced_node_c)) == NULL)
return;
node->vertex = vertex;
node->next = tp->forced.first;
if (tp->forced.first != 0)
tp->forced.first->vertex->list_ptr = &(node->next);
tp->forced.first = node;
vertex->list_ptr = &(tp->forced.first);
tp->forced.n_nodes++;
if (!vertex->off_screen)
tp->forced.n_visible++;
} else
node = *vertex->list_ptr;
node->forced_sides = forced_sides;
}
}
/*-
* Delete this vertex. If the vertex is a member of the forced vertex queue,
* also remove that entry. We assume that the vertex is no longer
* connected to the fringe. Note that tp->fringe.nodes must not point to
* the vertex being deleted.
*/
static void
delete_vertex(ModeInfo * mi, fringe_node_c * vertex, tiling_c * tp)
{
if (tp->fringe.nodes == vertex) {
tp->done = True;
if (MI_IS_VERBOSE(mi)) {
(void) fprintf(stderr, "Weirdness in delete_penrose()\n");
(void) fprintf(stderr, "tp->fringe.nodes == vertex\n");
}
tp->busyLoop = CELEBRATE;
}
if (vertex->list_ptr != 0) {
forced_node_c *node = *vertex->list_ptr;
*vertex->list_ptr = node->next;
if (node->next != 0)
node->next->vertex->list_ptr = vertex->list_ptr;
free(node);
tp->forced.n_nodes--;
if (!vertex->off_screen)
tp->forced.n_visible--;
}
if (!vertex->off_screen)
tp->fringe.n_nodes--;
free(vertex);
}
/*-
* Check whether the addition of a tile of type vtype would completely fill
* the space available at vertex.
*/
static int
fills_vertex(ModeInfo * mi, vertex_type_c vtype, fringe_node_c * vertex)
{
return
(vertex_dir(mi, vertex, S_LEFT) - vertex_dir(mi, vertex, S_RIGHT)
- vtype_angle(vtype)) % 10 == 0;
}
/*-
* If you were to add a tile of type vtype to a specified side of
* vertex, fringe_changes tells you which other vertices it would
* attach to. The addresses of these vertices will be stored in the
* last three arguments. Null is stored if the corresponding vertex
* would need to be allocated.
*
* The function also analyzes which vertices would be swallowed by the tiling
* and thus cut off from the fringe. The result is returned as a bit pattern.
*/
#define FC_BAG 1 /* Total enclosure. Should never occur. */
#define FC_NEW_RIGHT 2
#define FC_NEW_FAR 4
#define FC_NEW_LEFT 8
#define FC_NEW_MASK 0xe
#define FC_CUT_THIS 0x10
#define FC_CUT_RIGHT 0x20
#define FC_CUT_FAR 0x40
#define FC_CUT_LEFT 0x80
#define FC_CUT_MASK 0xf0
#define FC_TOTAL_MASK 0xff
static unsigned
fringe_changes(ModeInfo * mi, fringe_node_c * vertex,
unsigned side, vertex_type_c vtype,
fringe_node_c ** right, fringe_node_c ** far,
fringe_node_c ** left)
{
fringe_node_c *v, *f = (fringe_node_c *) NULL;
unsigned result = FC_NEW_FAR; /* We clear this later if necessary. */
if (far)
*far = 0;
if (fills_vertex(mi, vtype, vertex)) {
result |= FC_CUT_THIS;
} else if (side == S_LEFT) {
result |= FC_NEW_RIGHT;
if (right)
*right = 0;
} else {
result |= FC_NEW_LEFT;
if (left)
*left = 0;
}
if (!(result & FC_NEW_LEFT)) {
v = vertex->next;
if (left)
*left = v;
if (fills_vertex(mi, VT_LEFT(vtype), v)) {
result = (result & ~FC_NEW_FAR) | FC_CUT_LEFT;
f = v->next;
if (far)
*far = f;
}
}
if (!(result & FC_NEW_RIGHT)) {
v = vertex->prev;
if (right)
*right = v;
if (fills_vertex(mi, VT_RIGHT(vtype), v)) {
result = (result & ~FC_NEW_FAR) | FC_CUT_RIGHT;
f = v->prev;
if (far)
*far = f;
}
}
if (!(result & FC_NEW_FAR)
&& fills_vertex(mi, VT_FAR(vtype), f)) {
result |= FC_CUT_FAR;
result &= (~FC_NEW_LEFT & ~FC_NEW_RIGHT);
if (right && (result & FC_CUT_LEFT))
*right = f->next;
if (left && (result & FC_CUT_RIGHT))
*left = f->prev;
}
if (((result & FC_CUT_LEFT) && (result & FC_CUT_RIGHT))
|| ((result & FC_CUT_THIS) && (result & FC_CUT_FAR)))
result |= FC_BAG;
return result;
}
/* A couple of lesser helper functions for add_tile. */
static void
add_vtype(fringe_node_c * vertex, unsigned side, vertex_type_c vtype)
{
if (side == S_RIGHT)
vertex->tiles[vertex->n_tiles++] = vtype;
else {
register int i;
for (i = vertex->n_tiles; i > 0; i--)
vertex->tiles[i] = vertex->tiles[i - 1];
vertex->tiles[0] = vtype;
vertex->n_tiles++;
}
}
static fringe_node_c *
alloc_vertex(ModeInfo * mi, angle_c dir, fringe_node_c * from, tiling_c * tp)
{
fringe_node_c *v;
if ((v = ALLOC_NODE(fringe_node_c)) == NULL) {
tp->done = True;
if (MI_IS_VERBOSE(mi)) {
(void) fprintf(stderr, "No memory in alloc_vertex()\n");
}
tp->busyLoop = CELEBRATE;
return v;
}
*v = *from;
add_unit_vec(dir, v->fived);
fived_to_loc(v->fived, tp, &(v->loc));
if (v->loc.x < 0 || v->loc.y < 0
|| v->loc.x >= tp->width || v->loc.y >= tp->height) {
v->off_screen = True;
if (v->loc.x < -tp->width || v->loc.y < -tp->height
|| v->loc.x >= 2 * tp->width || v->loc.y >= 2 * tp->height)
tp->done = True;
} else {
v->off_screen = False;
tp->fringe.n_nodes++;
}
v->n_tiles = 0;
v->rule_mask = (1 << N_VERTEX_RULES) - 1;
v->list_ptr = 0;
return v;
}
/*-
* Add a tile described by vtype to the side of vertex. This must be
* allowed by the rules -- we do not check it here. New vertices are
* allocated as necessary. The fringe and the forced vertex pool are updated.
* The new tile is drawn on the display.
*
* One thing we do check here is whether the new tile causes an untiled
* area to become enclosed by the tiling. If this would happen, the tile
* is not added. The return value is true iff a tile was added.
*/
static int
add_tile(ModeInfo * mi,
fringe_node_c * vertex, unsigned side, vertex_type_c vtype)
{
tiling_c *tp = &tilings[MI_SCREEN(mi)];
fringe_node_c
*left = (fringe_node_c *) NULL,
*right = (fringe_node_c *) NULL,
*far = (fringe_node_c *) NULL,
*node;
unsigned fc = fringe_changes(mi, vertex, side, vtype, &right, &far, &left);
vertex_type_c
ltype = VT_LEFT(vtype),
rtype = VT_RIGHT(vtype),
ftype = VT_FAR(vtype);
/* By our conventions vertex->next lies to the left of vertex and
vertex->prev to the right. */
/* This should never occur. */
if (fc & FC_BAG) {
tp->done = True;
if (MI_IS_VERBOSE(mi)) {
(void) fprintf(stderr, "Weirdness in add_tile()\n");
(void) fprintf(stderr, "fc = %d, FC_BAG = %d\n", fc, FC_BAG);
}
}
if (side == S_LEFT) {
if (right == NULL)
if ((right = alloc_vertex(mi, vertex_dir(mi, vertex, S_LEFT) -
vtype_angle(vtype), vertex, tp)) == NULL)
return False;
if (far == NULL)
if ((far = alloc_vertex(mi, vertex_dir(mi, left, S_RIGHT) +
vtype_angle(ltype), left, tp)) == NULL)
return False;
} else {
if (left == NULL)
if ((left = alloc_vertex(mi, vertex_dir(mi, vertex, S_RIGHT) +
vtype_angle(vtype), vertex, tp)) == NULL)
return False;
if (far == NULL)
if ((far = alloc_vertex(mi, vertex_dir(mi, right, S_LEFT) -
vtype_angle(rtype), right, tp)) == NULL)
return False;
}
/* Having allocated the new vertices, but before joining them with
the rest of the fringe, check if vertices with same coordinates
already exist. If any such are found, give up. */
node = tp->fringe.nodes;
do {
if (((fc & FC_NEW_LEFT) && fived_equal(node->fived, left->fived))
|| ((fc & FC_NEW_RIGHT) && fived_equal(node->fived, right->fived))
|| ((fc & FC_NEW_FAR) && fived_equal(node->fived, far->fived))) {
/* Better luck next time. */
if (fc & FC_NEW_LEFT)
delete_vertex(mi, left, tp);
if (fc & FC_NEW_RIGHT)
delete_vertex(mi, right, tp);
if (fc & FC_NEW_FAR)
delete_vertex(mi, far, tp);
return False;
}
node = node->next;
} while (node != tp->fringe.nodes);
/* Rechain. */
if (!(fc & FC_CUT_THIS)) {
if (side == S_LEFT) {
vertex->next = right;
right->prev = vertex;
} else {
vertex->prev = left;
left->next = vertex;
}
}
if (!(fc & FC_CUT_FAR)) {
if (!(fc & FC_CUT_LEFT)) {
far->next = left;
left->prev = far;
}
if (!(fc & FC_CUT_RIGHT)) {
far->prev = right;
right->next = far;
}
}
draw_tile(vertex, right, far, left, vtype, mi);
/* Delete vertices that are no longer on the fringe. Check the others. */
if (fc & FC_CUT_THIS) {
tp->fringe.nodes = far;
delete_vertex(mi, vertex, tp);
} else {
add_vtype(vertex, side, vtype);
check_vertex(mi, vertex, tp);
tp->fringe.nodes = vertex;
}
if (fc & FC_CUT_FAR)
delete_vertex(mi, far, tp);
else {
add_vtype(far, fc & FC_CUT_RIGHT ? S_LEFT : S_RIGHT, ftype);
check_vertex(mi, far, tp);
}
if (fc & FC_CUT_LEFT)
delete_vertex(mi, left, tp);
else {
add_vtype(left, fc & FC_CUT_FAR ? S_LEFT : S_RIGHT, ltype);
check_vertex(mi, left, tp);
}
if (fc & FC_CUT_RIGHT)
delete_vertex(mi, right, tp);
else {
add_vtype(right, fc & FC_CUT_FAR ? S_RIGHT : S_LEFT, rtype);
check_vertex(mi, right, tp);
}
return True;
}
/*-
* Add a forced tile to a given forced vertex. Basically an easy job,
* since we know what to add. But it might fail if adding the tile
* would cause some untiled area to become enclosed. There is also another
* more exotic culprit: we might have a dislocation. Fortunately, they
* are very rare (the PRL article reported that perfect tilings of over
* 2^50 tiles had been generated). There is a version of the algorithm
* that doesn't produce dislocations, but it's a lot hairier than the
* simpler version I used.
*/
static int
add_forced_tile(ModeInfo * mi, forced_node_c * node)
{
tiling_c *tp = &tilings[MI_SCREEN(mi)];
unsigned side;
vertex_type_c vtype;
rule_match_c hits[MAX_TILES_PER_VERTEX * N_VERTEX_RULES];
int n;
if (node->forced_sides == (S_LEFT | S_RIGHT))
side = NRAND(2) ? S_LEFT : S_RIGHT;
else
side = node->forced_sides;
n = match_rules(node->vertex, hits, True);
n = find_completions(node->vertex, hits, n, side, &vtype /*, True */ );
if (n <= 0) {
tp->done = True;
if (MI_IS_VERBOSE(mi)) {
(void) fprintf(stderr, "Weirdness in add_forced_tile()\n");
(void) fprintf(stderr, "n = %d\n", n);
}
}
return add_tile(mi, node->vertex, side, vtype);
}
/*-
* Whether the addition of a tile of vtype on the given side of vertex
* would conform to the rules. The efficient way to do this would be
* to add the new tile and then use the same type of search as in
* match_rules. However, this function is not a performance
* bottleneck (only needed for random tile additions, which are
* relatively infrequent), so I will settle for a simpler implementation.
*/
static int
legal_move(fringe_node_c * vertex, unsigned side, vertex_type_c vtype)
{
rule_match_c hits[MAX_TILES_PER_VERTEX * N_VERTEX_RULES];
vertex_type_c legal_vt[MAX_COMPL];
int n_hits, n_legal, i;
n_hits = match_rules(vertex, hits, False);
n_legal = find_completions(vertex, hits, n_hits, side, legal_vt /*, False */ );
for (i = 0; i < n_legal; i++)
if (legal_vt[i] == vtype)
return True;
return False;
}
/*-
* Add a randomly chosen tile to a given vertex. This requires more checking
* as we must make sure the new tile conforms to the vertex rules at every
* vertex it touches. */
static void
add_random_tile(fringe_node_c * vertex, ModeInfo * mi)
{
fringe_node_c *right, *left, *far;
int i, j, n, n_hits, n_good;
unsigned side, fc, no_good, s;
vertex_type_c vtypes[MAX_COMPL];
rule_match_c hits[MAX_TILES_PER_VERTEX * N_VERTEX_RULES];
tiling_c *tp = &tilings[MI_SCREEN(mi)];
if (MI_NPIXELS(mi) > 2) {
tp->thick_color = NRAND(MI_NPIXELS(mi));
/* Insure good contrast */
tp->thin_color = (NRAND(2 * MI_NPIXELS(mi) / 3) + tp->thick_color +
MI_NPIXELS(mi) / 6) % MI_NPIXELS(mi);
} else {
unsigned long temp = tp->thick_color;
tp->thick_color = tp->thin_color;
tp->thin_color = temp;
}
n_hits = match_rules(vertex, hits, False);
side = NRAND(2) ? S_LEFT : S_RIGHT;
n = find_completions(vertex, hits, n_hits, side, vtypes /*, False */ );
/* One answer would mean a forced tile. */
if (n <= 0) {
tp->done = True;
if (MI_IS_VERBOSE(mi)) {
(void) fprintf(stderr, "Weirdness in add_random_tile()\n");
(void) fprintf(stderr, "n = %d\n", n);
}
}
no_good = 0;
n_good = n;
for (i = 0; i < n; i++) {
fc = fringe_changes(mi, vertex, side, vtypes[i], &right, &far, &left);
if (fc & FC_BAG) {
tp->done = True;
if (MI_IS_VERBOSE(mi)) {
(void) fprintf(stderr, "Weirdness in add_random_tile()\n");
(void) fprintf(stderr, "fc = %d, FC_BAG = %d\n", fc, FC_BAG);
}
}
if (right) {
s = (((fc & FC_CUT_FAR) && (fc & FC_CUT_LEFT)) ? S_RIGHT : S_LEFT);
if (!legal_move(right, s, VT_RIGHT(vtypes[i]))) {
no_good |= (1 << i);
n_good--;
continue;
}
}
if (left) {
s = (((fc & FC_CUT_FAR) && (fc & FC_CUT_RIGHT)) ? S_LEFT : S_RIGHT);
if (!legal_move(left, s, VT_LEFT(vtypes[i]))) {
no_good |= (1 << i);
n_good--;
continue;
}
}
if (far) {
s = ((fc & FC_CUT_LEFT) ? S_RIGHT : S_LEFT);
if (!legal_move(far, s, VT_FAR(vtypes[i]))) {
no_good |= (1 << i);
n_good--;
}
}
}
if (n_good <= 0) {
tp->done = True;
if (MI_IS_VERBOSE(mi)) {
(void) fprintf(stderr, "Weirdness in add_random_tile()\n");
(void) fprintf(stderr, "n_good = %d\n", n_good);
}
}
n = NRAND(n_good);
for (i = j = 0; i <= n; i++, j++)
while (no_good & (1 << j))
j++;
if (!add_tile(mi, vertex, side, vtypes[j - 1])) {
tp->done = True;
if (MI_IS_VERBOSE(mi)) {
(void) fprintf(stderr, "Weirdness in add_random_tile()\n");
}
free_penrose(tp);
}
}
/* One step of the growth algorithm. */
void
draw_penrose(ModeInfo * mi)
{
int i = 0, n;
forced_node_c *p;
tiling_c *tp;
if (tilings == NULL)
return;
tp = &tilings[MI_SCREEN(mi)];
if (tp->fringe.nodes == NULL)
return;
MI_IS_DRAWN(mi) = True;
p = tp->forced.first;
if (tp->busyLoop > 0) {
tp->busyLoop--;
return;
}
if (tp->done || tp->failures >= 100) {
init_penrose(mi);
return;
}
/* Check for the initial "2-gon". */
if (tp->fringe.nodes->prev == tp->fringe.nodes->next) {
vertex_type_c vtype = (unsigned char) (VT_TOTAL_MASK & LRAND());
MI_CLEARWINDOW(mi);
if (!add_tile(mi, tp->fringe.nodes, S_LEFT, vtype))
free_penrose(tp);
return;
}
/* No visible nodes left. */
if (tp->fringe.n_nodes == 0) {
tp->done = True;
tp->busyLoop = COMPLETION; /* Just finished drawing */
return;
}
if (tp->forced.n_visible > 0 && tp->failures < 10) {
n = NRAND(tp->forced.n_visible);
for (;;) {
while (p->vertex->off_screen)
p = p->next;
if (i++ < n)
p = p->next;
else
break;
}
} else if (tp->forced.n_nodes > 0) {
n = NRAND(tp->forced.n_nodes);
while (i++ < n)
p = p->next;
} else {
fringe_node_c *fringe_p = tp->fringe.nodes;
n = NRAND(tp->fringe.n_nodes);
i = 0;
for (; i <= n; i++)
do {
fringe_p = fringe_p->next;
} while (fringe_p->off_screen);
add_random_tile(fringe_p, mi);
tp->failures = 0;
return;
}
if (add_forced_tile(mi, p))
tp->failures = 0;
else
tp->failures++;
}
/* Total clean-up. */
void
release_penrose(ModeInfo * mi)
{
if (tilings != NULL) {
int screen;
for (screen = 0; screen < MI_NUM_SCREENS(mi); screen++)
free_penrose(&tilings[screen]);
free(tilings);
tilings = (tiling_c *) NULL;
}
}
#endif /* MODE_penrose */